/* TinyGPS - a small GPS library for Arduino providing basic NMEA parsing Based on work by and "distance_to" and "course_to" courtesy of Maarten Lamers. Suggestion to add satellites(), course_to(), and cardinal(), by Matt Monson. Precision improvements suggested by Wayne Holder. Copyright (C) 2008-2013 Mikal Hart All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "TinyGPS.h" #define _GPRMC_TERM "GPRMC" #define _GPGGA_TERM "GPGGA" #define _GPGSA_TERM "GPGSA" #define _GNRMC_TERM "GNRMC" #define _GNGNS_TERM "GNGNS" #define _GNGSA_TERM "GNGSA" #define _GPGSV_TERM "GPGSV" #define _GLGSV_TERM "GLGSV" TinyGPS::TinyGPS() : _time(GPS_INVALID_TIME) , _date(GPS_INVALID_DATE) , _latitude(GPS_INVALID_ANGLE) , _longitude(GPS_INVALID_ANGLE) , _altitude(GPS_INVALID_ALTITUDE) , _speed(GPS_INVALID_SPEED) , _course(GPS_INVALID_ANGLE) , _hdop(GPS_INVALID_HDOP) , _numsats(GPS_INVALID_SATELLITES) , _last_time_fix(GPS_INVALID_FIX_TIME) , _last_position_fix(GPS_INVALID_FIX_TIME) , _parity(0) , _is_checksum_term(false) , _sentence_type(_GPS_SENTENCE_OTHER) , _term_number(0) , _term_offset(0) , _gps_data_good(false) #ifndef _GPS_NO_STATS , _encoded_characters(0) , _good_sentences(0) , _failed_checksum(0) #endif { _term[0] = '\0'; } // // public methods // bool TinyGPS::encode(char c) { bool valid_sentence = false; #ifndef _GPS_NO_STATS ++_encoded_characters; #endif switch(c) { case ',': // term terminators _parity ^= c; case '\r': case '\n': case '*': if (_term_offset < sizeof(_term)) { _term[_term_offset] = 0; valid_sentence = term_complete(); } ++_term_number; _term_offset = 0; _is_checksum_term = c == '*'; return valid_sentence; case '$': // sentence begin _term_number = _term_offset = 0; _parity = 0; _sentence_type = _GPS_SENTENCE_OTHER; _is_checksum_term = false; _gps_data_good = false; return valid_sentence; } // ordinary characters if (_term_offset < sizeof(_term) - 1) _term[_term_offset++] = c; if (!_is_checksum_term) _parity ^= c; return valid_sentence; } #ifndef _GPS_NO_STATS void TinyGPS::stats(unsigned long *chars, unsigned short *sentences, unsigned short *failed_cs) { if (chars) *chars = _encoded_characters; if (sentences) *sentences = _good_sentences; if (failed_cs) *failed_cs = _failed_checksum; } #endif // // internal utilities // int TinyGPS::from_hex(char a) { if (a >= 'A' && a <= 'F') return a - 'A' + 10; else if (a >= 'a' && a <= 'f') return a - 'a' + 10; else return a - '0'; } unsigned long TinyGPS::parse_decimal() { char *p = _term; bool isneg = *p == '-'; if (isneg) ++p; unsigned long ret = 100UL * gpsatol(p); while (gpsisdigit(*p)) ++p; if (*p == '.') { if (gpsisdigit(p[1])) { ret += 10 * (p[1] - '0'); if (gpsisdigit(p[2])) ret += p[2] - '0'; } } return isneg ? -ret : ret; } // Parse a string in the form ddmm.mmmmmmm... unsigned long TinyGPS::parse_degrees() { char *p; unsigned long left_of_decimal = gpsatol(_term); unsigned long hundred1000ths_of_minute = (left_of_decimal % 100UL) * 100000UL; for (p=_term; gpsisdigit(*p); ++p); if (*p == '.') { unsigned long mult = 10000; while (gpsisdigit(*++p)) { hundred1000ths_of_minute += mult * (*p - '0'); mult /= 10; } } return (left_of_decimal / 100) * 1000000 + (hundred1000ths_of_minute + 3) / 6; } #define COMBINE(sentence_type, term_number) (((unsigned)(sentence_type) << 5) | term_number) // Processes a just-completed term // Returns true if new sentence has just passed checksum test and is validated bool TinyGPS::term_complete() { if (_is_checksum_term) { byte checksum = 16 * from_hex(_term[0]) + from_hex(_term[1]); if (checksum == _parity) { if(_sentence_type == _GPS_SENTENCE_GPRMC) //set the time and date even if not tracking { _time = _new_time; _date = _new_date; } if (_gps_data_good) { #ifndef _GPS_NO_STATS ++_good_sentences; #endif _last_time_fix = _new_time_fix; _last_position_fix = _new_position_fix; switch(_sentence_type) { case _GPS_SENTENCE_GPRMC: _time = _new_time; _date = _new_date; _latitude = _new_latitude; _longitude = _new_longitude; _speed = _new_speed; _course = _new_course; break; case _GPS_SENTENCE_GPGGA: _altitude = _new_altitude; _time = _new_time; _latitude = _new_latitude; _longitude = _new_longitude; _numsats = _new_numsats; _hdop = _new_hdop; break; } return true; } } #ifndef _GPS_NO_STATS else ++_failed_checksum; #endif return false; } // the first term determines the sentence type if (_term_number == 0) { if (!gpsstrcmp(_term, _GPRMC_TERM) || !gpsstrcmp(_term, _GNRMC_TERM)) _sentence_type = _GPS_SENTENCE_GPRMC; else if (!gpsstrcmp(_term, _GPGGA_TERM)) _sentence_type = _GPS_SENTENCE_GPGGA; else if (!gpsstrcmp(_term, _GNGNS_TERM)) _sentence_type = _GPS_SENTENCE_GNGNS; else if (!gpsstrcmp(_term, _GNGSA_TERM) || !gpsstrcmp(_term, _GPGSA_TERM)) _sentence_type = _GPS_SENTENCE_GNGSA; else if (!gpsstrcmp(_term, _GPGSV_TERM)) _sentence_type = _GPS_SENTENCE_GPGSV; else if (!gpsstrcmp(_term, _GLGSV_TERM)) _sentence_type = _GPS_SENTENCE_GLGSV; else _sentence_type = _GPS_SENTENCE_OTHER; return false; } if (_sentence_type != _GPS_SENTENCE_OTHER && _term[0]) switch(COMBINE(_sentence_type, _term_number)) { case COMBINE(_GPS_SENTENCE_GPRMC, 1): // Time in both sentences case COMBINE(_GPS_SENTENCE_GPGGA, 1): case COMBINE(_GPS_SENTENCE_GNGNS, 1): _new_time = parse_decimal(); _new_time_fix = millis(); break; case COMBINE(_GPS_SENTENCE_GPRMC, 2): // GPRMC validity _gps_data_good = _term[0] == 'A'; break; case COMBINE(_GPS_SENTENCE_GPRMC, 3): // Latitude case COMBINE(_GPS_SENTENCE_GPGGA, 2): case COMBINE(_GPS_SENTENCE_GNGNS, 2): _new_latitude = parse_degrees(); _new_position_fix = millis(); break; case COMBINE(_GPS_SENTENCE_GPRMC, 4): // N/S case COMBINE(_GPS_SENTENCE_GPGGA, 3): case COMBINE(_GPS_SENTENCE_GNGNS, 3): if (_term[0] == 'S') _new_latitude = -_new_latitude; break; case COMBINE(_GPS_SENTENCE_GPRMC, 5): // Longitude case COMBINE(_GPS_SENTENCE_GPGGA, 4): case COMBINE(_GPS_SENTENCE_GNGNS, 4): _new_longitude = parse_degrees(); break; case COMBINE(_GPS_SENTENCE_GPRMC, 6): // E/W case COMBINE(_GPS_SENTENCE_GPGGA, 5): case COMBINE(_GPS_SENTENCE_GNGNS, 5): if (_term[0] == 'W') _new_longitude = -_new_longitude; break; case COMBINE(_GPS_SENTENCE_GNGNS, 6): strncpy(_constellations, _term, 5); break; case COMBINE(_GPS_SENTENCE_GPRMC, 7): // Speed (GPRMC) _new_speed = parse_decimal(); break; case COMBINE(_GPS_SENTENCE_GPRMC, 8): // Course (GPRMC) _new_course = parse_decimal(); break; case COMBINE(_GPS_SENTENCE_GPRMC, 9): // Date (GPRMC) _new_date = gpsatol(_term); break; case COMBINE(_GPS_SENTENCE_GPGGA, 6): // Fix data (GPGGA) _gps_data_good = _term[0] > '0'; break; case COMBINE(_GPS_SENTENCE_GPGGA, 7): // Satellites used (GPGGA): GPS only case COMBINE(_GPS_SENTENCE_GNGNS, 7): // GNGNS counts-in all constellations _new_numsats = (unsigned char)atoi(_term); break; case COMBINE(_GPS_SENTENCE_GPGGA, 8): // HDOP _new_hdop = parse_decimal(); break; case COMBINE(_GPS_SENTENCE_GPGGA, 9): // Altitude (GPGGA) _new_altitude = parse_decimal(); break; case COMBINE(_GPS_SENTENCE_GNGSA, 3): //satellites used in solution: 3 to 15 //_sats_used[ break; case COMBINE(_GPS_SENTENCE_GPGSV, 2): //beginning of sequence case COMBINE(_GPS_SENTENCE_GLGSV, 2): //beginning of sequence { uint8_t msgId = atoi(_term)-1; //start from 0 if(msgId == 0) { //http://geostar-navigation.com/file/geos3/geos_nmea_protocol_v3_0_eng.pdf if(_sentence_type == _GPS_SENTENCE_GPGSV) { //reset GPS & WAAS trackedSatellites for(uint8_t x=0;x<12;x++) { tracked_sat_rec[x] = 0; } } else { //reset GLONASS trackedSatellites: range starts with 23 for(uint8_t x=12;x<24;x++) { tracked_sat_rec[x] = 0; } } } _sat_index = msgId*4; //4 sattelites/line if(_sentence_type == _GPS_SENTENCE_GLGSV) { _sat_index = msgId*4 + 12; //Glonass offset by 12 } break; } case COMBINE(_GPS_SENTENCE_GPGSV, 4): //satellite # case COMBINE(_GPS_SENTENCE_GPGSV, 8): case COMBINE(_GPS_SENTENCE_GPGSV, 12): case COMBINE(_GPS_SENTENCE_GPGSV, 16): case COMBINE(_GPS_SENTENCE_GLGSV, 4): case COMBINE(_GPS_SENTENCE_GLGSV, 8): case COMBINE(_GPS_SENTENCE_GLGSV, 12): case COMBINE(_GPS_SENTENCE_GLGSV, 16): _tracked_satellites_index = atoi(_term); break; case COMBINE(_GPS_SENTENCE_GPGSV, 7): //strength case COMBINE(_GPS_SENTENCE_GPGSV, 11): case COMBINE(_GPS_SENTENCE_GPGSV, 15): case COMBINE(_GPS_SENTENCE_GPGSV, 19): case COMBINE(_GPS_SENTENCE_GLGSV, 7): //strength case COMBINE(_GPS_SENTENCE_GLGSV, 11): case COMBINE(_GPS_SENTENCE_GLGSV, 15): case COMBINE(_GPS_SENTENCE_GLGSV, 19): uint8_t stren = (uint8_t)atoi(_term); if(stren == 0) //remove the record, 0dB strength { tracked_sat_rec[_sat_index + (_term_number-7)/4] = 0; } else { tracked_sat_rec[_sat_index + (_term_number-7)/4] = _tracked_satellites_index<<8 | stren<<1; } break; } return false; } long TinyGPS::gpsatol(const char *str) { long ret = 0; while (gpsisdigit(*str)) ret = 10 * ret + *str++ - '0'; return ret; } int TinyGPS::gpsstrcmp(const char *str1, const char *str2) { while (*str1 && *str1 == *str2) ++str1, ++str2; return *str1; } /* static */ float TinyGPS::distance_between (float lat1, float long1, float lat2, float long2) { // returns distance in meters between two positions, both specified // as signed decimal-degrees latitude and longitude. Uses great-circle // distance computation for hypothetical sphere of radius 6372795 meters. // Because Earth is no exact sphere, rounding errors may be up to 0.5%. // Courtesy of Maarten Lamers float delta = radians(long1-long2); float sdlong = sin(delta); float cdlong = cos(delta); lat1 = radians(lat1); lat2 = radians(lat2); float slat1 = sin(lat1); float clat1 = cos(lat1); float slat2 = sin(lat2); float clat2 = cos(lat2); delta = (clat1 * slat2) - (slat1 * clat2 * cdlong); delta = sq(delta); delta += sq(clat2 * sdlong); delta = sqrt(delta); float denom = (slat1 * slat2) + (clat1 * clat2 * cdlong); delta = atan2(delta, denom); return delta * 6372795; } float TinyGPS::course_to (float lat1, float long1, float lat2, float long2) { // returns course in degrees (North=0, West=270) from position 1 to position 2, // both specified as signed decimal-degrees latitude and longitude. // Because Earth is no exact sphere, calculated course may be off by a tiny fraction. // Courtesy of Maarten Lamers float dlon = radians(long2-long1); lat1 = radians(lat1); lat2 = radians(lat2); float a1 = sin(dlon) * cos(lat2); float a2 = sin(lat1) * cos(lat2) * cos(dlon); a2 = cos(lat1) * sin(lat2) - a2; a2 = atan2(a1, a2); if (a2 < 0.0) { a2 += TWO_PI; } return degrees(a2); } const char *TinyGPS::cardinal (float course) { static const char* directions[] = {"N", "NNE", "NE", "ENE", "E", "ESE", "SE", "SSE", "S", "SSW", "SW", "WSW", "W", "WNW", "NW", "NNW"}; int direction = (int)((course + 11.25f) / 22.5f); return directions[direction % 16]; } // lat/long in MILLIONTHs of a degree and age of fix in milliseconds // (note: versions 12 and earlier gave this value in 100,000ths of a degree. void TinyGPS::get_position(long *latitude, long *longitude, unsigned long *fix_age) { if (latitude) *latitude = _latitude; if (longitude) *longitude = _longitude; if (fix_age) *fix_age = _last_position_fix == GPS_INVALID_FIX_TIME ? GPS_INVALID_AGE : millis() - _last_position_fix; } // date as ddmmyy, time as hhmmsscc, and age in milliseconds void TinyGPS::get_datetime(unsigned long *date, unsigned long *time, unsigned long *age) { if (date) *date = _date; if (time) *time = _time; if (age) *age = _last_time_fix == GPS_INVALID_FIX_TIME ? GPS_INVALID_AGE : millis() - _last_time_fix; } void TinyGPS::f_get_position(float *latitude, float *longitude, unsigned long *fix_age) { long lat, lon; get_position(&lat, &lon, fix_age); *latitude = lat == GPS_INVALID_ANGLE ? GPS_INVALID_F_ANGLE : (lat / 1000000.0); *longitude = lat == GPS_INVALID_ANGLE ? GPS_INVALID_F_ANGLE : (lon / 1000000.0); } void TinyGPS::crack_datetime(int *year, byte *month, byte *day, byte *hour, byte *minute, byte *second, byte *hundredths, unsigned long *age) { unsigned long date, time; get_datetime(&date, &time, age); if (year) { *year = date % 100; *year += *year > 80 ? 1900 : 2000; } if (month) *month = (date / 100) % 100; if (day) *day = date / 10000; if (hour) *hour = time / 1000000; if (minute) *minute = (time / 10000) % 100; if (second) *second = (time / 100) % 100; if (hundredths) *hundredths = time % 100; } float TinyGPS::f_altitude() { return _altitude == GPS_INVALID_ALTITUDE ? GPS_INVALID_F_ALTITUDE : _altitude / 100.0; } float TinyGPS::f_course() { return _course == GPS_INVALID_ANGLE ? GPS_INVALID_F_ANGLE : _course / 100.0; } float TinyGPS::f_speed_knots() { return _speed == GPS_INVALID_SPEED ? GPS_INVALID_F_SPEED : _speed / 100.0; } float TinyGPS::f_speed_mph() { float sk = f_speed_knots(); return sk == GPS_INVALID_F_SPEED ? GPS_INVALID_F_SPEED : _GPS_MPH_PER_KNOT * sk; } float TinyGPS::f_speed_mps() { float sk = f_speed_knots(); return sk == GPS_INVALID_F_SPEED ? GPS_INVALID_F_SPEED : _GPS_MPS_PER_KNOT * sk; } float TinyGPS::f_speed_kmph() { float sk = f_speed_knots(); return sk == GPS_INVALID_F_SPEED ? GPS_INVALID_F_SPEED : _GPS_KMPH_PER_KNOT * sk; } const float TinyGPS::GPS_INVALID_F_ANGLE = 1000.0; const float TinyGPS::GPS_INVALID_F_ALTITUDE = 1000000.0; const float TinyGPS::GPS_INVALID_F_SPEED = -1.0;