|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418 |
- #ifndef __INC_CONTROLLER_H
- #define __INC_CONTROLLER_H
-
- ///@file controller.h
- /// base definitions used by led controllers for writing out led data
-
- #include "FastLED.h"
- #include "led_sysdefs.h"
- #include "pixeltypes.h"
- #include "color.h"
- #include <stddef.h>
-
- FASTLED_NAMESPACE_BEGIN
-
- #define RO(X) RGB_BYTE(RGB_ORDER, X)
- #define RGB_BYTE(RO,X) (((RO)>>(3*(2-(X)))) & 0x3)
-
- #define RGB_BYTE0(RO) ((RO>>6) & 0x3)
- #define RGB_BYTE1(RO) ((RO>>3) & 0x3)
- #define RGB_BYTE2(RO) ((RO) & 0x3)
-
- // operator byte *(struct CRGB[] arr) { return (byte*)arr; }
-
- #define DISABLE_DITHER 0x00
- #define BINARY_DITHER 0x01
- typedef uint8_t EDitherMode;
-
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //
- // LED Controller interface definition
- //
- //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
- /// Base definition for an LED controller. Pretty much the methods that every LED controller object will make available.
- /// Note that the showARGB method is not impelemented for all controllers yet. Note also the methods for eventual checking
- /// of background writing of data (I'm looking at you, teensy 3.0 DMA controller!). If you want to pass LED controllers around
- /// to methods, make them references to this type, keeps your code saner. However, most people won't be seeing/using these objects
- /// directly at all
- class CLEDController {
- protected:
- friend class CFastLED;
- CRGB *m_Data;
- CLEDController *m_pNext;
- CRGB m_ColorCorrection;
- CRGB m_ColorTemperature;
- EDitherMode m_DitherMode;
- int m_nLeds;
- static CLEDController *m_pHead;
- static CLEDController *m_pTail;
-
- /// set all the leds on the controller to a given color
- ///@param data the crgb color to set the leds to
- ///@param nLeds the numner of leds to set to this color
- ///@param scale the rgb scaling value for outputting color
- virtual void showColor(const struct CRGB & data, int nLeds, CRGB scale) = 0;
-
- /// write the passed in rgb data out to the leds managed by this controller
- ///@param data the rgb data to write out to the strip
- ///@param nLeds the number of leds being written out
- ///@param scale the rgb scaling to apply to each led before writing it out
- virtual void show(const struct CRGB *data, int nLeds, CRGB scale) = 0;
-
- public:
- /// create an led controller object, add it to the chain of controllers
- CLEDController() : m_Data(NULL), m_ColorCorrection(UncorrectedColor), m_ColorTemperature(UncorrectedTemperature), m_DitherMode(BINARY_DITHER), m_nLeds(0) {
- m_pNext = NULL;
- if(m_pHead==NULL) { m_pHead = this; }
- if(m_pTail != NULL) { m_pTail->m_pNext = this; }
- m_pTail = this;
- }
-
- ///initialize the LED controller
- virtual void init() = 0;
-
- ///clear out/zero out the given number of leds.
- virtual void clearLeds(int nLeds) { showColor(CRGB::Black, nLeds, CRGB::Black); }
-
- /// show function w/integer brightness, will scale for color correction and temperature
- void show(const struct CRGB *data, int nLeds, uint8_t brightness) {
- show(data, nLeds, getAdjustment(brightness));
- }
-
- /// show function w/integer brightness, will scale for color correction and temperature
- void showColor(const struct CRGB &data, int nLeds, uint8_t brightness) {
- showColor(data, nLeds, getAdjustment(brightness));
- }
-
- /// show function using the "attached to this controller" led data
- void showLeds(uint8_t brightness=255) {
- show(m_Data, m_nLeds, getAdjustment(brightness));
- }
-
- /// show the given color on the led strip
- void showColor(const struct CRGB & data, uint8_t brightness=255) {
- showColor(data, m_nLeds, getAdjustment(brightness));
- }
-
- /// get the first led controller in the chain of controllers
- static CLEDController *head() { return m_pHead; }
- /// get the next controller in the chain after this one. will return NULL at the end of the chain
- CLEDController *next() { return m_pNext; }
-
- /// set the default array of leds to be used by this controller
- CLEDController & setLeds(CRGB *data, int nLeds) {
- m_Data = data;
- m_nLeds = nLeds;
- return *this;
- }
-
- /// zero out the led data managed by this controller
- void clearLedData() {
- if(m_Data) {
- memset8((void*)m_Data, 0, sizeof(struct CRGB) * m_nLeds);
- }
- }
-
- /// How many leds does this controller manage?
- virtual int size() { return m_nLeds; }
-
- /// Pointer to the CRGB array for this controller
- CRGB* leds() { return m_Data; }
-
- /// Reference to the n'th item in the controller
- CRGB &operator[](int x) { return m_Data[x]; }
-
- /// set the dithering mode for this controller to use
- inline CLEDController & setDither(uint8_t ditherMode = BINARY_DITHER) { m_DitherMode = ditherMode; return *this; }
- /// get the dithering option currently set for this controller
- inline uint8_t getDither() { return m_DitherMode; }
-
- /// the the color corrction to use for this controller, expressed as an rgb object
- CLEDController & setCorrection(CRGB correction) { m_ColorCorrection = correction; return *this; }
- /// set the color correction to use for this controller
- CLEDController & setCorrection(LEDColorCorrection correction) { m_ColorCorrection = correction; return *this; }
- /// get the correction value used by this controller
- CRGB getCorrection() { return m_ColorCorrection; }
-
- /// set the color temperature, aka white point, for this controller
- CLEDController & setTemperature(CRGB temperature) { m_ColorTemperature = temperature; return *this; }
- /// set the color temperature, aka white point, for this controller
- CLEDController & setTemperature(ColorTemperature temperature) { m_ColorTemperature = temperature; return *this; }
- /// get the color temperature, aka whipe point, for this controller
- CRGB getTemperature() { return m_ColorTemperature; }
-
- /// Get the combined brightness/color adjustment for this controller
- CRGB getAdjustment(uint8_t scale) {
- return computeAdjustment(scale, m_ColorCorrection, m_ColorTemperature);
- }
-
- static CRGB computeAdjustment(uint8_t scale, const CRGB & colorCorrection, const CRGB & colorTemperature) {
- #if defined(NO_CORRECTION) && (NO_CORRECTION==1)
- return CRGB(scale,scale,scale);
- #else
- CRGB adj(0,0,0);
-
- if(scale > 0) {
- for(uint8_t i = 0; i < 3; i++) {
- uint8_t cc = colorCorrection.raw[i];
- uint8_t ct = colorTemperature.raw[i];
- if(cc > 0 && ct > 0) {
- uint32_t work = (((uint32_t)cc)+1) * (((uint32_t)ct)+1) * scale;
- work /= 0x10000L;
- adj.raw[i] = work & 0xFF;
- }
- }
- }
-
- return adj;
- #endif
- }
- virtual uint16_t getMaxRefreshRate() const { return 0; }
- };
-
- // Pixel controller class. This is the class that we use to centralize pixel access in a block of data, including
- // support for things like RGB reordering, scaling, dithering, skipping (for ARGB data), and eventually, we will
- // centralize 8/12/16 conversions here as well.
- template<EOrder RGB_ORDER, int LANES=1, uint32_t MASK=0xFFFFFFFF>
- struct PixelController {
- const uint8_t *mData;
- int mLen,mLenRemaining;
- uint8_t d[3];
- uint8_t e[3];
- CRGB mScale;
- int8_t mAdvance;
- int mOffsets[LANES];
-
- PixelController(const PixelController & other) {
- d[0] = other.d[0];
- d[1] = other.d[1];
- d[2] = other.d[2];
- e[0] = other.e[0];
- e[1] = other.e[1];
- e[2] = other.e[2];
- mData = other.mData;
- mScale = other.mScale;
- mAdvance = other.mAdvance;
- mLenRemaining = mLen = other.mLen;
- for(int i = 0; i < LANES; i++) { mOffsets[i] = other.mOffsets[i]; }
-
- }
-
- void initOffsets(int len) {
- int nOffset = 0;
- for(int i = 0; i < LANES; i++) {
- mOffsets[i] = nOffset;
- if((1<<i) & MASK) { nOffset += (len * mAdvance); }
- }
- }
-
- PixelController(const uint8_t *d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER, bool advance=true, uint8_t skip=0) : mData(d), mLen(len), mLenRemaining(len), mScale(s) {
- enable_dithering(dither);
- mData += skip;
- mAdvance = (advance) ? 3+skip : 0;
- initOffsets(len);
- }
-
- PixelController(const CRGB *d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER) : mData((const uint8_t*)d), mLen(len), mLenRemaining(len), mScale(s) {
- enable_dithering(dither);
- mAdvance = 3;
- initOffsets(len);
- }
-
- PixelController(const CRGB &d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER) : mData((const uint8_t*)&d), mLen(len), mLenRemaining(len), mScale(s) {
- enable_dithering(dither);
- mAdvance = 0;
- initOffsets(len);
- }
-
- void init_binary_dithering() {
- #if !defined(NO_DITHERING) || (NO_DITHERING != 1)
-
- // Set 'virtual bits' of dithering to the highest level
- // that is not likely to cause excessive flickering at
- // low brightness levels + low update rates.
- // These pre-set values are a little ambitious, since
- // a 400Hz update rate for WS2811-family LEDs is only
- // possible with 85 pixels or fewer.
- // Once we have a 'number of milliseconds since last update'
- // value available here, we can quickly calculate the correct
- // number of 'virtual bits' on the fly with a couple of 'if'
- // statements -- no division required. At this point,
- // the division is done at compile time, so there's no runtime
- // cost, but the values are still hard-coded.
- #define MAX_LIKELY_UPDATE_RATE_HZ 400
- #define MIN_ACCEPTABLE_DITHER_RATE_HZ 50
- #define UPDATES_PER_FULL_DITHER_CYCLE (MAX_LIKELY_UPDATE_RATE_HZ / MIN_ACCEPTABLE_DITHER_RATE_HZ)
- #define RECOMMENDED_VIRTUAL_BITS ((UPDATES_PER_FULL_DITHER_CYCLE>1) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>2) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>4) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>8) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>16) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>32) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>64) + \
- (UPDATES_PER_FULL_DITHER_CYCLE>128) )
- #define VIRTUAL_BITS RECOMMENDED_VIRTUAL_BITS
-
- // R is the digther signal 'counter'.
- static uint8_t R = 0;
- R++;
-
- // R is wrapped around at 2^ditherBits,
- // so if ditherBits is 2, R will cycle through (0,1,2,3)
- uint8_t ditherBits = VIRTUAL_BITS;
- R &= (0x01 << ditherBits) - 1;
-
- // Q is the "unscaled dither signal" itself.
- // It's initialized to the reversed bits of R.
- // If 'ditherBits' is 2, Q here will cycle through (0,128,64,192)
- uint8_t Q = 0;
-
- // Reverse bits in a byte
- {
- if(R & 0x01) { Q |= 0x80; }
- if(R & 0x02) { Q |= 0x40; }
- if(R & 0x04) { Q |= 0x20; }
- if(R & 0x08) { Q |= 0x10; }
- if(R & 0x10) { Q |= 0x08; }
- if(R & 0x20) { Q |= 0x04; }
- if(R & 0x40) { Q |= 0x02; }
- if(R & 0x80) { Q |= 0x01; }
- }
-
- // Now we adjust Q to fall in the center of each range,
- // instead of at the start of the range.
- // If ditherBits is 2, Q will be (0, 128, 64, 192) at first,
- // and this adjustment makes it (31, 159, 95, 223).
- if( ditherBits < 8) {
- Q += 0x01 << (7 - ditherBits);
- }
-
- // D and E form the "scaled dither signal"
- // which is added to pixel values to affect the
- // actual dithering.
-
- // Setup the initial D and E values
- for(int i = 0; i < 3; i++) {
- uint8_t s = mScale.raw[i];
- e[i] = s ? (256/s) + 1 : 0;
- d[i] = scale8(Q, e[i]);
- #if (FASTLED_SCALE8_FIXED == 1)
- if(d[i]) (d[i]--);
- #endif
- if(e[i]) e[i]--;
- }
- #endif
- }
-
- // Do we have n pixels left to process?
- __attribute__((always_inline)) inline bool has(int n) {
- return mLenRemaining >= n;
- }
-
- // toggle dithering enable
- void enable_dithering(EDitherMode dither) {
- switch(dither) {
- case BINARY_DITHER: init_binary_dithering(); break;
- default: d[0]=d[1]=d[2]=e[0]=e[1]=e[2]=0; break;
- }
- }
-
- __attribute__((always_inline)) inline int size() { return mLen; }
-
- // get the amount to advance the pointer by
- __attribute__((always_inline)) inline int advanceBy() { return mAdvance; }
-
- // advance the data pointer forward, adjust position counter
- __attribute__((always_inline)) inline void advanceData() { mData += mAdvance; mLenRemaining--;}
-
- // step the dithering forward
- __attribute__((always_inline)) inline void stepDithering() {
- // IF UPDATING HERE, BE SURE TO UPDATE THE ASM VERSION IN
- // clockless_trinket.h!
- d[0] = e[0] - d[0];
- d[1] = e[1] - d[1];
- d[2] = e[2] - d[2];
- }
-
- // Some chipsets pre-cycle the first byte, which means we want to cycle byte 0's dithering separately
- __attribute__((always_inline)) inline void preStepFirstByteDithering() {
- d[RO(0)] = e[RO(0)] - d[RO(0)];
- }
-
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadByte(PixelController & pc) { return pc.mData[RO(SLOT)]; }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadByte(PixelController & pc, int lane) { return pc.mData[pc.mOffsets[lane] + RO(SLOT)]; }
-
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t dither(PixelController & pc, uint8_t b) { return b ? qadd8(b, pc.d[RO(SLOT)]) : 0; }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t dither(PixelController & , uint8_t b, uint8_t d) { return b ? qadd8(b,d) : 0; }
-
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t scale(PixelController & pc, uint8_t b) { return scale8(b, pc.mScale.raw[RO(SLOT)]); }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t scale(PixelController & , uint8_t b, uint8_t scale) { return scale8(b, scale); }
-
- // composite shortcut functions for loading, dithering, and scaling
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadAndScale(PixelController & pc) { return scale<SLOT>(pc, pc.dither<SLOT>(pc, pc.loadByte<SLOT>(pc))); }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadAndScale(PixelController & pc, int lane) { return scale<SLOT>(pc, pc.dither<SLOT>(pc, pc.loadByte<SLOT>(pc, lane))); }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadAndScale(PixelController & pc, int lane, uint8_t d, uint8_t scale) { return scale8(pc.dither<SLOT>(pc, pc.loadByte<SLOT>(pc, lane), d), scale); }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadAndScale(PixelController & pc, int lane, uint8_t scale) { return scale8(pc.loadByte<SLOT>(pc, lane), scale); }
-
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t advanceAndLoadAndScale(PixelController & pc) { pc.advanceData(); return pc.loadAndScale<SLOT>(pc); }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t advanceAndLoadAndScale(PixelController & pc, int lane) { pc.advanceData(); return pc.loadAndScale<SLOT>(pc, lane); }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t advanceAndLoadAndScale(PixelController & pc, int lane, uint8_t scale) { pc.advanceData(); return pc.loadAndScale<SLOT>(pc, lane, scale); }
-
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t getd(PixelController & pc) { return pc.d[RO(SLOT)]; }
- template<int SLOT> __attribute__((always_inline)) inline static uint8_t getscale(PixelController & pc) { return pc.mScale.raw[RO(SLOT)]; }
-
- // Helper functions to get around gcc stupidities
- __attribute__((always_inline)) inline uint8_t loadAndScale0(int lane, uint8_t scale) { return loadAndScale<0>(*this, lane, scale); }
- __attribute__((always_inline)) inline uint8_t loadAndScale1(int lane, uint8_t scale) { return loadAndScale<1>(*this, lane, scale); }
- __attribute__((always_inline)) inline uint8_t loadAndScale2(int lane, uint8_t scale) { return loadAndScale<2>(*this, lane, scale); }
- __attribute__((always_inline)) inline uint8_t advanceAndLoadAndScale0(int lane, uint8_t scale) { return advanceAndLoadAndScale<0>(*this, lane, scale); }
- __attribute__((always_inline)) inline uint8_t stepAdvanceAndLoadAndScale0(int lane, uint8_t scale) { stepDithering(); return advanceAndLoadAndScale<0>(*this, lane, scale); }
-
- __attribute__((always_inline)) inline uint8_t loadAndScale0(int lane) { return loadAndScale<0>(*this, lane); }
- __attribute__((always_inline)) inline uint8_t loadAndScale1(int lane) { return loadAndScale<1>(*this, lane); }
- __attribute__((always_inline)) inline uint8_t loadAndScale2(int lane) { return loadAndScale<2>(*this, lane); }
- __attribute__((always_inline)) inline uint8_t advanceAndLoadAndScale0(int lane) { return advanceAndLoadAndScale<0>(*this, lane); }
- __attribute__((always_inline)) inline uint8_t stepAdvanceAndLoadAndScale0(int lane) { stepDithering(); return advanceAndLoadAndScale<0>(*this, lane); }
-
- __attribute__((always_inline)) inline uint8_t loadAndScale0() { return loadAndScale<0>(*this); }
- __attribute__((always_inline)) inline uint8_t loadAndScale1() { return loadAndScale<1>(*this); }
- __attribute__((always_inline)) inline uint8_t loadAndScale2() { return loadAndScale<2>(*this); }
- __attribute__((always_inline)) inline uint8_t advanceAndLoadAndScale0() { return advanceAndLoadAndScale<0>(*this); }
- __attribute__((always_inline)) inline uint8_t stepAdvanceAndLoadAndScale0() { stepDithering(); return advanceAndLoadAndScale<0>(*this); }
-
- __attribute__((always_inline)) inline uint8_t getScale0() { return getscale<0>(*this); }
- __attribute__((always_inline)) inline uint8_t getScale1() { return getscale<1>(*this); }
- __attribute__((always_inline)) inline uint8_t getScale2() { return getscale<2>(*this); }
- };
-
- template<EOrder RGB_ORDER, int LANES=1, uint32_t MASK=0xFFFFFFFF> class CPixelLEDController : public CLEDController {
- protected:
- virtual void showPixels(PixelController<RGB_ORDER,LANES,MASK> & pixels) = 0;
-
- /// set all the leds on the controller to a given color
- ///@param data the crgb color to set the leds to
- ///@param nLeds the numner of leds to set to this color
- ///@param scale the rgb scaling value for outputting color
- virtual void showColor(const struct CRGB & data, int nLeds, CRGB scale) {
- PixelController<RGB_ORDER, LANES, MASK> pixels(data, nLeds, scale, getDither());
- showPixels(pixels);
- }
-
- /// write the passed in rgb data out to the leds managed by this controller
- ///@param data the rgb data to write out to the strip
- ///@param nLeds the number of leds being written out
- ///@param scale the rgb scaling to apply to each led before writing it out
- virtual void show(const struct CRGB *data, int nLeds, CRGB scale) {
- PixelController<RGB_ORDER, LANES, MASK> pixels(data, nLeds, scale, getDither());
- showPixels(pixels);
- }
-
- public:
- CPixelLEDController() : CLEDController() {}
- };
-
-
- FASTLED_NAMESPACE_END
-
- #endif
|