|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- #include <FastLED.h>
-
- #define LED_PIN 5
- #define COLOR_ORDER GRB
- #define CHIPSET WS2811
- #define NUM_LEDS 30
-
- #define BRIGHTNESS 200
- #define FRAMES_PER_SECOND 60
-
- bool gReverseDirection = false;
-
- CRGB leds[NUM_LEDS];
-
- // Fire2012 with programmable Color Palette
- //
- // This code is the same fire simulation as the original "Fire2012",
- // but each heat cell's temperature is translated to color through a FastLED
- // programmable color palette, instead of through the "HeatColor(...)" function.
- //
- // Four different static color palettes are provided here, plus one dynamic one.
- //
- // The three static ones are:
- // 1. the FastLED built-in HeatColors_p -- this is the default, and it looks
- // pretty much exactly like the original Fire2012.
- //
- // To use any of the other palettes below, just "uncomment" the corresponding code.
- //
- // 2. a gradient from black to red to yellow to white, which is
- // visually similar to the HeatColors_p, and helps to illustrate
- // what the 'heat colors' palette is actually doing,
- // 3. a similar gradient, but in blue colors rather than red ones,
- // i.e. from black to blue to aqua to white, which results in
- // an "icy blue" fire effect,
- // 4. a simplified three-step gradient, from black to red to white, just to show
- // that these gradients need not have four components; two or
- // three are possible, too, even if they don't look quite as nice for fire.
- //
- // The dynamic palette shows how you can change the basic 'hue' of the
- // color palette every time through the loop, producing "rainbow fire".
-
- CRGBPalette16 gPal;
-
- void setup() {
- delay(3000); // sanity delay
- FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
- FastLED.setBrightness( BRIGHTNESS );
-
- // This first palette is the basic 'black body radiation' colors,
- // which run from black to red to bright yellow to white.
- gPal = HeatColors_p;
-
- // These are other ways to set up the color palette for the 'fire'.
- // First, a gradient from black to red to yellow to white -- similar to HeatColors_p
- // gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::Yellow, CRGB::White);
-
- // Second, this palette is like the heat colors, but blue/aqua instead of red/yellow
- // gPal = CRGBPalette16( CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
-
- // Third, here's a simpler, three-step gradient, from black to red to white
- // gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::White);
-
- }
-
- void loop()
- {
- // Add entropy to random number generator; we use a lot of it.
- random16_add_entropy( random());
-
- // Fourth, the most sophisticated: this one sets up a new palette every
- // time through the loop, based on a hue that changes every time.
- // The palette is a gradient from black, to a dark color based on the hue,
- // to a light color based on the hue, to white.
- //
- // static uint8_t hue = 0;
- // hue++;
- // CRGB darkcolor = CHSV(hue,255,192); // pure hue, three-quarters brightness
- // CRGB lightcolor = CHSV(hue,128,255); // half 'whitened', full brightness
- // gPal = CRGBPalette16( CRGB::Black, darkcolor, lightcolor, CRGB::White);
-
-
- Fire2012WithPalette(); // run simulation frame, using palette colors
-
- FastLED.show(); // display this frame
- FastLED.delay(1000 / FRAMES_PER_SECOND);
- }
-
-
- // Fire2012 by Mark Kriegsman, July 2012
- // as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
- ////
- // This basic one-dimensional 'fire' simulation works roughly as follows:
- // There's a underlying array of 'heat' cells, that model the temperature
- // at each point along the line. Every cycle through the simulation,
- // four steps are performed:
- // 1) All cells cool down a little bit, losing heat to the air
- // 2) The heat from each cell drifts 'up' and diffuses a little
- // 3) Sometimes randomly new 'sparks' of heat are added at the bottom
- // 4) The heat from each cell is rendered as a color into the leds array
- // The heat-to-color mapping uses a black-body radiation approximation.
- //
- // Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
- //
- // This simulation scales it self a bit depending on NUM_LEDS; it should look
- // "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
- //
- // I recommend running this simulation at anywhere from 30-100 frames per second,
- // meaning an interframe delay of about 10-35 milliseconds.
- //
- // Looks best on a high-density LED setup (60+ pixels/meter).
- //
- //
- // There are two main parameters you can play with to control the look and
- // feel of your fire: COOLING (used in step 1 above), and SPARKING (used
- // in step 3 above).
- //
- // COOLING: How much does the air cool as it rises?
- // Less cooling = taller flames. More cooling = shorter flames.
- // Default 55, suggested range 20-100
- #define COOLING 55
-
- // SPARKING: What chance (out of 255) is there that a new spark will be lit?
- // Higher chance = more roaring fire. Lower chance = more flickery fire.
- // Default 120, suggested range 50-200.
- #define SPARKING 120
-
-
- void Fire2012WithPalette()
- {
- // Array of temperature readings at each simulation cell
- static byte heat[NUM_LEDS];
-
- // Step 1. Cool down every cell a little
- for( int i = 0; i < NUM_LEDS; i++) {
- heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
- }
-
- // Step 2. Heat from each cell drifts 'up' and diffuses a little
- for( int k= NUM_LEDS - 1; k >= 2; k--) {
- heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
- }
-
- // Step 3. Randomly ignite new 'sparks' of heat near the bottom
- if( random8() < SPARKING ) {
- int y = random8(7);
- heat[y] = qadd8( heat[y], random8(160,255) );
- }
-
- // Step 4. Map from heat cells to LED colors
- for( int j = 0; j < NUM_LEDS; j++) {
- // Scale the heat value from 0-255 down to 0-240
- // for best results with color palettes.
- byte colorindex = scale8( heat[j], 240);
- CRGB color = ColorFromPalette( gPal, colorindex);
- int pixelnumber;
- if( gReverseDirection ) {
- pixelnumber = (NUM_LEDS-1) - j;
- } else {
- pixelnumber = j;
- }
- leds[pixelnumber] = color;
- }
- }
-
|