/* Teensyduino Core Library * http://www.pjrc.com/teensy/ * Copyright (c) 2017 PJRC.COM, LLC. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * 1. The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * 2. If the Software is incorporated into a build system that allows * selection among a list of target devices, then similar target * devices manufactured by PJRC.COM must be included in the list of * target devices and selectable in the same manner. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "usb_dev.h" #include "usb_keyboard.h" #include "core_pins.h" // for yield() #include "keylayouts.h" #include // for memcpy() #include "avr/pgmspace.h" // for PROGMEM, DMAMEM, FASTRUN #include "debug/printf.h" #include "core_pins.h" #ifdef KEYBOARD_INTERFACE // defined by usb_dev.h -> usb_desc.h // which modifier keys are currently pressed // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui uint8_t keyboard_modifier_keys=0; // which keys are currently pressed, up to 6 keys may be down at once uint8_t keyboard_keys[6]={0,0,0,0,0,0}; #ifdef KEYMEDIA_INTERFACE uint16_t keymedia_consumer_keys[4]; uint8_t keymedia_system_keys[3]; #endif // protocol setting from the host. We use exactly the same report // either way, so this variable only stores the setting since we // are required to be able to report which setting is in use. uint8_t keyboard_protocol=1; // the idle configuration, how often we send the report to the // host (ms * 4) even when it hasn't changed uint8_t keyboard_idle_config=125; // count until idle timeout uint8_t keyboard_idle_count=0; // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana volatile uint8_t keyboard_leds=0; static KEYCODE_TYPE unicode_to_keycode(uint16_t cpoint); static void write_key(KEYCODE_TYPE keycode); static uint8_t keycode_to_modifier(KEYCODE_TYPE keycode); static uint8_t keycode_to_key(KEYCODE_TYPE keycode); static void usb_keyboard_press_key(uint8_t key, uint8_t modifier); static void usb_keyboard_release_key(uint8_t key, uint8_t modifier); #ifdef DEADKEYS_MASK static KEYCODE_TYPE deadkey_to_keycode(KEYCODE_TYPE keycode); #endif #ifdef KEYMEDIA_INTERFACE static void usb_keymedia_press_consumer_key(uint16_t key); static void usb_keymedia_release_consumer_key(uint16_t key); static void usb_keymedia_press_system_key(uint8_t key); static void usb_keymedia_release_system_key(uint8_t key); static int usb_keymedia_send(void); #endif #define TX_NUM 12 #define TX_BUFSIZE 32 static transfer_t tx_transfer[TX_NUM] __attribute__ ((used, aligned(32))); DMAMEM static uint8_t txbuffer[TX_NUM * TX_BUFSIZE] __attribute__ ((aligned(32))); static uint8_t tx_head=0; #if KEYBOARD_SIZE > TX_BUFSIZE #error "Internal error, transmit buffer size is too small for keyboard endpoint" #endif #if defined(KEYMEDIA_INTERFACE) && KEYMEDIA_SIZE > TX_BUFSIZE #error "Internal error, transmit buffer size is too small for media keys endpoint" #endif void usb_keyboard_configure(void) { memset(tx_transfer, 0, sizeof(tx_transfer)); tx_head = 0; usb_config_tx(KEYBOARD_ENDPOINT, KEYBOARD_SIZE, 0, NULL); // normal keys use 8 byte packet #ifdef KEYMEDIA_INTERFACE usb_config_tx(KEYMEDIA_ENDPOINT, KEYMEDIA_SIZE, 0, NULL); // media keys use 8 byte packet #endif } // Step #1, decode UTF8 to Unicode code points // void usb_keyboard_write(uint8_t c) { static int utf8_state=0; static uint16_t unicode_wchar=0; if (c < 0x80) { // single byte encoded, 0x00 to 0x7F utf8_state = 0; usb_keyboard_write_unicode(c); } else if (c < 0xC0) { // 2nd, 3rd or 4th byte, 0x80 to 0xBF c &= 0x3F; if (utf8_state == 1) { utf8_state = 0; usb_keyboard_write_unicode(unicode_wchar | c); } else if (utf8_state == 2) { unicode_wchar |= ((uint16_t)c << 6); utf8_state = 1; } } else if (c < 0xE0) { // begin 2 byte sequence, 0xC2 to 0xDF // or illegal 2 byte sequence, 0xC0 to 0xC1 unicode_wchar = (uint16_t)(c & 0x1F) << 6; utf8_state = 1; } else if (c < 0xF0) { // begin 3 byte sequence, 0xE0 to 0xEF unicode_wchar = (uint16_t)(c & 0x0F) << 12; utf8_state = 2; } else { // begin 4 byte sequence (not supported), 0xF0 to 0xF4 // or illegal, 0xF5 to 0xFF utf8_state = 255; } } // Step #2: translate Unicode code point to keystroke sequence // static KEYCODE_TYPE unicode_to_keycode(uint16_t cpoint) { // Unicode code points beyond U+FFFF are not supported // technically this input should probably be called UCS-2 if (cpoint < 32) { if (cpoint == 10) return KEY_ENTER & KEYCODE_MASK; if (cpoint == 11) return KEY_TAB & KEYCODE_MASK; return 0; } if (cpoint < 128) { return keycodes_ascii[cpoint - 0x20]; } #ifdef ISO_8859_1_A0 if (cpoint >= 0xA0 && cpoint < 0x100) { return keycodes_iso_8859_1[cpoint - 0xA0]; } #endif //#ifdef UNICODE_20AC //if (cpoint == 0x20AC) return UNICODE_20AC & 0x3FFF; //#endif #ifdef KEYCODE_EXTRA00 if (cpoint == UNICODE_EXTRA00) return (KEYCODE_EXTRA00) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA01 if (cpoint == UNICODE_EXTRA01) return (KEYCODE_EXTRA01) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA02 if (cpoint == UNICODE_EXTRA02) return (KEYCODE_EXTRA02) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA03 if (cpoint == UNICODE_EXTRA03) return (KEYCODE_EXTRA03) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA04 if (cpoint == UNICODE_EXTRA04) return (KEYCODE_EXTRA04) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA05 if (cpoint == UNICODE_EXTRA05) return (KEYCODE_EXTRA05) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA06 if (cpoint == UNICODE_EXTRA06) return (KEYCODE_EXTRA06) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA07 if (cpoint == UNICODE_EXTRA07) return (KEYCODE_EXTRA07) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA08 if (cpoint == UNICODE_EXTRA08) return (KEYCODE_EXTRA08) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA09 if (cpoint == UNICODE_EXTRA09) return (KEYCODE_EXTRA09) & 0x3FFF; #endif #ifdef KEYCODE_EXTRA0A if (cpoint == UNICODE_EXTRA0A) return (KEYCODE_EXTRA0A) & 0x3FFF; #endif return 0; } // Step #3: execute keystroke sequence // #ifdef DEADKEYS_MASK static KEYCODE_TYPE deadkey_to_keycode(KEYCODE_TYPE keycode) { keycode &= DEADKEYS_MASK; if (keycode == 0) return 0; #ifdef ACUTE_ACCENT_BITS if (keycode == ACUTE_ACCENT_BITS) return DEADKEY_ACUTE_ACCENT; #endif #ifdef CEDILLA_BITS if (keycode == CEDILLA_BITS) return DEADKEY_CEDILLA; #endif #ifdef CIRCUMFLEX_BITS if (keycode == CIRCUMFLEX_BITS) return DEADKEY_CIRCUMFLEX; #endif #ifdef DIAERESIS_BITS if (keycode == DIAERESIS_BITS) return DEADKEY_DIAERESIS; #endif #ifdef GRAVE_ACCENT_BITS if (keycode == GRAVE_ACCENT_BITS) return DEADKEY_GRAVE_ACCENT; #endif #ifdef TILDE_BITS if (keycode == TILDE_BITS) return DEADKEY_TILDE; #endif #ifdef RING_ABOVE_BITS if (keycode == RING_ABOVE_BITS) return DEADKEY_RING_ABOVE; #endif #ifdef DEGREE_SIGN_BITS if (keycode == DEGREE_SIGN_BITS) return DEADKEY_DEGREE_SIGN; #endif #ifdef CARON_BITS if (keycode == CARON_BITS) return DEADKEY_CARON; #endif #ifdef BREVE_BITS if (keycode == BREVE_BITS) return DEADKEY_BREVE; #endif #ifdef OGONEK_BITS if (keycode == OGONEK_BITS) return DEADKEY_OGONEK; #endif #ifdef DOT_ABOVE_BITS if (keycode == DOT_ABOVE_BITS) return DEADKEY_DOT_ABOVE; #endif #ifdef DOUBLE_ACUTE_BITS if (keycode == DOUBLE_ACUTE_BITS) return DEADKEY_DOUBLE_ACUTE; #endif return 0; } #endif void usb_keyboard_write_unicode(uint16_t cpoint) { KEYCODE_TYPE keycode; keycode = unicode_to_keycode(cpoint); if (keycode) { #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode); if (deadkeycode) write_key(deadkeycode); #endif write_key(keycode); } } // Step #4: do each keystroke // static void write_key(KEYCODE_TYPE keycode) { /* uint8_t key, modifier=0; #ifdef SHIFT_MASK if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT; #endif #ifdef ALTGR_MASK if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT; #endif #ifdef RCTRL_MASK if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL; #endif key = keycode & 0x3F; #ifdef KEY_NON_US_100 if (key == KEY_NON_US_100) key = 100; #endif usb_keyboard_press(key, modifier); */ usb_keyboard_press(keycode_to_key(keycode), keycode_to_modifier(keycode)); } static uint8_t keycode_to_modifier(KEYCODE_TYPE keycode) { uint8_t modifier=0; #ifdef SHIFT_MASK if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT; #endif #ifdef ALTGR_MASK if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT; #endif #ifdef RCTRL_MASK if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL; #endif return modifier; } static uint8_t keycode_to_key(KEYCODE_TYPE keycode) { uint8_t key = keycode & 0x3F; #ifdef KEY_NON_US_100 if (key == KEY_NON_US_100) key = 100; #endif return key; } // Input can be: // 32 - 127 ASCII direct (U+0020 to U+007F) <-- uses layout // 128 - 0xC1FF Unicode direct (U+0080 to U+C1FF) <-- uses layout // 0xC200 - 0xDFFF Unicode UTF8 packed (U+0080 to U+07FF) <-- uses layout // 0xE000 - 0xE0FF Modifier key (bitmap, 8 keys, shift/ctrl/alt/gui) // 0xE200 - 0xE2FF System key (HID usage code, within usage page 1) // 0xE400 - 0xE7FF Media/Consumer key (HID usage code, within usage page 12) // 0xF000 - 0xFFFF Normal key (HID usage code, within usage page 7) void usb_keyboard_press_keycode(uint16_t n) { uint8_t key, mod, msb, modrestore=0; KEYCODE_TYPE keycode; #ifdef DEADKEYS_MASK KEYCODE_TYPE deadkeycode; #endif msb = n >> 8; if (msb >= 0xC2) { if (msb <= 0xDF) { n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6); } else if (msb == 0xF0) { usb_keyboard_press_key(n, 0); return; } else if (msb == 0xE0) { usb_keyboard_press_key(0, n); return; #ifdef KEYMEDIA_INTERFACE } else if (msb == 0xE2) { usb_keymedia_press_system_key(n); return; } else if (msb >= 0xE4 && msb <= 0xE7) { usb_keymedia_press_consumer_key(n & 0x3FF); return; #endif } else { return; } } keycode = unicode_to_keycode(n); if (!keycode) return; #ifdef DEADKEYS_MASK deadkeycode = deadkey_to_keycode(keycode); if (deadkeycode) { modrestore = keyboard_modifier_keys; if (modrestore) { keyboard_modifier_keys = 0; usb_keyboard_send(); } // TODO: test if operating systems recognize // deadkey sequences when other keys are held mod = keycode_to_modifier(deadkeycode); key = keycode_to_key(deadkeycode); usb_keyboard_press_key(key, mod); usb_keyboard_release_key(key, mod); } #endif mod = keycode_to_modifier(keycode); key = keycode_to_key(keycode); usb_keyboard_press_key(key, mod | modrestore); } void usb_keyboard_release_keycode(uint16_t n) { uint8_t key, mod, msb; msb = n >> 8; if (msb >= 0xC2) { if (msb <= 0xDF) { n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6); } else if (msb == 0xF0) { usb_keyboard_release_key(n, 0); return; } else if (msb == 0xE0) { usb_keyboard_release_key(0, n); return; #ifdef KEYMEDIA_INTERFACE } else if (msb == 0xE2) { usb_keymedia_release_system_key(n); return; } else if (msb >= 0xE4 && msb <= 0xE7) { usb_keymedia_release_consumer_key(n & 0x3FF); return; #endif } else { return; } } KEYCODE_TYPE keycode = unicode_to_keycode(n); if (!keycode) return; mod = keycode_to_modifier(keycode); key = keycode_to_key(keycode); usb_keyboard_release_key(key, mod); } static void usb_keyboard_press_key(uint8_t key, uint8_t modifier) { int i, send_required = 0; if (modifier) { if ((keyboard_modifier_keys & modifier) != modifier) { keyboard_modifier_keys |= modifier; send_required = 1; } } if (key) { for (i=0; i < 6; i++) { if (keyboard_keys[i] == key) goto end; } for (i=0; i < 6; i++) { if (keyboard_keys[i] == 0) { keyboard_keys[i] = key; send_required = 1; goto end; } } } end: if (send_required) usb_keyboard_send(); } static void usb_keyboard_release_key(uint8_t key, uint8_t modifier) { int i, send_required = 0; if (modifier) { if ((keyboard_modifier_keys & modifier) != 0) { keyboard_modifier_keys &= ~modifier; send_required = 1; } } if (key) { for (i=0; i < 6; i++) { if (keyboard_keys[i] == key) { keyboard_keys[i] = 0; send_required = 1; } } } if (send_required) usb_keyboard_send(); } void usb_keyboard_release_all(void) { uint8_t i, anybits; anybits = keyboard_modifier_keys; keyboard_modifier_keys = 0; for (i=0; i < 6; i++) { anybits |= keyboard_keys[i]; keyboard_keys[i] = 0; } if (anybits) usb_keyboard_send(); #ifdef KEYMEDIA_INTERFACE anybits = 0; for (i=0; i < 4; i++) { if (keymedia_consumer_keys[i] != 0) anybits = 1; keymedia_consumer_keys[i] = 0; } for (i=0; i < 3; i++) { if (keymedia_system_keys[i] != 0) anybits = 1; keymedia_system_keys[i] = 0; } if (anybits) usb_keymedia_send(); #endif } int usb_keyboard_press(uint8_t key, uint8_t modifier) { int r; keyboard_modifier_keys = modifier; keyboard_keys[0] = key; keyboard_keys[1] = 0; keyboard_keys[2] = 0; keyboard_keys[3] = 0; keyboard_keys[4] = 0; keyboard_keys[5] = 0; r = usb_keyboard_send(); if (r) return r; keyboard_modifier_keys = 0; keyboard_keys[0] = 0; return usb_keyboard_send(); } static uint8_t transmit_previous_timeout=0; // When the PC isn't listening, how long do we wait before discarding data? #define TX_TIMEOUT_MSEC 50 static int usb_keyboard_transmit(int endpoint, const uint8_t *data, uint32_t len) { if (!usb_configuration) return -1; uint32_t head = tx_head; transfer_t *xfer = tx_transfer + head; uint32_t wait_begin_at = systick_millis_count; while (1) { uint32_t status = usb_transfer_status(xfer); if (!(status & 0x80)) { if (status & 0x68) { // TODO: what if status has errors??? printf("ERROR status = %x, i=%d, ms=%u\n", status, tx_head, systick_millis_count); } transmit_previous_timeout = 0; break; } if (transmit_previous_timeout) return -1; if (systick_millis_count - wait_begin_at > TX_TIMEOUT_MSEC) { // waited too long, assume the USB host isn't listening transmit_previous_timeout = 1; return -1; } if (!usb_configuration) return -1; yield(); } delayNanoseconds(30); // min req'd 11 ns, TODO: why is status ready too soon? uint8_t *buffer = txbuffer + head * TX_BUFSIZE; memcpy(buffer, data, len); usb_prepare_transfer(xfer, buffer, len, 0); arm_dcache_flush_delete(buffer, TX_BUFSIZE); usb_transmit(endpoint, xfer); if (++head >= TX_NUM) head = 0; tx_head = head; return 0; } // send the contents of keyboard_keys and keyboard_modifier_keys int usb_keyboard_send(void) { uint8_t buffer[KEYBOARD_SIZE]; buffer[0] = keyboard_modifier_keys; buffer[1] = 0; buffer[2] = keyboard_keys[0]; buffer[3] = keyboard_keys[1]; buffer[4] = keyboard_keys[2]; buffer[5] = keyboard_keys[3]; buffer[6] = keyboard_keys[4]; buffer[7] = keyboard_keys[5]; return usb_keyboard_transmit(KEYBOARD_ENDPOINT, buffer, KEYBOARD_SIZE); } #ifdef KEYMEDIA_INTERFACE static void usb_keymedia_press_consumer_key(uint16_t key) { int i; if (key == 0) return; for (i=0; i < 4; i++) { if (keymedia_consumer_keys[i] == key) return; } for (i=0; i < 4; i++) { if (keymedia_consumer_keys[i] == 0) { keymedia_consumer_keys[i] = key; usb_keymedia_send(); return; } } } static void usb_keymedia_release_consumer_key(uint16_t key) { int i; if (key == 0) return; for (i=0; i < 4; i++) { if (keymedia_consumer_keys[i] == key) { keymedia_consumer_keys[i] = 0; usb_keymedia_send(); return; } } } static void usb_keymedia_press_system_key(uint8_t key) { int i; if (key == 0) return; for (i=0; i < 3; i++) { if (keymedia_system_keys[i] == key) return; } for (i=0; i < 3; i++) { if (keymedia_system_keys[i] == 0) { keymedia_system_keys[i] = key; usb_keymedia_send(); return; } } } static void usb_keymedia_release_system_key(uint8_t key) { int i; if (key == 0) return; for (i=0; i < 3; i++) { if (keymedia_system_keys[i] == key) { keymedia_system_keys[i] = 0; usb_keymedia_send(); return; } } } void usb_keymedia_release_all(void) { uint8_t i, anybits; anybits = 0; for (i=0; i < 4; i++) { if (keymedia_consumer_keys[i] != 0) anybits = 1; keymedia_consumer_keys[i] = 0; } for (i=0; i < 3; i++) { if (keymedia_system_keys[i] != 0) anybits = 1; keymedia_system_keys[i] = 0; } if (anybits) usb_keymedia_send(); } // send the contents of keyboard_keys and keyboard_modifier_keys static int usb_keymedia_send(void) { uint8_t buffer[8]; const uint16_t *consumer = keymedia_consumer_keys; // 44444444 44333333 33332222 22222211 11111111 // 98765432 10987654 32109876 54321098 76543210 buffer[0] = consumer[0]; buffer[1] = (consumer[1] << 2) | ((consumer[0] >> 8) & 0x03); buffer[2] = (consumer[2] << 4) | ((consumer[1] >> 6) & 0x0F); buffer[3] = (consumer[3] << 6) | ((consumer[2] >> 4) & 0x3F); buffer[4] = consumer[3] >> 2; buffer[5] = keymedia_system_keys[0]; buffer[6] = keymedia_system_keys[1]; buffer[7] = keymedia_system_keys[2]; return usb_keyboard_transmit(KEYMEDIA_ENDPOINT, buffer, KEYMEDIA_SIZE); } #endif // KEYMEDIA_INTERFACE #endif // KEYBOARD_INTERFACE