/* * Copyright (c) 2010 by Cristian Maglie * SPI Master library for arduino. * * This file is free software; you can redistribute it and/or modify * it under the terms of either the GNU General Public License version 2 * or the GNU Lesser General Public License version 2.1, both as * published by the Free Software Foundation. */ #include "SPI.h" #include "pins_arduino.h" //#define DEBUG_DMA_TRANSFERS /**********************************************************/ /* 8 bit AVR-based boards */ /**********************************************************/ #if defined(__AVR__) SPIClass SPI; uint8_t SPIClass::interruptMode = 0; uint8_t SPIClass::interruptMask = 0; uint8_t SPIClass::interruptSave = 0; #ifdef SPI_TRANSACTION_MISMATCH_LED uint8_t SPIClass::inTransactionFlag = 0; #endif uint8_t SPIClass::_transferWriteFill = 0; void SPIClass::begin() { // Set SS to high so a connected chip will be "deselected" by default digitalWrite(SS, HIGH); // When the SS pin is set as OUTPUT, it can be used as // a general purpose output port (it doesn't influence // SPI operations). pinMode(SS, OUTPUT); // Warning: if the SS pin ever becomes a LOW INPUT then SPI // automatically switches to Slave, so the data direction of // the SS pin MUST be kept as OUTPUT. SPCR |= _BV(MSTR); SPCR |= _BV(SPE); // Set direction register for SCK and MOSI pin. // MISO pin automatically overrides to INPUT. // By doing this AFTER enabling SPI, we avoid accidentally // clocking in a single bit since the lines go directly // from "input" to SPI control. // http://code.google.com/p/arduino/issues/detail?id=888 pinMode(SCK, OUTPUT); pinMode(MOSI, OUTPUT); } void SPIClass::end() { SPCR &= ~_BV(SPE); } // mapping of interrupt numbers to bits within SPI_AVR_EIMSK #if defined(__AVR_ATmega32U4__) #define SPI_INT0_MASK (1< 1) return; stmp = SREG; noInterrupts(); switch (interruptNumber) { #ifdef SPI_INT0_MASK case 0: mask = SPI_INT0_MASK; break; #endif #ifdef SPI_INT1_MASK case 1: mask = SPI_INT1_MASK; break; #endif #ifdef SPI_INT2_MASK case 2: mask = SPI_INT2_MASK; break; #endif #ifdef SPI_INT3_MASK case 3: mask = SPI_INT3_MASK; break; #endif #ifdef SPI_INT4_MASK case 4: mask = SPI_INT4_MASK; break; #endif #ifdef SPI_INT5_MASK case 5: mask = SPI_INT5_MASK; break; #endif #ifdef SPI_INT6_MASK case 6: mask = SPI_INT6_MASK; break; #endif #ifdef SPI_INT7_MASK case 7: mask = SPI_INT7_MASK; break; #endif default: interruptMode = 2; SREG = stmp; return; } interruptMode = 1; interruptMask |= mask; SREG = stmp; } void SPIClass::transfer(const void * buf, void * retbuf, uint32_t count) { if (count == 0) return; const uint8_t *p = (const uint8_t *)buf; uint8_t *pret = (uint8_t *)retbuf; uint8_t in; uint8_t out = p ? *p++ : _transferWriteFill; SPDR = out; while (--count > 0) { if (p) { out = *p++; } while (!(SPSR & _BV(SPIF))) ; in = SPDR; SPDR = out; if (pret)*pret++ = in; } while (!(SPSR & _BV(SPIF))) ; in = SPDR; if (pret)*pret = in; } /**********************************************************/ /* 32 bit Teensy 3.x */ /**********************************************************/ #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK) #if defined(KINETISK) && defined( SPI_HAS_TRANSFER_ASYNC) #ifndef TRANSFER_COUNT_FIXED inline void DMAChanneltransferCount(DMAChannel * dmac, unsigned int len) { // note does no validation of length... DMABaseClass::TCD_t *tcd = dmac->TCD; if (!(tcd->BITER & DMA_TCD_BITER_ELINK)) { tcd->BITER = len & 0x7fff; } else { tcd->BITER = (tcd->BITER & 0xFE00) | (len & 0x1ff); } tcd->CITER = tcd->BITER; } #else inline void DMAChanneltransferCount(DMAChannel * dmac, unsigned int len) { dmac->transferCount(len); } #endif #endif #if defined(__MK20DX128__) || defined(__MK20DX256__) #ifdef SPI_HAS_TRANSFER_ASYNC void _spi_dma_rxISR0(void) {SPI.dma_rxisr();} #else void _spi_dma_rxISR0(void) {;} #endif const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = { SIM_SCGC6, SIM_SCGC6_SPI0, 4, IRQ_SPI0, 32767, DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX, _spi_dma_rxISR0, 12, 8, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 11, 7, PORT_PCR_DSE | PORT_PCR_MUX(2), PORT_PCR_MUX(2), 13, 14, PORT_PCR_DSE | PORT_PCR_MUX(2), PORT_PCR_MUX(2), 10, 2, 9, 6, 20, 23, 21, 22, 15, PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0x1, 0x1, 0x2, 0x2, 0x4, 0x4, 0x8, 0x8, 0x10 }; SPIClass SPI((uintptr_t)&KINETISK_SPI0, (uintptr_t)&SPIClass::spi0_hardware); #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) #ifdef SPI_HAS_TRANSFER_ASYNC void _spi_dma_rxISR0(void) {SPI.dma_rxisr();} void _spi_dma_rxISR1(void) {SPI1.dma_rxisr();} void _spi_dma_rxISR2(void) {SPI2.dma_rxisr();} #else void _spi_dma_rxISR0(void) {;} void _spi_dma_rxISR1(void) {;} void _spi_dma_rxISR2(void) {;} #endif const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = { SIM_SCGC6, SIM_SCGC6_SPI0, 4, IRQ_SPI0, 32767, DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX, _spi_dma_rxISR0, 12, 8, 39, 255, PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 11, 7, 28, 255, PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 13, 14, 27, PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 10, 2, 9, 6, 20, 23, 21, 22, 15, 26, 45, PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(3), 0x1, 0x1, 0x2, 0x2, 0x4, 0x4, 0x8, 0x8, 0x10, 0x1, 0x20 }; const SPIClass::SPI_Hardware_t SPIClass::spi1_hardware = { SIM_SCGC6, SIM_SCGC6_SPI1, 1, IRQ_SPI1, #if defined(__MK66FX1M0__) 32767, DMAMUX_SOURCE_SPI1_TX, DMAMUX_SOURCE_SPI1_RX, #else // T3.5 does not have good DMA support on 1 and 2 511, 0, DMAMUX_SOURCE_SPI1, #endif _spi_dma_rxISR1, 1, 5, 61, 59, PORT_PCR_MUX(2), PORT_PCR_MUX(7), PORT_PCR_MUX(2), PORT_PCR_MUX(7), 0, 21, 61, 59, PORT_PCR_MUX(2), PORT_PCR_MUX(7), PORT_PCR_MUX(7), PORT_PCR_MUX(2), 32, 20, 60, PORT_PCR_MUX(2), PORT_PCR_MUX(7), PORT_PCR_MUX(2), 6, 31, 58, 62, 63, 255, 255, 255, 255, 255, 255, PORT_PCR_MUX(7), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0, 0, 0, 0, 0, 0x1, 0x1, 0x2, 0x1, 0x4, 0, 0, 0, 0, 0, 0 }; const SPIClass::SPI_Hardware_t SPIClass::spi2_hardware = { SIM_SCGC3, SIM_SCGC3_SPI2, 1, IRQ_SPI2, #if defined(__MK66FX1M0__) 32767, DMAMUX_SOURCE_SPI2_TX, DMAMUX_SOURCE_SPI2_RX, #else // T3.5 does not have good DMA support on 1 and 2 511, 0, DMAMUX_SOURCE_SPI2, #endif _spi_dma_rxISR2, 45, 51, 255, 255, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0, 44, 52, 255, 255, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0, 46, 53, 255, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 43, 54, 55, 255, 255, 255, 255, 255, 255, 255, 255, PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0, 0, 0, 0, 0, 0, 0, 0x1, 0x2, 0x1, 0, 0, 0, 0, 0, 0, 0, 0 }; SPIClass SPI((uintptr_t)&KINETISK_SPI0, (uintptr_t)&SPIClass::spi0_hardware); SPIClass SPI1((uintptr_t)&KINETISK_SPI1, (uintptr_t)&SPIClass::spi1_hardware); SPIClass SPI2((uintptr_t)&KINETISK_SPI2, (uintptr_t)&SPIClass::spi2_hardware); #endif void SPIClass::begin() { volatile uint32_t *reg; hardware().clock_gate_register |= hardware().clock_gate_mask; port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F); port().CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1); port().CTAR1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1); port().MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F); reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]); *reg = hardware().mosi_mux[mosi_pin_index]; reg = portConfigRegister(hardware().miso_pin[miso_pin_index]); *reg= hardware().miso_mux[miso_pin_index]; reg = portConfigRegister(hardware().sck_pin[sck_pin_index]); *reg = hardware().sck_mux[sck_pin_index]; } void SPIClass::end() { volatile uint32_t *reg; reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]); *reg = 0; reg = portConfigRegister(hardware().miso_pin[miso_pin_index]); *reg = 0; reg = portConfigRegister(hardware().sck_pin[sck_pin_index]); *reg = 0; port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F); } void SPIClass::usingInterrupt(IRQ_NUMBER_t interruptName) { uint32_t n = (uint32_t)interruptName; if (n >= NVIC_NUM_INTERRUPTS) return; //Serial.print("usingInterrupt "); //Serial.println(n); interruptMasksUsed |= (1 << (n >> 5)); interruptMask[n >> 5] |= (1 << (n & 0x1F)); //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed); //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]); //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]); //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]); } void SPIClass::notUsingInterrupt(IRQ_NUMBER_t interruptName) { uint32_t n = (uint32_t)interruptName; if (n >= NVIC_NUM_INTERRUPTS) return; interruptMask[n >> 5] &= ~(1 << (n & 0x1F)); if (interruptMask[n >> 5] == 0) { interruptMasksUsed &= ~(1 << (n >> 5)); } } const uint16_t SPISettings::ctar_div_table[23] = { 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 56, 64, 96, 128, 192, 256, 384, 512, 640, 768 }; const uint32_t SPISettings::ctar_clock_table[23] = { SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1), SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1), SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2), SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0), SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2), SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3), SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2), SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2), SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4), SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4), SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5), SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5), SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6), SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6), SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7), SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6), SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7) }; void SPIClass::updateCTAR(uint32_t ctar) { if (port().CTAR0 != ctar) { uint32_t mcr = port().MCR; if (mcr & SPI_MCR_MDIS) { port().CTAR0 = ctar; port().CTAR1 = ctar | SPI_CTAR_FMSZ(8); } else { port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F); port().CTAR0 = ctar; port().CTAR1 = ctar | SPI_CTAR_FMSZ(8); port().MCR = mcr; } } } void SPIClass::setBitOrder(uint8_t bitOrder) { hardware().clock_gate_register |= hardware().clock_gate_mask; uint32_t ctar = port().CTAR0; if (bitOrder == LSBFIRST) { ctar |= SPI_CTAR_LSBFE; } else { ctar &= ~SPI_CTAR_LSBFE; } updateCTAR(ctar); } void SPIClass::setDataMode(uint8_t dataMode) { hardware().clock_gate_register |= hardware().clock_gate_mask; //uint32_t ctar = port().CTAR0; // TODO: implement with native code //SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode; } void SPIClass::setClockDivider_noInline(uint32_t clk) { hardware().clock_gate_register |= hardware().clock_gate_mask; uint32_t ctar = port().CTAR0; ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE); if (ctar & SPI_CTAR_CPHA) { clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4); } ctar |= clk; updateCTAR(ctar); } uint8_t SPIClass::pinIsChipSelect(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) { if (pin == hardware().cs_pin[i]) return hardware().cs_mask[i]; } return 0; } bool SPIClass::pinIsChipSelect(uint8_t pin1, uint8_t pin2) { uint8_t pin1_mask, pin2_mask; if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false; if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false; //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask); if ((pin1_mask & pin2_mask) != 0) return false; return true; } bool SPIClass::pinIsMOSI(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) { if (pin == hardware().mosi_pin[i]) return true; } return false; } bool SPIClass::pinIsMISO(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) { if (pin == hardware().miso_pin[i]) return true; } return false; } bool SPIClass::pinIsSCK(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) { if (pin == hardware().sck_pin[i]) return true; } return false; } // setCS() is not intended for use from normal Arduino programs/sketches. uint8_t SPIClass::setCS(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) { if (pin == hardware().cs_pin[i]) { volatile uint32_t *reg = portConfigRegister(pin); *reg = hardware().cs_mux[i]; return hardware().cs_mask[i]; } } return 0; } void SPIClass::setMOSI(uint8_t pin) { if (hardware_addr == (uintptr_t)&spi0_hardware) { SPCR.setMOSI_soft(pin); } if (pin != hardware().mosi_pin[mosi_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) { if (pin == hardware().mosi_pin[i]) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { volatile uint32_t *reg; reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]); *reg = 0; reg = portConfigRegister(hardware().mosi_pin[i]); *reg = hardware().mosi_mux[i]; } mosi_pin_index = i; return; } } } } void SPIClass::setMISO(uint8_t pin) { if (hardware_addr == (uintptr_t)&spi0_hardware) { SPCR.setMISO_soft(pin); } if (pin != hardware().miso_pin[miso_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) { if (pin == hardware().miso_pin[i]) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { volatile uint32_t *reg; reg = portConfigRegister(hardware().miso_pin[miso_pin_index]); *reg = 0; reg = portConfigRegister(hardware().miso_pin[i]); *reg = hardware().miso_mux[i]; } miso_pin_index = i; return; } } } } void SPIClass::setSCK(uint8_t pin) { if (hardware_addr == (uintptr_t)&spi0_hardware) { SPCR.setSCK_soft(pin); } if (pin != hardware().sck_pin[sck_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) { if (pin == hardware().sck_pin[i]) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { volatile uint32_t *reg; reg = portConfigRegister(hardware().sck_pin[sck_pin_index]); *reg = 0; reg = portConfigRegister(hardware().sck_pin[i]); *reg = hardware().sck_mux[i]; } sck_pin_index = i; return; } } } } void SPIClass::transfer(const void * buf, void * retbuf, size_t count) { if (count == 0) return; if (!(port().CTAR0 & SPI_CTAR_LSBFE)) { // We are doing the standard MSB order const uint8_t *p_write = (const uint8_t *)buf; uint8_t *p_read = (uint8_t *)retbuf; size_t count_read = count; // Lets clear the reader queue port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F); uint32_t sr; // Now lets loop while we still have data to output if (count & 1) { if (p_write) { if (count > 1) port().PUSHR = *p_write++ | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0); else port().PUSHR = *p_write++ | SPI_PUSHR_CTAS(0); } else { if (count > 1) port().PUSHR = _transferWriteFill | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0); else port().PUSHR = _transferWriteFill | SPI_PUSHR_CTAS(0); } count--; } uint16_t w = (uint16_t)(_transferWriteFill << 8) | _transferWriteFill; while (count > 0) { // Push out the next byte; if (p_write) { w = (*p_write++) << 8; w |= *p_write++; } uint16_t queue_full_status_mask = (hardware().queue_size-1) << 12; if (count == 2) port().PUSHR = w | SPI_PUSHR_CTAS(1); else port().PUSHR = w | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1); count -= 2; // how many bytes to output. // Make sure queue is not full before pushing next byte out do { sr = port().SR; if (sr & 0xF0) { uint16_t w = port().POPR; // Read any pending RX bytes in if (count_read & 1) { if (p_read) { *p_read++ = w; // Read any pending RX bytes in } count_read--; } else { if (p_read) { *p_read++ = w >> 8; *p_read++ = (w & 0xff); } count_read -= 2; } } } while ((sr & (15 << 12)) > queue_full_status_mask); } // now lets wait for all of the read bytes to be returned... while (count_read) { sr = port().SR; if (sr & 0xF0) { uint16_t w = port().POPR; // Read any pending RX bytes in if (count_read & 1) { if (p_read) *p_read++ = w; // Read any pending RX bytes in count_read--; } else { if (p_read) { *p_read++ = w >> 8; *p_read++ = (w & 0xff); } count_read -= 2; } } } } else { // We are doing the less ofen LSB mode const uint8_t *p_write = (const uint8_t *)buf; uint8_t *p_read = (uint8_t *)retbuf; size_t count_read = count; // Lets clear the reader queue port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F); uint32_t sr; // Now lets loop while we still have data to output if (count & 1) { if (p_write) { if (count > 1) port().PUSHR = *p_write++ | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0); else port().PUSHR = *p_write++ | SPI_PUSHR_CTAS(0); } else { if (count > 1) port().PUSHR = _transferWriteFill | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0); else port().PUSHR = _transferWriteFill | SPI_PUSHR_CTAS(0); } count--; } uint16_t w = _transferWriteFill; while (count > 0) { // Push out the next byte; if (p_write) { w = *p_write++; w |= ((*p_write++) << 8); } uint16_t queue_full_status_mask = (hardware().queue_size-1) << 12; if (count == 2) port().PUSHR = w | SPI_PUSHR_CTAS(1); else port().PUSHR = w | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1); count -= 2; // how many bytes to output. // Make sure queue is not full before pushing next byte out do { sr = port().SR; if (sr & 0xF0) { uint16_t w = port().POPR; // Read any pending RX bytes in if (count_read & 1) { if (p_read) { *p_read++ = w; // Read any pending RX bytes in } count_read--; } else { if (p_read) { *p_read++ = (w & 0xff); *p_read++ = w >> 8; } count_read -= 2; } } } while ((sr & (15 << 12)) > queue_full_status_mask); } // now lets wait for all of the read bytes to be returned... while (count_read) { sr = port().SR; if (sr & 0xF0) { uint16_t w = port().POPR; // Read any pending RX bytes in if (count_read & 1) { if (p_read) *p_read++ = w; // Read any pending RX bytes in count_read--; } else { if (p_read) { *p_read++ = (w & 0xff); *p_read++ = w >> 8; } count_read -= 2; } } } } } //============================================================================= // ASYNCH Support //============================================================================= //========================================================================= // Try Transfer using DMA. //========================================================================= #ifdef SPI_HAS_TRANSFER_ASYNC static uint8_t bit_bucket; #define dontInterruptAtCompletion(dmac) (dmac)->TCD->CSR &= ~DMA_TCD_CSR_INTMAJOR //========================================================================= // Init the DMA channels //========================================================================= bool SPIClass::initDMAChannels() { // Allocate our channels. _dmaTX = new DMAChannel(); if (_dmaTX == nullptr) { return false; } _dmaRX = new DMAChannel(); if (_dmaRX == nullptr) { delete _dmaTX; // release it _dmaTX = nullptr; return false; } // Let's setup the RX chain _dmaRX->disable(); _dmaRX->source((volatile uint8_t&)port().POPR); _dmaRX->disableOnCompletion(); _dmaRX->triggerAtHardwareEvent(hardware().rx_dma_channel); _dmaRX->attachInterrupt(hardware().dma_rxisr); _dmaRX->interruptAtCompletion(); // We may be using settings chain here so lets set it up. // Now lets setup TX chain. Note if trigger TX is not set // we need to have the RX do it for us. _dmaTX->disable(); _dmaTX->destination((volatile uint8_t&)port().PUSHR); _dmaTX->disableOnCompletion(); if (hardware().tx_dma_channel) { _dmaTX->triggerAtHardwareEvent(hardware().tx_dma_channel); } else { // Serial.printf("SPI InitDMA tx triger by RX: %x\n", (uint32_t)_dmaRX); _dmaTX->triggerAtTransfersOf(*_dmaRX); } _dma_state = DMAState::idle; // Should be first thing set! return true; } //========================================================================= // Main Async Transfer function //========================================================================= bool SPIClass::transfer(const void *buf, void *retbuf, size_t count, EventResponderRef event_responder) { uint8_t dma_first_byte; if (_dma_state == DMAState::notAllocated) { if (!initDMAChannels()) return false; } if (_dma_state == DMAState::active) return false; // already active event_responder.clearEvent(); // Make sure it is not set yet if (count < 2) { // Use non-async version to simplify cases... transfer(buf, retbuf, count); event_responder.triggerEvent(); return true; } // Now handle the cases where the count > then how many we can output in one DMA request if (count > hardware().max_dma_count) { _dma_count_remaining = count - hardware().max_dma_count; count = hardware().max_dma_count; } else { _dma_count_remaining = 0; } // Now See if caller passed in a source buffer. _dmaTX->TCD->ATTR_DST = 0; // Make sure set for 8 bit mode uint8_t *write_data = (uint8_t*) buf; if (buf) { dma_first_byte = *write_data; _dmaTX->sourceBuffer((uint8_t*)write_data+1, count-1); _dmaTX->TCD->SLAST = 0; // Finish with it pointing to next location } else { dma_first_byte = _transferWriteFill; _dmaTX->source((uint8_t&)_transferWriteFill); // maybe have setable value DMAChanneltransferCount(_dmaTX, count-1); } if (retbuf) { // On T3.5 must handle SPI1/2 differently as only one DMA channel _dmaRX->TCD->ATTR_SRC = 0; //Make sure set for 8 bit mode... _dmaRX->destinationBuffer((uint8_t*)retbuf, count); _dmaRX->TCD->DLASTSGA = 0; // At end point after our bufffer } else { // Write only mode _dmaRX->TCD->ATTR_SRC = 0; //Make sure set for 8 bit mode... _dmaRX->destination((uint8_t&)bit_bucket); DMAChanneltransferCount(_dmaRX, count); } _dma_event_responder = &event_responder; // Now try to start it? // Setup DMA main object yield(); port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_CLR_TXF | SPI_MCR_PCSIS(0x1F); port().SR = 0xFF0F0000; // Lets try to output the first byte to make sure that we are in 8 bit mode... port().PUSHR = dma_first_byte | SPI_PUSHR_CTAS(0) | SPI_PUSHR_CONT; if (hardware().tx_dma_channel) { port().RSER = SPI_RSER_RFDF_RE | SPI_RSER_RFDF_DIRS | SPI_RSER_TFFF_RE | SPI_RSER_TFFF_DIRS; _dmaRX->enable(); // Get the initial settings. _dmaTX->enable(); } else { //T3.5 SP1 and SPI2 - TX is not triggered by SPI but by RX... port().RSER = SPI_RSER_RFDF_RE | SPI_RSER_RFDF_DIRS ; _dmaTX->triggerAtTransfersOf(*_dmaRX); _dmaTX->enable(); _dmaRX->enable(); } _dma_state = DMAState::active; return true; } //------------------------------------------------------------------------- // DMA RX ISR //------------------------------------------------------------------------- void SPIClass::dma_rxisr(void) { _dmaRX->clearInterrupt(); _dmaTX->clearComplete(); _dmaRX->clearComplete(); uint8_t should_reenable_tx = true; // should we re-enable TX maybe not if count will be 0... if (_dma_count_remaining) { // What do I need to do to start it back up again... // We will use the BITR/CITR from RX as TX may have prefed some stuff if (_dma_count_remaining > hardware().max_dma_count) { _dma_count_remaining -= hardware().max_dma_count; } else { DMAChanneltransferCount(_dmaTX, _dma_count_remaining-1); DMAChanneltransferCount(_dmaRX, _dma_count_remaining); if (_dma_count_remaining == 1) should_reenable_tx = false; _dma_count_remaining = 0; } // In some cases we need to again start the TX manually to get it to work... if (_dmaTX->TCD->SADDR == &_transferWriteFill) { if (port().CTAR0 & SPI_CTAR_FMSZ(8)) { port().PUSHR = (_transferWriteFill | SPI_PUSHR_CTAS(0) | SPI_PUSHR_CONT); } else { port().PUSHR = (_transferWriteFill | SPI_PUSHR_CTAS(0) | SPI_PUSHR_CONT); } } else { if (port().CTAR0 & SPI_CTAR_FMSZ(8)) { // 16 bit mode uint16_t w = *((uint16_t*)_dmaTX->TCD->SADDR); _dmaTX->TCD->SADDR = (volatile uint8_t*)(_dmaTX->TCD->SADDR) + 2; port().PUSHR = (w | SPI_PUSHR_CTAS(0) | SPI_PUSHR_CONT); } else { uint8_t w = *((uint8_t*)_dmaTX->TCD->SADDR); _dmaTX->TCD->SADDR = (volatile uint8_t*)(_dmaTX->TCD->SADDR) + 1; port().PUSHR = (w | SPI_PUSHR_CTAS(0) | SPI_PUSHR_CONT); } } _dmaRX->enable(); if (should_reenable_tx) _dmaTX->enable(); } else { port().RSER = 0; //port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F); // clear out the queue port().SR = 0xFF0F0000; port().CTAR0 &= ~(SPI_CTAR_FMSZ(8)); // Hack restore back to 8 bits _dma_state = DMAState::completed; // set back to 1 in case our call wants to start up dma again _dma_event_responder->triggerEvent(); } } #endif // SPI_HAS_TRANSFER_ASYNC /**********************************************************/ /* 32 bit Teensy-LC */ /**********************************************************/ #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL) #ifdef SPI_HAS_TRANSFER_ASYNC void _spi_dma_rxISR0(void) {SPI.dma_isr();} void _spi_dma_rxISR1(void) {SPI1.dma_isr();} #else void _spi_dma_rxISR0(void) {;} void _spi_dma_rxISR1(void) {;} #endif const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = { SIM_SCGC4, SIM_SCGC4_SPI0, 0, // BR index 0 DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX, _spi_dma_rxISR0, 12, 8, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 11, 7, PORT_PCR_DSE | PORT_PCR_MUX(2), PORT_PCR_MUX(2), 13, 14, PORT_PCR_DSE | PORT_PCR_MUX(2), PORT_PCR_MUX(2), 10, 2, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0x1, 0x1 }; SPIClass SPI((uintptr_t)&KINETISL_SPI0, (uintptr_t)&SPIClass::spi0_hardware); const SPIClass::SPI_Hardware_t SPIClass::spi1_hardware = { SIM_SCGC4, SIM_SCGC4_SPI1, 1, // BR index 1 in SPI Settings DMAMUX_SOURCE_SPI1_TX, DMAMUX_SOURCE_SPI1_RX, _spi_dma_rxISR1, 1, 5, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 21, PORT_PCR_MUX(2), PORT_PCR_MUX(2), 20, 255, PORT_PCR_MUX(2), 0, 6, 255, PORT_PCR_MUX(2), 0, 0x1, 0 }; SPIClass SPI1((uintptr_t)&KINETISL_SPI1, (uintptr_t)&SPIClass::spi1_hardware); void SPIClass::begin() { volatile uint32_t *reg; hardware().clock_gate_register |= hardware().clock_gate_mask; port().C1 = SPI_C1_SPE | SPI_C1_MSTR; port().C2 = 0; uint8_t tmp __attribute__((unused)) = port().S; reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]); *reg = hardware().mosi_mux[mosi_pin_index]; reg = portConfigRegister(hardware().miso_pin[miso_pin_index]); *reg = hardware().miso_mux[miso_pin_index]; reg = portConfigRegister(hardware().sck_pin[sck_pin_index]); *reg = hardware().sck_mux[sck_pin_index]; } void SPIClass::end() { volatile uint32_t *reg; reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]); *reg = 0; reg = portConfigRegister(hardware().miso_pin[miso_pin_index]); *reg = 0; reg = portConfigRegister(hardware().sck_pin[sck_pin_index]); *reg = 0; port().C1 = 0; } const uint16_t SPISettings::br_div_table[30] = { 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, }; const uint8_t SPISettings::br_clock_table[30] = { SPI_BR_SPPR(0) | SPI_BR_SPR(0), SPI_BR_SPPR(1) | SPI_BR_SPR(0), SPI_BR_SPPR(2) | SPI_BR_SPR(0), SPI_BR_SPPR(3) | SPI_BR_SPR(0), SPI_BR_SPPR(4) | SPI_BR_SPR(0), SPI_BR_SPPR(5) | SPI_BR_SPR(0), SPI_BR_SPPR(6) | SPI_BR_SPR(0), SPI_BR_SPPR(7) | SPI_BR_SPR(0), SPI_BR_SPPR(4) | SPI_BR_SPR(1), SPI_BR_SPPR(5) | SPI_BR_SPR(1), SPI_BR_SPPR(6) | SPI_BR_SPR(1), SPI_BR_SPPR(7) | SPI_BR_SPR(1), SPI_BR_SPPR(4) | SPI_BR_SPR(2), SPI_BR_SPPR(5) | SPI_BR_SPR(2), SPI_BR_SPPR(6) | SPI_BR_SPR(2), SPI_BR_SPPR(7) | SPI_BR_SPR(2), SPI_BR_SPPR(4) | SPI_BR_SPR(3), SPI_BR_SPPR(5) | SPI_BR_SPR(3), SPI_BR_SPPR(6) | SPI_BR_SPR(3), SPI_BR_SPPR(7) | SPI_BR_SPR(3), SPI_BR_SPPR(4) | SPI_BR_SPR(4), SPI_BR_SPPR(5) | SPI_BR_SPR(4), SPI_BR_SPPR(6) | SPI_BR_SPR(4), SPI_BR_SPPR(7) | SPI_BR_SPR(4), SPI_BR_SPPR(4) | SPI_BR_SPR(5), SPI_BR_SPPR(5) | SPI_BR_SPR(5), SPI_BR_SPPR(6) | SPI_BR_SPR(5), SPI_BR_SPPR(7) | SPI_BR_SPR(5), SPI_BR_SPPR(4) | SPI_BR_SPR(6), SPI_BR_SPPR(5) | SPI_BR_SPR(6) }; void SPIClass::setMOSI(uint8_t pin) { if (pin != hardware().mosi_pin[mosi_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) { if (pin == hardware().mosi_pin[i] ) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { volatile uint32_t *reg; reg = portConfigRegister(hardware().mosi_pin[mosi_pin_index]); *reg = 0; reg = portConfigRegister(hardware().mosi_pin[i]); *reg = hardware().mosi_mux[i]; } mosi_pin_index = i; return; } } } } void SPIClass::setMISO(uint8_t pin) { if (pin != hardware().miso_pin[miso_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) { if (pin == hardware().miso_pin[i] ) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { volatile uint32_t *reg; reg = portConfigRegister(hardware().miso_pin[miso_pin_index]); *reg = 0; reg = portConfigRegister(hardware().miso_pin[i]); *reg = hardware().miso_mux[i]; } miso_pin_index = i; return; } } } } void SPIClass::setSCK(uint8_t pin) { if (pin != hardware().sck_pin[sck_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) { if (pin == hardware().sck_pin[i] ) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { volatile uint32_t *reg; reg = portConfigRegister(hardware().sck_pin[sck_pin_index]); *reg = 0; reg = portConfigRegister(hardware().sck_pin[i]); *reg = hardware().sck_mux[i]; } sck_pin_index = i; return; } } } } bool SPIClass::pinIsChipSelect(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) { if (pin == hardware().cs_pin[i]) return hardware().cs_mask[i]; } return 0; } bool SPIClass::pinIsMOSI(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) { if (pin == hardware().mosi_pin[i]) return true; } return false; } bool SPIClass::pinIsMISO(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) { if (pin == hardware().miso_pin[i]) return true; } return false; } bool SPIClass::pinIsSCK(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) { if (pin == hardware().sck_pin[i]) return true; } return false; } // setCS() is not intended for use from normal Arduino programs/sketches. uint8_t SPIClass::setCS(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) { if (pin == hardware().cs_pin[i]) { volatile uint32_t *reg = portConfigRegister(pin); *reg = hardware().cs_mux[i]; return hardware().cs_mask[i]; } } return 0; } void SPIClass::transfer(const void * buf, void * retbuf, size_t count) { if (count == 0) return; const uint8_t *p = (const uint8_t *)buf; uint8_t *pret = (uint8_t *)retbuf; uint8_t in; while (!(port().S & SPI_S_SPTEF)) ; // wait uint8_t out = p ? *p++ : _transferWriteFill; port().DL = out; while (--count > 0) { if (p) { out = *p++; } while (!(port().S & SPI_S_SPTEF)) ; // wait __disable_irq(); port().DL = out; while (!(port().S & SPI_S_SPRF)) ; // wait in = port().DL; __enable_irq(); if (pret)*pret++ = in; } while (!(port().S & SPI_S_SPRF)) ; // wait in = port().DL; if (pret)*pret = in; } //============================================================================= // ASYNCH Support //============================================================================= //========================================================================= // Try Transfer using DMA. //========================================================================= #ifdef SPI_HAS_TRANSFER_ASYNC static uint8_t _dma_dummy_rx; void SPIClass::dma_isr(void) { // Serial.println("_spi_dma_rxISR"); _dmaRX->clearInterrupt(); port().C2 = 0; uint8_t tmp __attribute__((unused)) = port().S; _dmaTX->clearComplete(); _dmaRX->clearComplete(); _dma_state = DMAState::completed; // set back to 1 in case our call wants to start up dma again _dma_event_responder->triggerEvent(); } bool SPIClass::initDMAChannels() { //Serial.println("First dma call"); Serial.flush(); _dmaTX = new DMAChannel(); if (_dmaTX == nullptr) { return false; } _dmaTX->disable(); _dmaTX->destination((volatile uint8_t&)port().DL); _dmaTX->disableOnCompletion(); _dmaTX->triggerAtHardwareEvent(hardware().tx_dma_channel); _dmaRX = new DMAChannel(); if (_dmaRX == NULL) { delete _dmaTX; _dmaRX = nullptr; return false; } _dmaRX->disable(); _dmaRX->source((volatile uint8_t&)port().DL); _dmaRX->disableOnCompletion(); _dmaRX->triggerAtHardwareEvent(hardware().rx_dma_channel); _dmaRX->attachInterrupt(hardware().dma_isr); _dmaRX->interruptAtCompletion(); _dma_state = DMAState::idle; // Should be first thing set! //Serial.println("end First dma call"); return true; } //========================================================================= // Main Async Transfer function //========================================================================= bool SPIClass::transfer(const void *buf, void *retbuf, size_t count, EventResponderRef event_responder) { if (_dma_state == DMAState::notAllocated) { if (!initDMAChannels()) { return false; } } if (_dma_state == DMAState::active) return false; // already active event_responder.clearEvent(); // Make sure it is not set yet if (count < 2) { // Use non-async version to simplify cases... transfer(buf, retbuf, count); event_responder.triggerEvent(); return true; } //_dmaTX->destination((volatile uint8_t&)port().DL); //_dmaRX->source((volatile uint8_t&)port().DL); _dmaTX->CFG->DCR = (_dmaTX->CFG->DCR & ~DMA_DCR_DSIZE(3)) | DMA_DCR_DSIZE(1); _dmaRX->CFG->DCR = (_dmaRX->CFG->DCR & ~DMA_DCR_SSIZE(3)) | DMA_DCR_SSIZE(1); // 8 bit transfer // Now see if the user passed in TX buffer to send. uint8_t first_char; if (buf) { uint8_t *data_out = (uint8_t*)buf; first_char = *data_out++; _dmaTX->sourceBuffer(data_out, count-1); } else { first_char = (_transferWriteFill & 0xff); _dmaTX->source((uint8_t&)_transferWriteFill); // maybe have setable value _dmaTX->transferCount(count-1); } if (retbuf) { _dmaRX->destinationBuffer((uint8_t*)retbuf, count); } else { _dmaRX->destination(_dma_dummy_rx); // NULL ? _dmaRX->transferCount(count); } _dma_event_responder = &event_responder; //Serial.println("Before DMA C2"); // Try pushing the first character while (!(port().S & SPI_S_SPTEF)); port().DL = first_char; port().C2 |= SPI_C2_TXDMAE | SPI_C2_RXDMAE; // Now make sure SPI is enabled. port().C1 |= SPI_C1_SPE; _dmaRX->enable(); _dmaTX->enable(); _dma_state = DMAState::active; return true; } #endif //SPI_HAS_TRANSFER_ASYNC /**********************************************************/ /* 32 bit Teensy 4.x */ /**********************************************************/ #elif defined(__arm__) && defined(TEENSYDUINO) && (defined(__IMXRT1052__) || defined(__IMXRT1062__)) //#include "debug/printf.h" void SPIClass::begin() { // CBCMR[LPSPI_CLK_SEL] - PLL2 = 528 MHz // CBCMR[LPSPI_PODF] - div4 = 132 MHz hardware().clock_gate_register &= ~hardware().clock_gate_mask; CCM_CBCMR = (CCM_CBCMR & ~(CCM_CBCMR_LPSPI_PODF_MASK | CCM_CBCMR_LPSPI_CLK_SEL_MASK)) | CCM_CBCMR_LPSPI_PODF(2) | CCM_CBCMR_LPSPI_CLK_SEL(1); // pg 714 // CCM_CBCMR_LPSPI_PODF(6) | CCM_CBCMR_LPSPI_CLK_SEL(2); // pg 714 uint32_t fastio = IOMUXC_PAD_DSE(7) | IOMUXC_PAD_SPEED(2); //uint32_t fastio = IOMUXC_PAD_DSE(6) | IOMUXC_PAD_SPEED(1); //uint32_t fastio = IOMUXC_PAD_DSE(3) | IOMUXC_PAD_SPEED(3); //Serial.printf("SPI MISO: %d MOSI: %d, SCK: %d\n", hardware().miso_pin[miso_pin_index], hardware().mosi_pin[mosi_pin_index], hardware().sck_pin[sck_pin_index]); *(portControlRegister(hardware().miso_pin[miso_pin_index])) = fastio; *(portControlRegister(hardware().mosi_pin[mosi_pin_index])) = fastio; *(portControlRegister(hardware().sck_pin[sck_pin_index])) = fastio; //printf("CBCMR = %08lX\n", CCM_CBCMR); hardware().clock_gate_register |= hardware().clock_gate_mask; *(portConfigRegister(hardware().miso_pin[miso_pin_index])) = hardware().miso_mux[miso_pin_index]; *(portConfigRegister(hardware().mosi_pin [mosi_pin_index])) = hardware().mosi_mux[mosi_pin_index]; *(portConfigRegister(hardware().sck_pin [sck_pin_index])) = hardware().sck_mux[sck_pin_index]; // Set the Mux pins //Serial.println("SPI: Set Input select registers"); hardware().sck_select_input_register = hardware().sck_select_val[sck_pin_index]; hardware().miso_select_input_register = hardware().miso_select_val[miso_pin_index]; hardware().mosi_select_input_register = hardware().mosi_select_val[mosi_pin_index]; //digitalWriteFast(10, HIGH); //pinMode(10, OUTPUT); //digitalWriteFast(10, HIGH); port().CR = LPSPI_CR_RST; // Lets initialize the Transmit FIFO watermark to FIFO size - 1... // BUGBUG:: I assume queue of 16 for now... port().FCR = LPSPI_FCR_TXWATER(15); // We should initialize the SPI to be in a known default state. beginTransaction(SPISettings()); endTransaction(); } void SPIClass::setClockDivider_noInline(uint32_t clk) { // Again depreciated, but... hardware().clock_gate_register |= hardware().clock_gate_mask; if (clk != _clock) { static const uint32_t clk_sel[4] = {664615384, // PLL3 PFD1 720000000, // PLL3 PFD0 528000000, // PLL2 396000000}; // PLL2 PFD2 // First save away the new settings.. _clock = clk; uint32_t cbcmr = CCM_CBCMR; uint32_t clkhz = clk_sel[(cbcmr >> 4) & 0x03] / (((cbcmr >> 26 ) & 0x07 ) + 1); // LPSPI peripheral clock uint32_t d, div; d = _clock ? clkhz/_clock : clkhz; if (d && clkhz/d > _clock) d++; if (d > 257) d= 257; // max div if (d > 2) { div = d-2; } else { div =0; } _ccr = LPSPI_CCR_SCKDIV(div) | LPSPI_CCR_DBT(div/2) | LPSPI_CCR_PCSSCK(div/2); } //Serial.printf("SPI.setClockDivider_noInline CCR:%x TCR:%x\n", _ccr, port().TCR); port().CR = 0; port().CFGR1 = LPSPI_CFGR1_MASTER | LPSPI_CFGR1_SAMPLE; port().CCR = _ccr; port().CR = LPSPI_CR_MEN; } uint8_t SPIClass::pinIsChipSelect(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) { if (pin == hardware().cs_pin[i]) return hardware().cs_mask[i]; } return 0; } bool SPIClass::pinIsChipSelect(uint8_t pin1, uint8_t pin2) { uint8_t pin1_mask, pin2_mask; if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false; if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false; //Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask); if ((pin1_mask & pin2_mask) != 0) return false; return true; } bool SPIClass::pinIsMOSI(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) { if (pin == hardware().mosi_pin[i]) return true; } return false; } bool SPIClass::pinIsMISO(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) { if (pin == hardware().miso_pin[i]) return true; } return false; } bool SPIClass::pinIsSCK(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) { if (pin == hardware().sck_pin[i]) return true; } return false; } // setCS() is not intended for use from normal Arduino programs/sketches. uint8_t SPIClass::setCS(uint8_t pin) { for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) { if (pin == hardware().cs_pin[i]) { *(portConfigRegister(pin)) = hardware().cs_mux[i]; if (hardware().pcs_select_input_register[i]) *hardware().pcs_select_input_register[i] = hardware().pcs_select_val[i]; return hardware().cs_mask[i]; } } return 0; } void SPIClass::setMOSI(uint8_t pin) { if (pin != hardware().mosi_pin[mosi_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().mosi_pin); i++) { if (pin == hardware().mosi_pin[i] ) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { // BUGBUG:: Unclear what to do with previous pin as there is no unused setting like t3.x uint32_t fastio = IOMUXC_PAD_DSE(7) | IOMUXC_PAD_SPEED(2); *(portControlRegister(hardware().mosi_pin[i])) = fastio; *(portConfigRegister(hardware().mosi_pin [i])) = hardware().mosi_mux[i]; hardware().mosi_select_input_register = hardware().mosi_select_val[i]; } mosi_pin_index = i; return; } } } } void SPIClass::setMISO(uint8_t pin) { if (pin != hardware().miso_pin[miso_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().miso_pin); i++) { if (pin == hardware().miso_pin[i] ) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { // BUGBUG:: Unclear what to do with previous pin as there is no unused setting like t3.x uint32_t fastio = IOMUXC_PAD_DSE(7) | IOMUXC_PAD_SPEED(2); *(portControlRegister(hardware().miso_pin[i])) = fastio; *(portConfigRegister(hardware().miso_pin[i])) = hardware().miso_mux[i]; hardware().miso_select_input_register = hardware().miso_select_val[i]; } miso_pin_index = i; return; } } } } void SPIClass::setSCK(uint8_t pin) { if (pin != hardware().sck_pin[sck_pin_index]) { for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) { if (pin == hardware().sck_pin[i] ) { if (hardware().clock_gate_register & hardware().clock_gate_mask) { // BUGBUG:: Unclear what to do with previous pin as there is no unused setting like t3.x uint32_t fastio = IOMUXC_PAD_DSE(7) | IOMUXC_PAD_SPEED(2); *(portControlRegister(hardware().sck_pin[i])) = fastio; *(portConfigRegister(hardware().sck_pin [i])) = hardware().sck_mux[i]; hardware().sck_select_input_register = hardware().sck_select_val[i]; } sck_pin_index = i; return; } } } } void SPIClass::setBitOrder(uint8_t bitOrder) { hardware().clock_gate_register |= hardware().clock_gate_mask; if (bitOrder == LSBFIRST) { port().TCR |= LPSPI_TCR_LSBF; } else { port().TCR &= ~LPSPI_TCR_LSBF; } } void SPIClass::setDataMode(uint8_t dataMode) { hardware().clock_gate_register |= hardware().clock_gate_mask; //SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode; // Handle Data Mode uint32_t tcr = port().TCR & ~(LPSPI_TCR_CPOL | LPSPI_TCR_CPHA); if (dataMode & 0x08) tcr |= LPSPI_TCR_CPOL; // Note: On T3.2 when we set CPHA it also updated the timing. It moved the // PCS to SCK Delay Prescaler into the After SCK Delay Prescaler if (dataMode & 0x04) tcr |= LPSPI_TCR_CPHA; // Save back out port().TCR = tcr; } void _spi_dma_rxISR0(void) {SPI.dma_rxisr();} // NOTE pin definitions are in the order MISO, MOSI, SCK, CS // With each group, having pin number[n], setting[n], INPUT_SELECT_MUX settings[n], SELECT INPUT register #if defined(ARDUINO_TEENSY41) const SPIClass::SPI_Hardware_t SPIClass::spiclass_lpspi4_hardware = { CCM_CCGR1, CCM_CCGR1_LPSPI4(CCM_CCGR_ON), DMAMUX_SOURCE_LPSPI4_TX, DMAMUX_SOURCE_LPSPI4_RX, _spi_dma_rxISR0, 12, 255, // MISO 3 | 0x10, 0, 0, 0, IOMUXC_LPSPI4_SDI_SELECT_INPUT, 11, 255, // MOSI 3 | 0x10, 0, 0, 0, IOMUXC_LPSPI4_SDO_SELECT_INPUT, 13, 255, // SCK 3 | 0x10, 0, 0, 0, IOMUXC_LPSPI4_SCK_SELECT_INPUT, 10, 37, 36, // CS 3 | 0x10, 2 | 0x10, 2 | 0x10, 1, 2, 3, 0, 0, 0, &IOMUXC_LPSPI4_PCS0_SELECT_INPUT, 0, 0 }; #else const SPIClass::SPI_Hardware_t SPIClass::spiclass_lpspi4_hardware = { CCM_CCGR1, CCM_CCGR1_LPSPI4(CCM_CCGR_ON), DMAMUX_SOURCE_LPSPI4_TX, DMAMUX_SOURCE_LPSPI4_RX, _spi_dma_rxISR0, 12, 3 | 0x10, 0, IOMUXC_LPSPI4_SDI_SELECT_INPUT, 11, 3 | 0x10, 0, IOMUXC_LPSPI4_SDO_SELECT_INPUT, 13, 3 | 0x10, 0, IOMUXC_LPSPI4_SCK_SELECT_INPUT, 10, 3 | 0x10, 1, 0, &IOMUXC_LPSPI4_PCS0_SELECT_INPUT }; #endif SPIClass SPI((uintptr_t)&IMXRT_LPSPI4_S, (uintptr_t)&SPIClass::spiclass_lpspi4_hardware); #if defined(__IMXRT1062__) // T4 has two other possible SPI objects... void _spi_dma_rxISR1(void) {SPI1.dma_rxisr();} #if defined(ARDUINO_TEENSY41) const SPIClass::SPI_Hardware_t SPIClass::spiclass_lpspi3_hardware = { CCM_CCGR1, CCM_CCGR1_LPSPI3(CCM_CCGR_ON), DMAMUX_SOURCE_LPSPI3_TX, DMAMUX_SOURCE_LPSPI3_RX, _spi_dma_rxISR1, 1, 39, 7 | 0x10, 2 | 0x10, 0, 1, IOMUXC_LPSPI3_SDI_SELECT_INPUT, 26, 255, 2 | 0x10, 0, 1, 0, IOMUXC_LPSPI3_SDO_SELECT_INPUT, 27, 255, 2 | 0x10, 0, 1, 0, IOMUXC_LPSPI3_SCK_SELECT_INPUT, 0, 38, 255, 7 | 0x10, 2 | 0x10, 0, 1, 1, 0, 0, 1, 0, &IOMUXC_LPSPI3_PCS0_SELECT_INPUT, &IOMUXC_LPSPI3_PCS0_SELECT_INPUT, 0 }; #else const SPIClass::SPI_Hardware_t SPIClass::spiclass_lpspi3_hardware = { CCM_CCGR1, CCM_CCGR1_LPSPI3(CCM_CCGR_ON), DMAMUX_SOURCE_LPSPI3_TX, DMAMUX_SOURCE_LPSPI3_RX, _spi_dma_rxISR1, 1, 7 | 0x10, 0, IOMUXC_LPSPI3_SDI_SELECT_INPUT, 26, 2 | 0x10, 1, IOMUXC_LPSPI3_SDO_SELECT_INPUT, 27, 2 | 0x10, 1, IOMUXC_LPSPI3_SCK_SELECT_INPUT, 0, 7 | 0x10, 1, 0, &IOMUXC_LPSPI3_PCS0_SELECT_INPUT }; #endif SPIClass SPI1((uintptr_t)&IMXRT_LPSPI3_S, (uintptr_t)&SPIClass::spiclass_lpspi3_hardware); void _spi_dma_rxISR2(void) {SPI2.dma_rxisr();} #if defined(ARDUINO_TEENSY41) const SPIClass::SPI_Hardware_t SPIClass::spiclass_lpspi1_hardware = { CCM_CCGR1, CCM_CCGR1_LPSPI1(CCM_CCGR_ON), DMAMUX_SOURCE_LPSPI1_TX, DMAMUX_SOURCE_LPSPI1_RX, _spi_dma_rxISR1, 42, 54, 4 | 0x10, 3 | 0x10, 1, 0, IOMUXC_LPSPI1_SDI_SELECT_INPUT, 43, 50, 4 | 0x10, 3 | 0x10, 1, 0, IOMUXC_LPSPI1_SDO_SELECT_INPUT, 45, 49, 4 | 0x10, 3 | 0x10, 1, 0, IOMUXC_LPSPI1_SCK_SELECT_INPUT, 44, 255, 255, 4 | 0x10, 0, 0, 1, 0, 0, 0, 0, 0, &IOMUXC_LPSPI1_PCS0_SELECT_INPUT, 0, 0 }; #else const SPIClass::SPI_Hardware_t SPIClass::spiclass_lpspi1_hardware = { CCM_CCGR1, CCM_CCGR1_LPSPI1(CCM_CCGR_ON), DMAMUX_SOURCE_LPSPI1_TX, DMAMUX_SOURCE_LPSPI1_RX, _spi_dma_rxISR1, 34, 4 | 0x10, 1, IOMUXC_LPSPI1_SDI_SELECT_INPUT, 35, 4 | 0x10, 1, IOMUXC_LPSPI1_SDO_SELECT_INPUT, 37, 4 | 0x10, 1, IOMUXC_LPSPI1_SCK_SELECT_INPUT, 36, 4 | 0x10, 1, 0, &IOMUXC_LPSPI1_PCS0_SELECT_INPUT }; #endif SPIClass SPI2((uintptr_t)&IMXRT_LPSPI1_S, (uintptr_t)&SPIClass::spiclass_lpspi1_hardware); #endif //SPIClass SPI(&IMXRT_LPSPI4_S, &spiclass_lpspi4_hardware); void SPIClass::usingInterrupt(IRQ_NUMBER_t interruptName) { uint32_t n = (uint32_t)interruptName; if (n >= NVIC_NUM_INTERRUPTS) return; //Serial.print("usingInterrupt "); //Serial.println(n); interruptMasksUsed |= (1 << (n >> 5)); interruptMask[n >> 5] |= (1 << (n & 0x1F)); //Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed); //Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]); //Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]); //Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]); } void SPIClass::notUsingInterrupt(IRQ_NUMBER_t interruptName) { uint32_t n = (uint32_t)interruptName; if (n >= NVIC_NUM_INTERRUPTS) return; interruptMask[n >> 5] &= ~(1 << (n & 0x1F)); if (interruptMask[n >> 5] == 0) { interruptMasksUsed &= ~(1 << (n >> 5)); } } void SPIClass::transfer(const void * buf, void * retbuf, size_t count) { if (count == 0) return; uint8_t *p_write = (uint8_t*)buf; uint8_t *p_read = (uint8_t*)retbuf; size_t count_read = count; // Pass 1 keep it simple and don't try packing 8 bits into 16 yet.. // Lets clear the reader queue port().CR = LPSPI_CR_RRF | LPSPI_CR_MEN; // clear the queue and make sure still enabled. while (count > 0) { // Push out the next byte; port().TDR = p_write? *p_write++ : _transferWriteFill; count--; // how many bytes left to output. // Make sure queue is not full before pushing next byte out do { if ((port().RSR & LPSPI_RSR_RXEMPTY) == 0) { uint8_t b = port().RDR; // Read any pending RX bytes in if (p_read) *p_read++ = b; count_read--; } } while ((port().SR & LPSPI_SR_TDF) == 0) ; } // now lets wait for all of the read bytes to be returned... while (count_read) { if ((port().RSR & LPSPI_RSR_RXEMPTY) == 0) { uint8_t b = port().RDR; // Read any pending RX bytes in if (p_read) *p_read++ = b; count_read--; } } } void SPIClass::end() { // only do something if we have begun if (hardware().clock_gate_register & hardware().clock_gate_mask) { port().CR = 0; // turn off the enable pinMode(hardware().miso_pin[miso_pin_index], INPUT_DISABLE); pinMode(hardware().mosi_pin[mosi_pin_index], INPUT_DISABLE); pinMode(hardware().sck_pin[sck_pin_index], INPUT_DISABLE); } } //============================================================================= // ASYNCH Support //============================================================================= //========================================================================= // Try Transfer using DMA. //========================================================================= #ifdef SPI_HAS_TRANSFER_ASYNC static uint8_t bit_bucket; #define dontInterruptAtCompletion(dmac) (dmac)->TCD->CSR &= ~DMA_TCD_CSR_INTMAJOR //========================================================================= // Init the DMA channels //========================================================================= bool SPIClass::initDMAChannels() { // Allocate our channels. _dmaTX = new DMAChannel(); if (_dmaTX == nullptr) { return false; } _dmaRX = new DMAChannel(); if (_dmaRX == nullptr) { delete _dmaTX; // release it _dmaTX = nullptr; return false; } // Let's setup the RX chain _dmaRX->disable(); _dmaRX->source((volatile uint8_t&)port().RDR); _dmaRX->disableOnCompletion(); _dmaRX->triggerAtHardwareEvent(hardware().rx_dma_channel); _dmaRX->attachInterrupt(hardware().dma_rxisr); _dmaRX->interruptAtCompletion(); // We may be using settings chain here so lets set it up. // Now lets setup TX chain. Note if trigger TX is not set // we need to have the RX do it for us. _dmaTX->disable(); _dmaTX->destination((volatile uint8_t&)port().TDR); _dmaTX->disableOnCompletion(); if (hardware().tx_dma_channel) { _dmaTX->triggerAtHardwareEvent(hardware().tx_dma_channel); } else { // Serial.printf("SPI InitDMA tx triger by RX: %x\n", (uint32_t)_dmaRX); _dmaTX->triggerAtTransfersOf(*_dmaRX); } _dma_state = DMAState::idle; // Should be first thing set! return true; } //========================================================================= // Main Async Transfer function //========================================================================= #ifndef TRANSFER_COUNT_FIXED inline void DMAChanneltransferCount(DMAChannel * dmac, unsigned int len) { // note does no validation of length... DMABaseClass::TCD_t *tcd = dmac->TCD; if (!(tcd->BITER & DMA_TCD_BITER_ELINK)) { tcd->BITER = len & 0x7fff; } else { tcd->BITER = (tcd->BITER & 0xFE00) | (len & 0x1ff); } tcd->CITER = tcd->BITER; } #else inline void DMAChanneltransferCount(DMAChannel * dmac, unsigned int len) { dmac->transferCount(len); } #endif #ifdef DEBUG_DMA_TRANSFERS void dumpDMA_TCD(DMABaseClass *dmabc) { Serial4.printf("%x %x:", (uint32_t)dmabc, (uint32_t)dmabc->TCD); Serial4.printf("SA:%x SO:%d AT:%x NB:%x SL:%d DA:%x DO: %d CI:%x DL:%x CS:%x BI:%x\n", (uint32_t)dmabc->TCD->SADDR, dmabc->TCD->SOFF, dmabc->TCD->ATTR, dmabc->TCD->NBYTES, dmabc->TCD->SLAST, (uint32_t)dmabc->TCD->DADDR, dmabc->TCD->DOFF, dmabc->TCD->CITER, dmabc->TCD->DLASTSGA, dmabc->TCD->CSR, dmabc->TCD->BITER); } #endif bool SPIClass::transfer(const void *buf, void *retbuf, size_t count, EventResponderRef event_responder) { if (_dma_state == DMAState::notAllocated) { if (!initDMAChannels()) return false; } if (_dma_state == DMAState::active) return false; // already active event_responder.clearEvent(); // Make sure it is not set yet if (count < 2) { // Use non-async version to simplify cases... transfer(buf, retbuf, count); event_responder.triggerEvent(); return true; } // Now handle the cases where the count > then how many we can output in one DMA request if (count > MAX_DMA_COUNT) { _dma_count_remaining = count - MAX_DMA_COUNT; count = MAX_DMA_COUNT; } else { _dma_count_remaining = 0; } // Now See if caller passed in a source buffer. _dmaTX->TCD->ATTR_DST = 0; // Make sure set for 8 bit mode uint8_t *write_data = (uint8_t*) buf; if (buf) { _dmaTX->sourceBuffer((uint8_t*)write_data, count); _dmaTX->TCD->SLAST = 0; // Finish with it pointing to next location if ((uint32_t)write_data >= 0x20200000u) arm_dcache_flush(write_data, count); } else { _dmaTX->source((uint8_t&)_transferWriteFill); // maybe have setable value DMAChanneltransferCount(_dmaTX, count); } if (retbuf) { // On T3.5 must handle SPI1/2 differently as only one DMA channel _dmaRX->TCD->ATTR_SRC = 0; //Make sure set for 8 bit mode... _dmaRX->destinationBuffer((uint8_t*)retbuf, count); _dmaRX->TCD->DLASTSGA = 0; // At end point after our bufffer if ((uint32_t)retbuf >= 0x20200000u) arm_dcache_delete(retbuf, count); } else { // Write only mode _dmaRX->TCD->ATTR_SRC = 0; //Make sure set for 8 bit mode... _dmaRX->destination((uint8_t&)bit_bucket); DMAChanneltransferCount(_dmaRX, count); } _dma_event_responder = &event_responder; // Now try to start it? // Setup DMA main object yield(); #ifdef DEBUG_DMA_TRANSFERS // Lets dump TX, RX dumpDMA_TCD(_dmaTX); dumpDMA_TCD(_dmaRX); #endif // Make sure port is in 8 bit mode and clear watermark port().TCR = (port().TCR & ~(LPSPI_TCR_FRAMESZ(31))) | LPSPI_TCR_FRAMESZ(7); port().FCR = 0; // Lets try to output the first byte to make sure that we are in 8 bit mode... port().DER = LPSPI_DER_TDDE | LPSPI_DER_RDDE; //enable DMA on both TX and RX port().SR = 0x3f00; // clear out all of the other status... _dmaRX->enable(); _dmaTX->enable(); _dma_state = DMAState::active; return true; } //------------------------------------------------------------------------- // DMA RX ISR //------------------------------------------------------------------------- void SPIClass::dma_rxisr(void) { _dmaRX->clearInterrupt(); _dmaTX->clearComplete(); _dmaRX->clearComplete(); if (_dma_count_remaining) { // What do I need to do to start it back up again... // We will use the BITR/CITR from RX as TX may have prefed some stuff if (_dma_count_remaining > MAX_DMA_COUNT) { _dma_count_remaining -= MAX_DMA_COUNT; } else { DMAChanneltransferCount(_dmaTX, _dma_count_remaining); DMAChanneltransferCount(_dmaRX, _dma_count_remaining); _dma_count_remaining = 0; } _dmaRX->enable(); _dmaTX->enable(); } else { port().FCR = LPSPI_FCR_TXWATER(15); // _spi_fcr_save; // restore the FSR status... port().DER = 0; // DMA no longer doing TX (or RX) port().CR = LPSPI_CR_MEN | LPSPI_CR_RRF | LPSPI_CR_RTF; // actually clear both... port().SR = 0x3f00; // clear out all of the other status... _dma_state = DMAState::completed; // set back to 1 in case our call wants to start up dma again _dma_event_responder->triggerEvent(); } } #endif // SPI_HAS_TRANSFER_ASYNC #endif