|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714 |
- #define FASTLED_INTERNAL
- #include <stdint.h>
-
- #include "FastLED.h"
-
- FASTLED_NAMESPACE_BEGIN
-
- // Functions to convert HSV colors to RGB colors.
- //
- // The basically fall into two groups: spectra, and rainbows.
- // Spectra and rainbows are not the same thing. Wikipedia has a good
- // illustration here
- // http://upload.wikimedia.org/wikipedia/commons/f/f6/Prism_compare_rainbow_01.png
- // from this article
- // http://en.wikipedia.org/wiki/Rainbow#Number_of_colours_in_spectrum_or_rainbow
- // that shows a 'spectrum' and a 'rainbow' side by side. Among other
- // differences, you'll see that a 'rainbow' has much more yellow than
- // a plain spectrum. "Classic" LED color washes are spectrum based, and
- // usually show very little yellow.
- //
- // Wikipedia's page on HSV color space, with pseudocode for conversion
- // to RGB color space
- // http://en.wikipedia.org/wiki/HSL_and_HSV
- // Note that their conversion algorithm, which is (naturally) very popular
- // is in the "maximum brightness at any given hue" style, vs the "uniform
- // brightness for all hues" style.
- //
- // You can't have both; either purple is the same brightness as red, e.g
- // red = #FF0000 and purple = #800080 -> same "total light" output
- // OR purple is 'as bright as it can be', e.g.
- // red = #FF0000 and purple = #FF00FF -> purple is much brighter than red.
- // The colorspace conversions here try to keep the apparent brightness
- // constant even as the hue varies.
- //
- // Adafruit's "Wheel" function, discussed here
- // http://forums.adafruit.com/viewtopic.php?f=47&t=22483
- // is also of the "constant apparent brightness" variety.
- //
- // TODO: provide the 'maximum brightness no matter what' variation.
- //
- // See also some good, clear Arduino C code from Kasper Kamperman
- // http://www.kasperkamperman.com/blog/arduino/arduino-programming-hsb-to-rgb/
- // which in turn was was based on Windows C code from "nico80"
- // http://www.codeproject.com/Articles/9207/An-HSB-RGBA-colour-picker
-
-
-
-
-
- void hsv2rgb_raw_C (const struct CHSV & hsv, struct CRGB & rgb);
- void hsv2rgb_raw_avr(const struct CHSV & hsv, struct CRGB & rgb);
-
- #if defined(__AVR__) && !defined( LIB8_ATTINY )
- void hsv2rgb_raw(const struct CHSV & hsv, struct CRGB & rgb)
- {
- hsv2rgb_raw_avr( hsv, rgb);
- }
- #else
- void hsv2rgb_raw(const struct CHSV & hsv, struct CRGB & rgb)
- {
- hsv2rgb_raw_C( hsv, rgb);
- }
- #endif
-
-
-
- #define APPLY_DIMMING(X) (X)
- #define HSV_SECTION_6 (0x20)
- #define HSV_SECTION_3 (0x40)
-
- void hsv2rgb_raw_C (const struct CHSV & hsv, struct CRGB & rgb)
- {
- // Convert hue, saturation and brightness ( HSV/HSB ) to RGB
- // "Dimming" is used on saturation and brightness to make
- // the output more visually linear.
-
- // Apply dimming curves
- uint8_t value = APPLY_DIMMING( hsv.val);
- uint8_t saturation = hsv.sat;
-
- // The brightness floor is minimum number that all of
- // R, G, and B will be set to.
- uint8_t invsat = APPLY_DIMMING( 255 - saturation);
- uint8_t brightness_floor = (value * invsat) / 256;
-
- // The color amplitude is the maximum amount of R, G, and B
- // that will be added on top of the brightness_floor to
- // create the specific hue desired.
- uint8_t color_amplitude = value - brightness_floor;
-
- // Figure out which section of the hue wheel we're in,
- // and how far offset we are withing that section
- uint8_t section = hsv.hue / HSV_SECTION_3; // 0..2
- uint8_t offset = hsv.hue % HSV_SECTION_3; // 0..63
-
- uint8_t rampup = offset; // 0..63
- uint8_t rampdown = (HSV_SECTION_3 - 1) - offset; // 63..0
-
- // We now scale rampup and rampdown to a 0-255 range -- at least
- // in theory, but here's where architecture-specific decsions
- // come in to play:
- // To scale them up to 0-255, we'd want to multiply by 4.
- // But in the very next step, we multiply the ramps by other
- // values and then divide the resulting product by 256.
- // So which is faster?
- // ((ramp * 4) * othervalue) / 256
- // or
- // ((ramp ) * othervalue) / 64
- // It depends on your processor architecture.
- // On 8-bit AVR, the "/ 256" is just a one-cycle register move,
- // but the "/ 64" might be a multicycle shift process. So on AVR
- // it's faster do multiply the ramp values by four, and then
- // divide by 256.
- // On ARM, the "/ 256" and "/ 64" are one cycle each, so it's
- // faster to NOT multiply the ramp values by four, and just to
- // divide the resulting product by 64 (instead of 256).
- // Moral of the story: trust your profiler, not your insticts.
-
- // Since there's an AVR assembly version elsewhere, we'll
- // assume what we're on an architecture where any number of
- // bit shifts has roughly the same cost, and we'll remove the
- // redundant math at the source level:
-
- // // scale up to 255 range
- // //rampup *= 4; // 0..252
- // //rampdown *= 4; // 0..252
-
- // compute color-amplitude-scaled-down versions of rampup and rampdown
- uint8_t rampup_amp_adj = (rampup * color_amplitude) / (256 / 4);
- uint8_t rampdown_amp_adj = (rampdown * color_amplitude) / (256 / 4);
-
- // add brightness_floor offset to everything
- uint8_t rampup_adj_with_floor = rampup_amp_adj + brightness_floor;
- uint8_t rampdown_adj_with_floor = rampdown_amp_adj + brightness_floor;
-
-
- if( section ) {
- if( section == 1) {
- // section 1: 0x40..0x7F
- rgb.r = brightness_floor;
- rgb.g = rampdown_adj_with_floor;
- rgb.b = rampup_adj_with_floor;
- } else {
- // section 2; 0x80..0xBF
- rgb.r = rampup_adj_with_floor;
- rgb.g = brightness_floor;
- rgb.b = rampdown_adj_with_floor;
- }
- } else {
- // section 0: 0x00..0x3F
- rgb.r = rampdown_adj_with_floor;
- rgb.g = rampup_adj_with_floor;
- rgb.b = brightness_floor;
- }
- }
-
-
-
- #if defined(__AVR__) && !defined( LIB8_ATTINY )
- void hsv2rgb_raw_avr(const struct CHSV & hsv, struct CRGB & rgb)
- {
- uint8_t hue, saturation, value;
-
- hue = hsv.hue;
- saturation = hsv.sat;
- value = hsv.val;
-
- // Saturation more useful the other way around
- saturation = 255 - saturation;
- uint8_t invsat = APPLY_DIMMING( saturation );
-
- // Apply dimming curves
- value = APPLY_DIMMING( value );
-
- // The brightness floor is minimum number that all of
- // R, G, and B will be set to, which is value * invsat
- uint8_t brightness_floor;
-
- asm volatile(
- "mul %[value], %[invsat] \n"
- "mov %[brightness_floor], r1 \n"
- : [brightness_floor] "=r" (brightness_floor)
- : [value] "r" (value),
- [invsat] "r" (invsat)
- : "r0", "r1"
- );
-
- // The color amplitude is the maximum amount of R, G, and B
- // that will be added on top of the brightness_floor to
- // create the specific hue desired.
- uint8_t color_amplitude = value - brightness_floor;
-
- // Figure how far we are offset into the section of the
- // color wheel that we're in
- uint8_t offset = hsv.hue & (HSV_SECTION_3 - 1); // 0..63
- uint8_t rampup = offset * 4; // 0..252
-
-
- // compute color-amplitude-scaled-down versions of rampup and rampdown
- uint8_t rampup_amp_adj;
- uint8_t rampdown_amp_adj;
-
- asm volatile(
- "mul %[rampup], %[color_amplitude] \n"
- "mov %[rampup_amp_adj], r1 \n"
- "com %[rampup] \n"
- "mul %[rampup], %[color_amplitude] \n"
- "mov %[rampdown_amp_adj], r1 \n"
- : [rampup_amp_adj] "=&r" (rampup_amp_adj),
- [rampdown_amp_adj] "=&r" (rampdown_amp_adj),
- [rampup] "+r" (rampup)
- : [color_amplitude] "r" (color_amplitude)
- : "r0", "r1"
- );
-
-
- // add brightness_floor offset to everything
- uint8_t rampup_adj_with_floor = rampup_amp_adj + brightness_floor;
- uint8_t rampdown_adj_with_floor = rampdown_amp_adj + brightness_floor;
-
-
- // keep gcc from using "X" as the index register for storing
- // results back in the return structure. AVR's X register can't
- // do "std X+q, rnn", but the Y and Z registers can.
- // if the pointer to 'rgb' is in X, gcc will add all kinds of crazy
- // extra instructions. Simply killing X here seems to help it
- // try Y or Z first.
- asm volatile( "" : : : "r26", "r27" );
-
-
- if( hue & 0x80 ) {
- // section 2: 0x80..0xBF
- rgb.r = rampup_adj_with_floor;
- rgb.g = brightness_floor;
- rgb.b = rampdown_adj_with_floor;
- } else {
- if( hue & 0x40) {
- // section 1: 0x40..0x7F
- rgb.r = brightness_floor;
- rgb.g = rampdown_adj_with_floor;
- rgb.b = rampup_adj_with_floor;
- } else {
- // section 0: 0x00..0x3F
- rgb.r = rampdown_adj_with_floor;
- rgb.g = rampup_adj_with_floor;
- rgb.b = brightness_floor;
- }
- }
-
- cleanup_R1();
- }
- // End of AVR asm implementation
-
- #endif
-
- void hsv2rgb_spectrum( const CHSV& hsv, CRGB& rgb)
- {
- CHSV hsv2(hsv);
- hsv2.hue = scale8( hsv2.hue, 191);
- hsv2rgb_raw(hsv2, rgb);
- }
-
-
- // Sometimes the compiler will do clever things to reduce
- // code size that result in a net slowdown, if it thinks that
- // a variable is not used in a certain location.
- // This macro does its best to convince the compiler that
- // the variable is used in this location, to help control
- // code motion and de-duplication that would result in a slowdown.
- #define FORCE_REFERENCE(var) asm volatile( "" : : "r" (var) )
-
-
- #define K255 255
- #define K171 171
- #define K170 170
- #define K85 85
-
- void hsv2rgb_rainbow( const CHSV& hsv, CRGB& rgb)
- {
- // Yellow has a higher inherent brightness than
- // any other color; 'pure' yellow is perceived to
- // be 93% as bright as white. In order to make
- // yellow appear the correct relative brightness,
- // it has to be rendered brighter than all other
- // colors.
- // Level Y1 is a moderate boost, the default.
- // Level Y2 is a strong boost.
- const uint8_t Y1 = 1;
- const uint8_t Y2 = 0;
-
- // G2: Whether to divide all greens by two.
- // Depends GREATLY on your particular LEDs
- const uint8_t G2 = 0;
-
- // Gscale: what to scale green down by.
- // Depends GREATLY on your particular LEDs
- const uint8_t Gscale = 0;
-
-
- uint8_t hue = hsv.hue;
- uint8_t sat = hsv.sat;
- uint8_t val = hsv.val;
-
- uint8_t offset = hue & 0x1F; // 0..31
-
- // offset8 = offset * 8
- uint8_t offset8 = offset;
- {
- #if defined(__AVR__)
- // Left to its own devices, gcc turns "x <<= 3" into a loop
- // It's much faster and smaller to just do three single-bit shifts
- // So this business is to force that.
- offset8 <<= 1;
- asm volatile("");
- offset8 <<= 1;
- asm volatile("");
- offset8 <<= 1;
- #else
- // On ARM and other non-AVR platforms, we just shift 3.
- offset8 <<= 3;
- #endif
- }
-
- uint8_t third = scale8( offset8, (256 / 3)); // max = 85
-
- uint8_t r, g, b;
-
- if( ! (hue & 0x80) ) {
- // 0XX
- if( ! (hue & 0x40) ) {
- // 00X
- //section 0-1
- if( ! (hue & 0x20) ) {
- // 000
- //case 0: // R -> O
- r = K255 - third;
- g = third;
- b = 0;
- FORCE_REFERENCE(b);
- } else {
- // 001
- //case 1: // O -> Y
- if( Y1 ) {
- r = K171;
- g = K85 + third ;
- b = 0;
- FORCE_REFERENCE(b);
- }
- if( Y2 ) {
- r = K170 + third;
- //uint8_t twothirds = (third << 1);
- uint8_t twothirds = scale8( offset8, ((256 * 2) / 3)); // max=170
- g = K85 + twothirds;
- b = 0;
- FORCE_REFERENCE(b);
- }
- }
- } else {
- //01X
- // section 2-3
- if( ! (hue & 0x20) ) {
- // 010
- //case 2: // Y -> G
- if( Y1 ) {
- //uint8_t twothirds = (third << 1);
- uint8_t twothirds = scale8( offset8, ((256 * 2) / 3)); // max=170
- r = K171 - twothirds;
- g = K170 + third;
- b = 0;
- FORCE_REFERENCE(b);
- }
- if( Y2 ) {
- r = K255 - offset8;
- g = K255;
- b = 0;
- FORCE_REFERENCE(b);
- }
- } else {
- // 011
- // case 3: // G -> A
- r = 0;
- FORCE_REFERENCE(r);
- g = K255 - third;
- b = third;
- }
- }
- } else {
- // section 4-7
- // 1XX
- if( ! (hue & 0x40) ) {
- // 10X
- if( ! ( hue & 0x20) ) {
- // 100
- //case 4: // A -> B
- r = 0;
- FORCE_REFERENCE(r);
- //uint8_t twothirds = (third << 1);
- uint8_t twothirds = scale8( offset8, ((256 * 2) / 3)); // max=170
- g = K171 - twothirds; //K170?
- b = K85 + twothirds;
-
- } else {
- // 101
- //case 5: // B -> P
- r = third;
- g = 0;
- FORCE_REFERENCE(g);
- b = K255 - third;
-
- }
- } else {
- if( ! (hue & 0x20) ) {
- // 110
- //case 6: // P -- K
- r = K85 + third;
- g = 0;
- FORCE_REFERENCE(g);
- b = K171 - third;
-
- } else {
- // 111
- //case 7: // K -> R
- r = K170 + third;
- g = 0;
- FORCE_REFERENCE(g);
- b = K85 - third;
-
- }
- }
- }
-
- // This is one of the good places to scale the green down,
- // although the client can scale green down as well.
- if( G2 ) g = g >> 1;
- if( Gscale ) g = scale8_video_LEAVING_R1_DIRTY( g, Gscale);
-
- // Scale down colors if we're desaturated at all
- // and add the brightness_floor to r, g, and b.
- if( sat != 255 ) {
- if( sat == 0) {
- r = 255; b = 255; g = 255;
- } else {
- //nscale8x3_video( r, g, b, sat);
- #if (FASTLED_SCALE8_FIXED==1)
- if( r ) r = scale8_LEAVING_R1_DIRTY( r, sat);
- if( g ) g = scale8_LEAVING_R1_DIRTY( g, sat);
- if( b ) b = scale8_LEAVING_R1_DIRTY( b, sat);
- #else
- if( r ) r = scale8_LEAVING_R1_DIRTY( r, sat) + 1;
- if( g ) g = scale8_LEAVING_R1_DIRTY( g, sat) + 1;
- if( b ) b = scale8_LEAVING_R1_DIRTY( b, sat) + 1;
- #endif
- cleanup_R1();
-
- uint8_t desat = 255 - sat;
- desat = scale8( desat, desat);
-
- uint8_t brightness_floor = desat;
- r += brightness_floor;
- g += brightness_floor;
- b += brightness_floor;
- }
- }
-
- // Now scale everything down if we're at value < 255.
- if( val != 255 ) {
-
- val = scale8_video_LEAVING_R1_DIRTY( val, val);
- if( val == 0 ) {
- r=0; g=0; b=0;
- } else {
- // nscale8x3_video( r, g, b, val);
- #if (FASTLED_SCALE8_FIXED==1)
- if( r ) r = scale8_LEAVING_R1_DIRTY( r, val);
- if( g ) g = scale8_LEAVING_R1_DIRTY( g, val);
- if( b ) b = scale8_LEAVING_R1_DIRTY( b, val);
- #else
- if( r ) r = scale8_LEAVING_R1_DIRTY( r, val) + 1;
- if( g ) g = scale8_LEAVING_R1_DIRTY( g, val) + 1;
- if( b ) b = scale8_LEAVING_R1_DIRTY( b, val) + 1;
- #endif
- cleanup_R1();
- }
- }
-
- // Here we have the old AVR "missing std X+n" problem again
- // It turns out that fixing it winds up costing more than
- // not fixing it.
- // To paraphrase Dr Bronner, profile! profile! profile!
- //asm volatile( "" : : : "r26", "r27" );
- //asm volatile (" movw r30, r26 \n" : : : "r30", "r31");
- rgb.r = r;
- rgb.g = g;
- rgb.b = b;
- }
-
-
- void hsv2rgb_raw(const struct CHSV * phsv, struct CRGB * prgb, int numLeds) {
- for(int i = 0; i < numLeds; i++) {
- hsv2rgb_raw(phsv[i], prgb[i]);
- }
- }
-
- void hsv2rgb_rainbow( const struct CHSV* phsv, struct CRGB * prgb, int numLeds) {
- for(int i = 0; i < numLeds; i++) {
- hsv2rgb_rainbow(phsv[i], prgb[i]);
- }
- }
-
- void hsv2rgb_spectrum( const struct CHSV* phsv, struct CRGB * prgb, int numLeds) {
- for(int i = 0; i < numLeds; i++) {
- hsv2rgb_spectrum(phsv[i], prgb[i]);
- }
- }
-
-
-
- #define FIXFRAC8(N,D) (((N)*256)/(D))
-
- // This function is only an approximation, and it is not
- // nearly as fast as the normal HSV-to-RGB conversion.
- // See extended notes in the .h file.
- CHSV rgb2hsv_approximate( const CRGB& rgb)
- {
- uint8_t r = rgb.r;
- uint8_t g = rgb.g;
- uint8_t b = rgb.b;
- uint8_t h, s, v;
-
- // find desaturation
- uint8_t desat = 255;
- if( r < desat) desat = r;
- if( g < desat) desat = g;
- if( b < desat) desat = b;
-
- // remove saturation from all channels
- r -= desat;
- g -= desat;
- b -= desat;
-
- //Serial.print("desat="); Serial.print(desat); Serial.println("");
-
- //uint8_t orig_desat = sqrt16( desat * 256);
- //Serial.print("orig_desat="); Serial.print(orig_desat); Serial.println("");
-
- // saturation is opposite of desaturation
- s = 255 - desat;
- //Serial.print("s.1="); Serial.print(s); Serial.println("");
-
- if( s != 255 ) {
- // undo 'dimming' of saturation
- s = 255 - sqrt16( (255-s) * 256);
- }
- // without lib8tion: float ... ew ... sqrt... double ew, or rather, ew ^ 0.5
- // if( s != 255 ) s = (255 - (256.0 * sqrt( (float)(255-s) / 256.0)));
- //Serial.print("s.2="); Serial.print(s); Serial.println("");
-
-
- // at least one channel is now zero
- // if all three channels are zero, we had a
- // shade of gray.
- if( (r + g + b) == 0) {
- // we pick hue zero for no special reason
- return CHSV( 0, 0, 255 - s);
- }
-
- // scale all channels up to compensate for desaturation
- if( s < 255) {
- if( s == 0) s = 1;
- uint32_t scaleup = 65535 / (s);
- r = ((uint32_t)(r) * scaleup) / 256;
- g = ((uint32_t)(g) * scaleup) / 256;
- b = ((uint32_t)(b) * scaleup) / 256;
- }
- //Serial.print("r.2="); Serial.print(r); Serial.println("");
- //Serial.print("g.2="); Serial.print(g); Serial.println("");
- //Serial.print("b.2="); Serial.print(b); Serial.println("");
-
- uint16_t total = r + g + b;
-
- //Serial.print("total="); Serial.print(total); Serial.println("");
-
- // scale all channels up to compensate for low values
- if( total < 255) {
- if( total == 0) total = 1;
- uint32_t scaleup = 65535 / (total);
- r = ((uint32_t)(r) * scaleup) / 256;
- g = ((uint32_t)(g) * scaleup) / 256;
- b = ((uint32_t)(b) * scaleup) / 256;
- }
- //Serial.print("r.3="); Serial.print(r); Serial.println("");
- //Serial.print("g.3="); Serial.print(g); Serial.println("");
- //Serial.print("b.3="); Serial.print(b); Serial.println("");
-
- if( total > 255 ) {
- v = 255;
- } else {
- v = qadd8(desat,total);
- // undo 'dimming' of brightness
- if( v != 255) v = sqrt16( v * 256);
- // without lib8tion: float ... ew ... sqrt... double ew, or rather, ew ^ 0.5
- // if( v != 255) v = (256.0 * sqrt( (float)(v) / 256.0));
-
- }
-
- //Serial.print("v="); Serial.print(v); Serial.println("");
-
-
- #if 0
-
- //#else
- if( v != 255) {
- // this part could probably use refinement/rethinking,
- // (but it doesn't overflow & wrap anymore)
- uint16_t s16;
- s16 = (s * 256);
- s16 /= v;
- //Serial.print("s16="); Serial.print(s16); Serial.println("");
- if( s16 < 256) {
- s = s16;
- } else {
- s = 255; // clamp to prevent overflow
- }
- }
- #endif
-
- //Serial.print("s.3="); Serial.print(s); Serial.println("");
-
-
- // since this wasn't a pure shade of gray,
- // the interesting question is what hue is it
-
-
-
- // start with which channel is highest
- // (ties don't matter)
- uint8_t highest = r;
- if( g > highest) highest = g;
- if( b > highest) highest = b;
-
- if( highest == r ) {
- // Red is highest.
- // Hue could be Purple/Pink-Red,Red-Orange,Orange-Yellow
- if( g == 0 ) {
- // if green is zero, we're in Purple/Pink-Red
- h = (HUE_PURPLE + HUE_PINK) / 2;
- h += scale8( qsub8(r, 128), FIXFRAC8(48,128));
- } else if ( (r - g) > g) {
- // if R-G > G then we're in Red-Orange
- h = HUE_RED;
- h += scale8( g, FIXFRAC8(32,85));
- } else {
- // R-G < G, we're in Orange-Yellow
- h = HUE_ORANGE;
- h += scale8( qsub8((g - 85) + (171 - r), 4), FIXFRAC8(32,85)); //221
- }
-
- } else if ( highest == g) {
- // Green is highest
- // Hue could be Yellow-Green, Green-Aqua
- if( b == 0) {
- // if Blue is zero, we're in Yellow-Green
- // G = 171..255
- // R = 171.. 0
- h = HUE_YELLOW;
- uint8_t radj = scale8( qsub8(171,r), 47); //171..0 -> 0..171 -> 0..31
- uint8_t gadj = scale8( qsub8(g,171), 96); //171..255 -> 0..84 -> 0..31;
- uint8_t rgadj = radj + gadj;
- uint8_t hueadv = rgadj / 2;
- h += hueadv;
- //h += scale8( qadd8( 4, qadd8((g - 128), (128 - r))),
- // FIXFRAC8(32,255)); //
- } else {
- // if Blue is nonzero we're in Green-Aqua
- if( (g-b) > b) {
- h = HUE_GREEN;
- h += scale8( b, FIXFRAC8(32,85));
- } else {
- h = HUE_AQUA;
- h += scale8( qsub8(b, 85), FIXFRAC8(8,42));
- }
- }
-
- } else /* highest == b */ {
- // Blue is highest
- // Hue could be Aqua/Blue-Blue, Blue-Purple, Purple-Pink
- if( r == 0) {
- // if red is zero, we're in Aqua/Blue-Blue
- h = HUE_AQUA + ((HUE_BLUE - HUE_AQUA) / 4);
- h += scale8( qsub8(b, 128), FIXFRAC8(24,128));
- } else if ( (b-r) > r) {
- // B-R > R, we're in Blue-Purple
- h = HUE_BLUE;
- h += scale8( r, FIXFRAC8(32,85));
- } else {
- // B-R < R, we're in Purple-Pink
- h = HUE_PURPLE;
- h += scale8( qsub8(r, 85), FIXFRAC8(32,85));
- }
- }
-
- h += 1;
- return CHSV( h, s, v);
- }
-
- // Examples that need work:
- // 0,192,192
- // 192,64,64
- // 224,32,32
- // 252,0,126
- // 252,252,0
- // 252,252,126
-
- FASTLED_NAMESPACE_END
|