|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- #include <FastLED.h>
-
- #define LED_PIN 5
- #define COLOR_ORDER GRB
- #define CHIPSET WS2811
- #define NUM_LEDS 30
-
- #define BRIGHTNESS 200
- #define FRAMES_PER_SECOND 60
-
- bool gReverseDirection = false;
-
- CRGB leds[NUM_LEDS];
-
- void setup() {
- delay(3000); // sanity delay
- FastLED.addLeds<CHIPSET, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
- FastLED.setBrightness( BRIGHTNESS );
- }
-
- void loop()
- {
- // Add entropy to random number generator; we use a lot of it.
- // random16_add_entropy( random());
-
- Fire2012(); // run simulation frame
-
- FastLED.show(); // display this frame
- FastLED.delay(1000 / FRAMES_PER_SECOND);
- }
-
-
- // Fire2012 by Mark Kriegsman, July 2012
- // as part of "Five Elements" shown here: http://youtu.be/knWiGsmgycY
- ////
- // This basic one-dimensional 'fire' simulation works roughly as follows:
- // There's a underlying array of 'heat' cells, that model the temperature
- // at each point along the line. Every cycle through the simulation,
- // four steps are performed:
- // 1) All cells cool down a little bit, losing heat to the air
- // 2) The heat from each cell drifts 'up' and diffuses a little
- // 3) Sometimes randomly new 'sparks' of heat are added at the bottom
- // 4) The heat from each cell is rendered as a color into the leds array
- // The heat-to-color mapping uses a black-body radiation approximation.
- //
- // Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
- //
- // This simulation scales it self a bit depending on NUM_LEDS; it should look
- // "OK" on anywhere from 20 to 100 LEDs without too much tweaking.
- //
- // I recommend running this simulation at anywhere from 30-100 frames per second,
- // meaning an interframe delay of about 10-35 milliseconds.
- //
- // Looks best on a high-density LED setup (60+ pixels/meter).
- //
- //
- // There are two main parameters you can play with to control the look and
- // feel of your fire: COOLING (used in step 1 above), and SPARKING (used
- // in step 3 above).
- //
- // COOLING: How much does the air cool as it rises?
- // Less cooling = taller flames. More cooling = shorter flames.
- // Default 50, suggested range 20-100
- #define COOLING 55
-
- // SPARKING: What chance (out of 255) is there that a new spark will be lit?
- // Higher chance = more roaring fire. Lower chance = more flickery fire.
- // Default 120, suggested range 50-200.
- #define SPARKING 120
-
-
- void Fire2012()
- {
- // Array of temperature readings at each simulation cell
- static byte heat[NUM_LEDS];
-
- // Step 1. Cool down every cell a little
- for( int i = 0; i < NUM_LEDS; i++) {
- heat[i] = qsub8( heat[i], random8(0, ((COOLING * 10) / NUM_LEDS) + 2));
- }
-
- // Step 2. Heat from each cell drifts 'up' and diffuses a little
- for( int k= NUM_LEDS - 1; k >= 2; k--) {
- heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
- }
-
- // Step 3. Randomly ignite new 'sparks' of heat near the bottom
- if( random8() < SPARKING ) {
- int y = random8(7);
- heat[y] = qadd8( heat[y], random8(160,255) );
- }
-
- // Step 4. Map from heat cells to LED colors
- for( int j = 0; j < NUM_LEDS; j++) {
- CRGB color = HeatColor( heat[j]);
- int pixelnumber;
- if( gReverseDirection ) {
- pixelnumber = (NUM_LEDS-1) - j;
- } else {
- pixelnumber = j;
- }
- leds[pixelnumber] = color;
- }
- }
-
|