|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- #include <FastLED.h>
-
- #define LED_PIN 3
- #define BRIGHTNESS 96
- #define LED_TYPE WS2811
- #define COLOR_ORDER GRB
-
- const uint8_t kMatrixWidth = 16;
- const uint8_t kMatrixHeight = 16;
- const bool kMatrixSerpentineLayout = true;
-
-
- // This example combines two features of FastLED to produce a remarkable range of
- // effects from a relatively small amount of code. This example combines FastLED's
- // color palette lookup functions with FastLED's Perlin/simplex noise generator, and
- // the combination is extremely powerful.
- //
- // You might want to look at the "ColorPalette" and "Noise" examples separately
- // if this example code seems daunting.
- //
- //
- // The basic setup here is that for each frame, we generate a new array of
- // 'noise' data, and then map it onto the LED matrix through a color palette.
- //
- // Periodically, the color palette is changed, and new noise-generation parameters
- // are chosen at the same time. In this example, specific noise-generation
- // values have been selected to match the given color palettes; some are faster,
- // or slower, or larger, or smaller than others, but there's no reason these
- // parameters can't be freely mixed-and-matched.
- //
- // In addition, this example includes some fast automatic 'data smoothing' at
- // lower noise speeds to help produce smoother animations in those cases.
- //
- // The FastLED built-in color palettes (Forest, Clouds, Lava, Ocean, Party) are
- // used, as well as some 'hand-defined' ones, and some proceedurally generated
- // palettes.
-
-
- #define NUM_LEDS (kMatrixWidth * kMatrixHeight)
- #define MAX_DIMENSION ((kMatrixWidth>kMatrixHeight) ? kMatrixWidth : kMatrixHeight)
-
- // The leds
- CRGB leds[kMatrixWidth * kMatrixHeight];
-
- // The 16 bit version of our coordinates
- static uint16_t x;
- static uint16_t y;
- static uint16_t z;
-
- // We're using the x/y dimensions to map to the x/y pixels on the matrix. We'll
- // use the z-axis for "time". speed determines how fast time moves forward. Try
- // 1 for a very slow moving effect, or 60 for something that ends up looking like
- // water.
- uint16_t speed = 20; // speed is set dynamically once we've started up
-
- // Scale determines how far apart the pixels in our noise matrix are. Try
- // changing these values around to see how it affects the motion of the display. The
- // higher the value of scale, the more "zoomed out" the noise iwll be. A value
- // of 1 will be so zoomed in, you'll mostly see solid colors.
- uint16_t scale = 30; // scale is set dynamically once we've started up
-
- // This is the array that we keep our computed noise values in
- uint8_t noise[MAX_DIMENSION][MAX_DIMENSION];
-
- CRGBPalette16 currentPalette( PartyColors_p );
- uint8_t colorLoop = 1;
-
- void setup() {
- delay(3000);
- LEDS.addLeds<LED_TYPE,LED_PIN,COLOR_ORDER>(leds,NUM_LEDS);
- LEDS.setBrightness(BRIGHTNESS);
-
- // Initialize our coordinates to some random values
- x = random16();
- y = random16();
- z = random16();
- }
-
-
-
- // Fill the x/y array of 8-bit noise values using the inoise8 function.
- void fillnoise8() {
- // If we're runing at a low "speed", some 8-bit artifacts become visible
- // from frame-to-frame. In order to reduce this, we can do some fast data-smoothing.
- // The amount of data smoothing we're doing depends on "speed".
- uint8_t dataSmoothing = 0;
- if( speed < 50) {
- dataSmoothing = 200 - (speed * 4);
- }
-
- for(int i = 0; i < MAX_DIMENSION; i++) {
- int ioffset = scale * i;
- for(int j = 0; j < MAX_DIMENSION; j++) {
- int joffset = scale * j;
-
- uint8_t data = inoise8(x + ioffset,y + joffset,z);
-
- // The range of the inoise8 function is roughly 16-238.
- // These two operations expand those values out to roughly 0..255
- // You can comment them out if you want the raw noise data.
- data = qsub8(data,16);
- data = qadd8(data,scale8(data,39));
-
- if( dataSmoothing ) {
- uint8_t olddata = noise[i][j];
- uint8_t newdata = scale8( olddata, dataSmoothing) + scale8( data, 256 - dataSmoothing);
- data = newdata;
- }
-
- noise[i][j] = data;
- }
- }
-
- z += speed;
-
- // apply slow drift to X and Y, just for visual variation.
- x += speed / 8;
- y -= speed / 16;
- }
-
- void mapNoiseToLEDsUsingPalette()
- {
- static uint8_t ihue=0;
-
- for(int i = 0; i < kMatrixWidth; i++) {
- for(int j = 0; j < kMatrixHeight; j++) {
- // We use the value at the (i,j) coordinate in the noise
- // array for our brightness, and the flipped value from (j,i)
- // for our pixel's index into the color palette.
-
- uint8_t index = noise[j][i];
- uint8_t bri = noise[i][j];
-
- // if this palette is a 'loop', add a slowly-changing base value
- if( colorLoop) {
- index += ihue;
- }
-
- // brighten up, as the color palette itself often contains the
- // light/dark dynamic range desired
- if( bri > 127 ) {
- bri = 255;
- } else {
- bri = dim8_raw( bri * 2);
- }
-
- CRGB color = ColorFromPalette( currentPalette, index, bri);
- leds[XY(i,j)] = color;
- }
- }
-
- ihue+=1;
- }
-
- void loop() {
- // Periodically choose a new palette, speed, and scale
- ChangePaletteAndSettingsPeriodically();
-
- // generate noise data
- fillnoise8();
-
- // convert the noise data to colors in the LED array
- // using the current palette
- mapNoiseToLEDsUsingPalette();
-
- LEDS.show();
- // delay(10);
- }
-
-
-
- // There are several different palettes of colors demonstrated here.
- //
- // FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
- // OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
- //
- // Additionally, you can manually define your own color palettes, or you can write
- // code that creates color palettes on the fly.
-
- // 1 = 5 sec per palette
- // 2 = 10 sec per palette
- // etc
- #define HOLD_PALETTES_X_TIMES_AS_LONG 1
-
- void ChangePaletteAndSettingsPeriodically()
- {
- uint8_t secondHand = ((millis() / 1000) / HOLD_PALETTES_X_TIMES_AS_LONG) % 60;
- static uint8_t lastSecond = 99;
-
- if( lastSecond != secondHand) {
- lastSecond = secondHand;
- if( secondHand == 0) { currentPalette = RainbowColors_p; speed = 20; scale = 30; colorLoop = 1; }
- if( secondHand == 5) { SetupPurpleAndGreenPalette(); speed = 10; scale = 50; colorLoop = 1; }
- if( secondHand == 10) { SetupBlackAndWhiteStripedPalette(); speed = 20; scale = 30; colorLoop = 1; }
- if( secondHand == 15) { currentPalette = ForestColors_p; speed = 8; scale =120; colorLoop = 0; }
- if( secondHand == 20) { currentPalette = CloudColors_p; speed = 4; scale = 30; colorLoop = 0; }
- if( secondHand == 25) { currentPalette = LavaColors_p; speed = 8; scale = 50; colorLoop = 0; }
- if( secondHand == 30) { currentPalette = OceanColors_p; speed = 20; scale = 90; colorLoop = 0; }
- if( secondHand == 35) { currentPalette = PartyColors_p; speed = 20; scale = 30; colorLoop = 1; }
- if( secondHand == 40) { SetupRandomPalette(); speed = 20; scale = 20; colorLoop = 1; }
- if( secondHand == 45) { SetupRandomPalette(); speed = 50; scale = 50; colorLoop = 1; }
- if( secondHand == 50) { SetupRandomPalette(); speed = 90; scale = 90; colorLoop = 1; }
- if( secondHand == 55) { currentPalette = RainbowStripeColors_p; speed = 30; scale = 20; colorLoop = 1; }
- }
- }
-
- // This function generates a random palette that's a gradient
- // between four different colors. The first is a dim hue, the second is
- // a bright hue, the third is a bright pastel, and the last is
- // another bright hue. This gives some visual bright/dark variation
- // which is more interesting than just a gradient of different hues.
- void SetupRandomPalette()
- {
- currentPalette = CRGBPalette16(
- CHSV( random8(), 255, 32),
- CHSV( random8(), 255, 255),
- CHSV( random8(), 128, 255),
- CHSV( random8(), 255, 255));
- }
-
- // This function sets up a palette of black and white stripes,
- // using code. Since the palette is effectively an array of
- // sixteen CRGB colors, the various fill_* functions can be used
- // to set them up.
- void SetupBlackAndWhiteStripedPalette()
- {
- // 'black out' all 16 palette entries...
- fill_solid( currentPalette, 16, CRGB::Black);
- // and set every fourth one to white.
- currentPalette[0] = CRGB::White;
- currentPalette[4] = CRGB::White;
- currentPalette[8] = CRGB::White;
- currentPalette[12] = CRGB::White;
-
- }
-
- // This function sets up a palette of purple and green stripes.
- void SetupPurpleAndGreenPalette()
- {
- CRGB purple = CHSV( HUE_PURPLE, 255, 255);
- CRGB green = CHSV( HUE_GREEN, 255, 255);
- CRGB black = CRGB::Black;
-
- currentPalette = CRGBPalette16(
- green, green, black, black,
- purple, purple, black, black,
- green, green, black, black,
- purple, purple, black, black );
- }
-
-
- //
- // Mark's xy coordinate mapping code. See the XYMatrix for more information on it.
- //
- uint16_t XY( uint8_t x, uint8_t y)
- {
- uint16_t i;
- if( kMatrixSerpentineLayout == false) {
- i = (y * kMatrixWidth) + x;
- }
- if( kMatrixSerpentineLayout == true) {
- if( y & 0x01) {
- // Odd rows run backwards
- uint8_t reverseX = (kMatrixWidth - 1) - x;
- i = (y * kMatrixWidth) + reverseX;
- } else {
- // Even rows run forwards
- i = (y * kMatrixWidth) + x;
- }
- }
- return i;
- }
-
|