#include "imxrt.h" #include "core_pins.h" #include "debug/printf.h" #include "avr/pgmspace.h" static uint8_t calibrating; static uint8_t analog_config_bits = 10; static uint8_t analog_num_average = 4; const uint8_t pin_to_channel[] = { // pg 482 7, // 0/A0 AD_B1_02 8, // 1/A1 AD_B1_03 12, // 2/A2 AD_B1_07 11, // 3/A3 AD_B1_06 6, // 4/A4 AD_B1_01 5, // 5/A5 AD_B1_00 15, // 6/A6 AD_B1_10 0, // 7/A7 AD_B1_11 13, // 8/A8 AD_B1_08 14, // 9/A9 AD_B1_09 1, // 24/A10 AD_B0_12 2, // 25/A11 AD_B0_13 128+3, // 26/A12 AD_B1_14 - only on ADC2, 3 128+4, // 27/A13 AD_B1_15 - only on ADC2, 4 7, // 14/A0 AD_B1_02 8, // 15/A1 AD_B1_03 12, // 16/A2 AD_B1_07 11, // 17/A3 AD_B1_06 6, // 18/A4 AD_B1_01 5, // 19/A5 AD_B1_00 15, // 20/A6 AD_B1_10 0, // 21/A7 AD_B1_11 13, // 22/A8 AD_B1_08 14, // 23/A9 AD_B1_09 1, // 24/A10 AD_B0_12 2, // 25/A11 AD_B0_13 128+3, // 26/A12 AD_B1_14 - only on ADC2, 3 128+4, // 27/A13 AD_B1_15 - only on ADC2, 4 #ifdef ARDUINO_TEENSY41 255, // 28 255, // 29 255, // 30 255, // 31 255, // 32 255, // 33 255, // 34 255, // 35 255, // 36 255, // 37 128+1, // 38/A14 AD_B1_12 - only on ADC2, 1 128+2, // 39/A15 AD_B1_13 - only on ADC2, 2 9, // 40/A16 AD_B1_04 10, // 41/A17 AD_B1_05 #endif }; static void wait_for_cal(void) { //printf("wait_for_cal\n"); while (ADC1_GC & ADC_GC_CAL) ; while (ADC2_GC & ADC_GC_CAL) ; // TODO: check CALF, but what do to about CAL failure? calibrating = 0; //printf("cal complete\n"); } int analogRead(uint8_t pin) { if (pin > sizeof(pin_to_channel)) return 0; if (calibrating) wait_for_cal(); uint8_t ch = pin_to_channel[pin]; if (ch == 255) return 0; // printf("%d\n", ch); // if (ch > 15) return 0; if(!(ch & 0x80)) { ADC1_HC0 = ch; while (!(ADC1_HS & ADC_HS_COCO0)) ; // wait return ADC1_R0; } else { ADC2_HC0 = ch & 0x7f; while (!(ADC2_HS & ADC_HS_COCO0)) ; // wait return ADC2_R0; } } void analogReference(uint8_t type) { } void analogReadRes(unsigned int bits) { uint32_t tmp32, mode; if (bits == 8) { // 8 bit conversion (17 clocks) plus 8 clocks for input settling mode = ADC_CFG_MODE(0) | ADC_CFG_ADSTS(3); } else if (bits == 10) { // 10 bit conversion (17 clocks) plus 20 clocks for input settling mode = ADC_CFG_MODE(1) | ADC_CFG_ADSTS(2) | ADC_CFG_ADLSMP; } else { // 12 bit conversion (25 clocks) plus 24 clocks for input settling mode = ADC_CFG_MODE(2) | ADC_CFG_ADSTS(3) | ADC_CFG_ADLSMP; } tmp32 = (ADC1_CFG & (0xFFFFFC00)); tmp32 |= (ADC1_CFG & (0x03)); // ADICLK tmp32 |= (ADC1_CFG & (0xE0)); // ADIV & ADLPC tmp32 |= mode; ADC1_CFG = tmp32; tmp32 = (ADC2_CFG & (0xFFFFFC00)); tmp32 |= (ADC2_CFG & (0x03)); // ADICLK tmp32 |= (ADC2_CFG & (0xE0)); // ADIV & ADLPC tmp32 |= mode; ADC2_CFG = tmp32; } void analogReadAveraging(unsigned int num) { uint32_t mode, mode1; //disable averaging, ADC1 and ADC2 ADC1_GC &= ~0x20; mode = ADC1_CFG & ~0xC000; ADC2_GC &= ~0x20; mode1 = ADC2_CFG & ~0xC000; if (num >= 32) { mode |= ADC_CFG_AVGS(3); mode1 |= ADC_CFG_AVGS(3); } else if (num >= 16) { mode |= ADC_CFG_AVGS(2); mode1 |= ADC_CFG_AVGS(2); } else if (num >= 8) { mode |= ADC_CFG_AVGS(1); mode1 |= ADC_CFG_AVGS(1); } else if (num >= 4) { mode |= ADC_CFG_AVGS(0); mode1 |= ADC_CFG_AVGS(0); } else { mode |= 0; mode1 |= 0; } ADC1_CFG = mode; ADC2_CFG = mode1; if(num >= 4){ ADC1_GC |= ADC_GC_AVGE;// turns on averaging ADC2_GC |= ADC_GC_AVGE;// turns on averaging } } #define MAX_ADC_CLOCK 20000000 FLASHMEM void analog_init(void) { uint32_t mode, avg=0; printf("analogInit\n"); CCM_CCGR1 |= CCM_CCGR1_ADC1(CCM_CCGR_ON); CCM_CCGR1 |= CCM_CCGR1_ADC2(CCM_CCGR_ON); if (analog_config_bits == 8) { // 8 bit conversion (17 clocks) plus 8 clocks for input settling mode = ADC_CFG_MODE(0) | ADC_CFG_ADSTS(3); } else if (analog_config_bits == 10) { // 10 bit conversion (17 clocks) plus 20 clocks for input settling mode = ADC_CFG_MODE(1) | ADC_CFG_ADSTS(2) | ADC_CFG_ADLSMP; } else { // 12 bit conversion (25 clocks) plus 24 clocks for input settling mode = ADC_CFG_MODE(2) | ADC_CFG_ADSTS(3) | ADC_CFG_ADLSMP; } if (analog_num_average >= 4) { if (analog_num_average >= 32) { mode |= ADC_CFG_AVGS(3); } else if (analog_num_average >= 16) { mode |= ADC_CFG_AVGS(2); } else if (analog_num_average >= 8) { mode |= ADC_CFG_AVGS(1); } avg = ADC_GC_AVGE; } #if 1 mode |= ADC_CFG_ADIV(1) | ADC_CFG_ADICLK(3); // async clock #else uint32_t clock = F_BUS; if (clock > MAX_ADC_CLOCK*8) { mode |= ADC_CFG_ADIV(3) | ADC_CFG_ADICLK(1); // use IPG/16 } else if (clock > MAX_ADC_CLOCK*4) { mode |= ADC_CFG_ADIV(2) | ADC_CFG_ADICLK(1); // use IPG/8 } else if (clock > MAX_ADC_CLOCK*2) { mode |= ADC_CFG_ADIV(1) | ADC_CFG_ADICLK(1); // use IPG/4 } else if (clock > MAX_ADC_CLOCK) { mode |= ADC_CFG_ADIV(0) | ADC_CFG_ADICLK(1); // use IPG/2 } else { mode |= ADC_CFG_ADIV(0) | ADC_CFG_ADICLK(0); // use IPG } #endif //ADC1 ADC1_CFG = mode | ADC_CFG_ADHSC; ADC1_GC = avg | ADC_GC_CAL; // begin cal calibrating = 1; while (ADC1_GC & ADC_GC_CAL) ; calibrating = 0; //ADC2 ADC2_CFG = mode | ADC_CFG_ADHSC; ADC2_GC = avg | ADC_GC_CAL; // begin cal calibrating = 1; while (ADC2_GC & ADC_GC_CAL) ; calibrating = 0; }