/* OctoWS2811 - High Performance WS2811 LED Display Library http://www.pjrc.com/teensy/td_libs_OctoWS2811.html Copyright (c) 2013 Paul Stoffregen, PJRC.COM, LLC Some Teensy-LC support contributed by Mark Baysinger. https://forum.pjrc.com/threads/40863-Teensy-LC-port-of-OctoWS2811 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "OctoWS2811.h" #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__) uint16_t OctoWS2811::stripLen; void * OctoWS2811::frameBuffer; void * OctoWS2811::drawBuffer; uint8_t OctoWS2811::params; DMAChannel OctoWS2811::dma1; DMAChannel OctoWS2811::dma2; DMAChannel OctoWS2811::dma3; static uint8_t ones = 0xFF; static volatile uint8_t update_in_progress = 0; static uint32_t update_completed_at = 0; OctoWS2811::OctoWS2811(uint32_t numPerStrip, void *frameBuf, void *drawBuf, uint8_t config) { stripLen = numPerStrip; frameBuffer = frameBuf; drawBuffer = drawBuf; params = config; } // Waveform timing: these set the high time for a 0 and 1 bit, as a fraction of // the total 800 kHz or 400 kHz clock cycle. The scale is 0 to 255. The Worldsemi // datasheet seems T1H should be 600 ns of a 1250 ns cycle, or 48%. That may // erroneous information? Other sources reason the chip actually samples the // line close to the center of each bit time, so T1H should be 80% if TOH is 20%. // The chips appear to work based on a simple one-shot delay triggered by the // rising edge. At least 1 chip tested retransmits 0 as a 330 ns pulse (26%) and // a 1 as a 660 ns pulse (53%). Perhaps it's actually sampling near 500 ns? // There doesn't seem to be any advantage to making T1H less, as long as there // is sufficient low time before the end of the cycle, so the next rising edge // can be detected. T0H has been lengthened slightly, because the pulse can // narrow if the DMA controller has extra latency during bus arbitration. If you // have an insight about tuning these parameters AND you have actually tested on // real LED strips, please contact paul@pjrc.com. Please do not email based only // on reading the datasheets and purely theoretical analysis. #define WS2811_TIMING_T0H 60 #define WS2811_TIMING_T1H 176 // Discussion about timing and flicker & color shift issues: // http://forum.pjrc.com/threads/23877-WS2812B-compatible-with-OctoWS2811-library?p=38190&viewfull=1#post38190 void OctoWS2811::begin(uint32_t numPerStrip, void *frameBuf, void *drawBuf, uint8_t config) { stripLen = numPerStrip; frameBuffer = frameBuf; drawBuffer = drawBuf; params = config; begin(); } void OctoWS2811::begin(void) { uint32_t bufsize, frequency; bufsize = stripLen*24; // set up the buffers memset(frameBuffer, 0, bufsize); if (drawBuffer) { memset(drawBuffer, 0, bufsize); } else { drawBuffer = frameBuffer; } // configure the 8 output pins GPIOD_PCOR = 0xFF; pinMode(2, OUTPUT); // strip #1 pinMode(14, OUTPUT); // strip #2 pinMode(7, OUTPUT); // strip #3 pinMode(8, OUTPUT); // strip #4 pinMode(6, OUTPUT); // strip #5 pinMode(20, OUTPUT); // strip #6 pinMode(21, OUTPUT); // strip #7 pinMode(5, OUTPUT); // strip #8 // create the two waveforms for WS2811 low and high bits switch (params & 0xF0) { case WS2811_400kHz: frequency = 400000; break; case WS2811_800kHz: frequency = 800000; break; case WS2813_800kHz: frequency = 800000; break; default: frequency = 800000; } #if defined(__MK20DX128__) FTM1_SC = 0; FTM1_CNT = 0; uint32_t mod = (F_BUS + frequency / 2) / frequency; FTM1_MOD = mod - 1; FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); FTM1_C0SC = 0x69; FTM1_C1SC = 0x69; FTM1_C0V = (mod * WS2811_TIMING_T0H) >> 8; FTM1_C1V = (mod * WS2811_TIMING_T1H) >> 8; // pin 16 triggers DMA(port B) on rising edge CORE_PIN16_CONFIG = PORT_PCR_IRQC(1)|PORT_PCR_MUX(3); //CORE_PIN4_CONFIG = PORT_PCR_MUX(3); // testing only #elif defined(__MK20DX256__) FTM2_SC = 0; FTM2_CNT = 0; uint32_t mod = (F_BUS + frequency / 2) / frequency; FTM2_MOD = mod - 1; FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); FTM2_C0SC = 0x69; FTM2_C1SC = 0x69; FTM2_C0V = (mod * WS2811_TIMING_T0H) >> 8; FTM2_C1V = (mod * WS2811_TIMING_T1H) >> 8; // pin 32 is FTM2_CH0, PTB18, triggers DMA(port B) on rising edge // pin 25 is FTM2_CH1, PTB19 CORE_PIN32_CONFIG = PORT_PCR_IRQC(1)|PORT_PCR_MUX(3); //CORE_PIN25_CONFIG = PORT_PCR_MUX(3); // testing only #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) FTM2_SC = 0; FTM2_CNT = 0; uint32_t mod = (F_BUS + frequency / 2) / frequency; FTM2_MOD = mod - 1; FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); FTM2_C0SC = 0x69; FTM2_C1SC = 0x69; FTM2_C0V = (mod * WS2811_TIMING_T0H) >> 8; FTM2_C1V = (mod * WS2811_TIMING_T1H) >> 8; // FTM2_CH0, PTA10 (not connected), triggers DMA(port A) on rising edge PORTA_PCR10 = PORT_PCR_IRQC(1)|PORT_PCR_MUX(3); #elif defined(__MKL26Z64__) FTM2_SC = 0; FTM2_CNT = 0; uint32_t mod = F_CPU / frequency; FTM2_MOD = mod - 1; FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); FTM2_C0SC = FTM_CSC_CHF | FTM_CSC_MSB | FTM_CSC_ELSB; FTM2_C1SC = FTM_CSC_CHF | FTM_CSC_MSB | FTM_CSC_ELSB; TPM2_C0V = mod - ((mod * WS2811_TIMING_T1H) >> 8); TPM2_C1V = mod - ((mod * WS2811_TIMING_T1H) >> 8) + ((mod * WS2811_TIMING_T0H) >> 8); #endif // DMA channel #1 sets WS2811 high at the beginning of each cycle dma1.source(ones); dma1.destination(GPIOD_PSOR); dma1.transferSize(1); dma1.transferCount(bufsize); dma1.disableOnCompletion(); // DMA channel #2 writes the pixel data at 23% of the cycle dma2.sourceBuffer((uint8_t *)frameBuffer, bufsize); dma2.destination(GPIOD_PDOR); dma2.transferSize(1); dma2.transferCount(bufsize); dma2.disableOnCompletion(); // DMA channel #3 clear all the pins low at 69% of the cycle dma3.source(ones); dma3.destination(GPIOD_PCOR); dma3.transferSize(1); dma3.transferCount(bufsize); dma3.disableOnCompletion(); dma3.interruptAtCompletion(); #if defined(__MK20DX128__) // route the edge detect interrupts to trigger the 3 channels dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_PORTB); dma2.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM1_CH0); dma3.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM1_CH1); DMAPriorityOrder(dma3, dma2, dma1); #elif defined(__MK20DX256__) // route the edge detect interrupts to trigger the 3 channels dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_PORTB); dma2.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM2_CH0); dma3.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM2_CH1); DMAPriorityOrder(dma3, dma2, dma1); #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // route the edge detect interrupts to trigger the 3 channels dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_PORTA); dma2.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM2_CH0); dma3.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM2_CH1); DMAPriorityOrder(dma3, dma2, dma1); #elif defined(__MKL26Z64__) // route the timer interrupts to trigger the 3 channels dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_TPM2_CH0); dma2.triggerAtHardwareEvent(DMAMUX_SOURCE_TPM2_CH1); dma3.triggerAtHardwareEvent(DMAMUX_SOURCE_FTM2_OV); #endif // enable a done interrupts when channel #3 completes dma3.attachInterrupt(isr); //pinMode(9, OUTPUT); // testing: oscilloscope trigger } void OctoWS2811::isr(void) { //digitalWriteFast(9, HIGH); //Serial1.print("."); //Serial1.println(dma3.CFG->DCR, HEX); //Serial1.print(dma3.CFG->DSR_BCR > 24, HEX); dma3.clearInterrupt(); #if defined(__MKL26Z64__) GPIOD_PCOR = 0xFF; #endif //Serial1.print("*"); update_completed_at = micros(); update_in_progress = 0; //digitalWriteFast(9, LOW); } int OctoWS2811::busy(void) { if (update_in_progress) return 1; // busy for 50 (or 300 for ws2813) us after the done interrupt, for WS2811 reset if (micros() - update_completed_at < 300) return 1; return 0; } void OctoWS2811::show(void) { // wait for any prior DMA operation //Serial1.print("1"); while (update_in_progress) ; //Serial1.print("2"); // it's ok to copy the drawing buffer to the frame buffer // during the 50us WS2811 reset time if (drawBuffer != frameBuffer) { // TODO: this could be faster with DMA, especially if the // buffers are 32 bit aligned... but does it matter? memcpy(frameBuffer, drawBuffer, stripLen * 24); } // wait for WS2811 reset while (micros() - update_completed_at < 300) ; // ok to start, but we must be very careful to begin // without any prior 3 x 800kHz DMA requests pending #if defined(__MK20DX128__) uint32_t cv = FTM1_C0V; noInterrupts(); // CAUTION: this code is timing critical. while (FTM1_CNT <= cv) ; while (FTM1_CNT > cv) ; // wait for beginning of an 800 kHz cycle while (FTM1_CNT < cv) ; FTM1_SC = 0; // stop FTM1 timer (hopefully before it rolls over) FTM1_CNT = 0; update_in_progress = 1; //digitalWriteFast(9, HIGH); // oscilloscope trigger PORTB_ISFR = (1<<0); // clear any prior rising edge uint32_t tmp __attribute__((unused)); FTM1_C0SC = 0x28; tmp = FTM1_C0SC; // clear any prior timer DMA triggers FTM1_C0SC = 0x69; FTM1_C1SC = 0x28; tmp = FTM1_C1SC; FTM1_C1SC = 0x69; dma1.enable(); dma2.enable(); // enable all 3 DMA channels dma3.enable(); FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); // restart FTM1 timer //digitalWriteFast(9, LOW); #elif defined(__MK20DX256__) FTM2_C0SC = 0x28; FTM2_C1SC = 0x28; uint32_t cv = FTM2_C0V; noInterrupts(); // CAUTION: this code is timing critical. while (FTM2_CNT <= cv) ; while (FTM2_CNT > cv) ; // wait for beginning of an 800 kHz cycle while (FTM2_CNT < cv) ; FTM2_SC = 0; // stop FTM2 timer (hopefully before it rolls over) FTM2_CNT = 0; update_in_progress = 1; //digitalWriteFast(9, HIGH); // oscilloscope trigger PORTB_ISFR = (1<<18); // clear any prior rising edge uint32_t tmp __attribute__((unused)); FTM2_C0SC = 0x28; tmp = FTM2_C0SC; // clear any prior timer DMA triggers FTM2_C0SC = 0x69; FTM2_C1SC = 0x28; tmp = FTM2_C1SC; FTM2_C1SC = 0x69; dma1.enable(); dma2.enable(); // enable all 3 DMA channels dma3.enable(); FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); // restart FTM2 timer //digitalWriteFast(9, LOW); #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) FTM2_C0SC = 0x28; FTM2_C1SC = 0x28; uint32_t cv = FTM2_C1V; noInterrupts(); // CAUTION: this code is timing critical. while (FTM2_CNT <= cv) ; while (FTM2_CNT > cv) ; // wait for beginning of an 800 kHz cycle while (FTM2_CNT < cv) ; FTM2_SC = 0; // stop FTM2 timer (hopefully before it rolls over) FTM2_CNT = 0; update_in_progress = 1; //digitalWriteFast(9, HIGH); // oscilloscope trigger #if defined(__MK64FX512__) asm("nop"); #endif PORTA_ISFR = (1<<10); // clear any prior rising edge uint32_t tmp __attribute__((unused)); FTM2_C0SC = 0x28; tmp = FTM2_C0SC; // clear any prior timer DMA triggers FTM2_C0SC = 0x69; FTM2_C1SC = 0x28; tmp = FTM2_C1SC; FTM2_C1SC = 0x69; dma1.enable(); dma2.enable(); // enable all 3 DMA channels dma3.enable(); FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0); // restart FTM2 timer //digitalWriteFast(9, LOW); #elif defined(__MKL26Z64__) uint32_t sc __attribute__((unused)) = FTM2_SC; uint32_t cv = FTM2_C1V; noInterrupts(); while (FTM2_CNT <= cv) ; while (FTM2_CNT > cv) ; // wait for beginning of an 800 kHz cycle while (FTM2_CNT < cv) ; FTM2_SC = 0; // stop FTM2 timer (hopefully before it rolls over) update_in_progress = 1; //digitalWriteFast(9, HIGH); // oscilloscope trigger dma1.clearComplete(); dma2.clearComplete(); dma3.clearComplete(); uint32_t bufsize = stripLen*24; dma1.transferCount(bufsize); dma2.transferCount(bufsize); dma3.transferCount(bufsize); dma2.sourceBuffer((uint8_t *)frameBuffer, bufsize); // clear any pending event flags FTM2_SC = FTM_SC_TOF; FTM2_C0SC = FTM_CSC_CHF | FTM_CSC_MSB | FTM_CSC_ELSB | FTM_CSC_DMA; FTM2_C1SC = FTM_CSC_CHF | FTM_CSC_MSB | FTM_CSC_ELSB | FTM_CSC_DMA; // clear any prior pending DMA requests dma1.enable(); dma2.enable(); // enable all 3 DMA channels dma3.enable(); FTM2_CNT = 0; // writing any value resets counter FTM2_SC = FTM_SC_DMA | FTM_SC_CLKS(1) | FTM_SC_PS(0); //digitalWriteFast(9, LOW); #endif //Serial1.print("3"); interrupts(); //Serial1.print("4"); } void OctoWS2811::setPixel(uint32_t num, int color) { uint32_t strip, offset, mask32, *p; switch (params & 7) { case WS2811_RBG: color = (color&0xFF0000) | ((color<<8)&0x00FF00) | ((color>>8)&0x0000FF); break; case WS2811_GRB: color = ((color<<8)&0xFF0000) | ((color>>8)&0x00FF00) | (color&0x0000FF); break; case WS2811_GBR: color = ((color<<16)&0xFF0000) | ((color>>8)&0x00FFFF); break; case WS2811_BRG: color = ((color<<8)&0xFFFF00) | ((color>>16)&0x0000FF); break; case WS2811_BGR: color = ((color<<16)&0xFF0000) | (color&0x00FF00) | ((color>>16)&0x0000FF); break; default: break; } strip = num / stripLen; // Cortex-M4 has 2 cycle unsigned divide :-) offset = num % stripLen; p = ((uint32_t *) drawBuffer) + offset * 6; mask32 = (0x01010101) << strip; // Set bytes 0-3 *p &= ~mask32; *p |= (((color & 0x800000) >> 23) | ((color & 0x400000) >> 14) | ((color & 0x200000) >> 5) | ((color & 0x100000) << 4)) << strip; // Set bytes 4-7 *++p &= ~mask32; *p |= (((color & 0x80000) >> 19) | ((color & 0x40000) >> 10) | ((color & 0x20000) >> 1) | ((color & 0x10000) << 8)) << strip; // Set bytes 8-11 *++p &= ~mask32; *p |= (((color & 0x8000) >> 15) | ((color & 0x4000) >> 6) | ((color & 0x2000) << 3) | ((color & 0x1000) << 12)) << strip; // Set bytes 12-15 *++p &= ~mask32; *p |= (((color & 0x800) >> 11) | ((color & 0x400) >> 2) | ((color & 0x200) << 7) | ((color & 0x100) << 16)) << strip; // Set bytes 16-19 *++p &= ~mask32; *p |= (((color & 0x80) >> 7) | ((color & 0x40) << 2) | ((color & 0x20) << 11) | ((color & 0x10) << 20)) << strip; // Set bytes 20-23 *++p &= ~mask32; *p |= (((color & 0x8) >> 3) | ((color & 0x4) << 6) | ((color & 0x2) << 15) | ((color & 0x1) << 24)) << strip; } int OctoWS2811::getPixel(uint32_t num) { uint32_t strip, offset, mask; uint8_t bit, *p; int color=0; strip = num / stripLen; offset = num % stripLen; bit = (1<>= 1) { if (*p++ & bit) color |= mask; } switch (params & 7) { case WS2811_RBG: color = (color&0xFF0000) | ((color<<8)&0x00FF00) | ((color>>8)&0x0000FF); break; case WS2811_GRB: color = ((color<<8)&0xFF0000) | ((color>>8)&0x00FF00) | (color&0x0000FF); break; case WS2811_GBR: color = ((color<<8)&0xFFFF00) | ((color>>16)&0x0000FF); break; case WS2811_BRG: color = ((color<<16)&0xFF0000) | ((color>>8)&0x00FFFF); break; case WS2811_BGR: color = ((color<<16)&0xFF0000) | (color&0x00FF00) | ((color>>16)&0x0000FF); break; default: break; } return color; } #endif // supported boards