// ArduinoCompat/HardwareSerial.cpp // // Author: mikem@airspayce.com #include #if (RH_PLATFORM == RH_PLATFORM_STM32STD) #include #include // Preinstantiated Serial objects HardwareSerial Serial1(USART1); HardwareSerial Serial2(USART2); HardwareSerial Serial3(USART3); HardwareSerial Serial4(UART4); HardwareSerial Serial5(UART5); HardwareSerial Serial6(USART6); /////////////////////////////////////////////////////////////// // RingBuffer /////////////////////////////////////////////////////////////// RingBuffer::RingBuffer() : _head(0), _tail(0), _overruns(0), _underruns(0) { } bool RingBuffer::isEmpty() { return _head == _tail; } bool RingBuffer::isFull() { return ((_head + 1) % ARDUINO_RINGBUFFER_SIZE) == _tail; } bool RingBuffer::write(uint8_t ch) { if (isFull()) { _overruns++; return false; } _buffer[_head] = ch; if (++_head >= ARDUINO_RINGBUFFER_SIZE) _head = 0; return true; } uint8_t RingBuffer::read() { if (isEmpty()) { _underruns++; return 0; // What else can we do? } uint8_t ret = _buffer[_tail]; if (++_tail >= ARDUINO_RINGBUFFER_SIZE) _tail = 0; return ret; } /////////////////////////////////////////////////////////////// // HardwareSerial /////////////////////////////////////////////////////////////// // On STM32F4 Discovery, USART 1 is not very useful conflicts with the Green lED HardwareSerial::HardwareSerial(USART_TypeDef* usart) : _usart(usart) { } void HardwareSerial::begin(unsigned long baud) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure_TX; GPIO_InitTypeDef GPIO_InitStructure_RX; // Common GPIO structure init: GPIO_InitStructure_TX.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure_TX.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure_TX.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure_TX.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure_RX.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure_RX.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure_RX.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure_RX.GPIO_PuPd = GPIO_PuPd_UP; // CTS or SCLK outputs are not supported. USART_InitStructure.USART_BaudRate = baud * 25/8; // Why? // Only 8N1 is currently supported USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // Different for each USART: if (_usart == USART1) { // Initialise the clocks for this USART and its RX, TX pins port RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1); GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1); GPIO_InitStructure_TX.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure_RX.GPIO_Pin = GPIO_Pin_10; GPIO_Init(GPIOA, &GPIO_InitStructure_TX); GPIO_Init(GPIOA, &GPIO_InitStructure_RX); // Initialise the USART USART_Init(USART1, &USART_InitStructure); // Enable the RXNE interrupt USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); // Enable global interrupt NVIC_EnableIRQ(USART1_IRQn); } else if (_usart == USART2) { // Initialise the clocks for this USART and its RX, TX pins port RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); GPIO_InitStructure_TX.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure_RX.GPIO_Pin = GPIO_Pin_3; GPIO_Init(GPIOA, &GPIO_InitStructure_TX); GPIO_Init(GPIOA, &GPIO_InitStructure_RX); // Initialise the USART USART_Init(USART2, &USART_InitStructure); // Enable the RXNE interrupt USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); // Enable global interrupt NVIC_EnableIRQ(USART2_IRQn); } else if (_usart == USART3) { // Initialise the clocks for this USART and its RX, TX pins port RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); GPIO_PinAFConfig(GPIOD, GPIO_PinSource8, GPIO_AF_USART3); GPIO_PinAFConfig(GPIOD, GPIO_PinSource9, GPIO_AF_USART3); GPIO_InitStructure_TX.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure_RX.GPIO_Pin = GPIO_Pin_9; GPIO_Init(GPIOD, &GPIO_InitStructure_TX); GPIO_Init(GPIOD, &GPIO_InitStructure_RX); // Initialise the USART USART_Init(USART3, &USART_InitStructure); // Enable the RXNE interrupt USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); // Enable global interrupt NVIC_EnableIRQ(USART3_IRQn); } else if (_usart == UART4) { // Initialise the clocks for this USART and its RX, TX pins port RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_PinAFConfig(GPIOA, GPIO_PinSource0, GPIO_AF_UART4); GPIO_PinAFConfig(GPIOA, GPIO_PinSource1, GPIO_AF_UART4); GPIO_InitStructure_TX.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure_RX.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOA, &GPIO_InitStructure_TX); GPIO_Init(GPIOA, &GPIO_InitStructure_RX); // Initialise the USART USART_Init(UART4, &USART_InitStructure); // Enable the RXNE interrupt USART_ITConfig(UART4, USART_IT_RXNE, ENABLE); // Enable global interrupt NVIC_EnableIRQ(UART4_IRQn); } else if (_usart == UART5) { // Initialise the clocks for this USART and its RX, TX pins port RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART5, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_UART5); GPIO_PinAFConfig(GPIOD, GPIO_PinSource2, GPIO_AF_UART5); GPIO_InitStructure_TX.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure_RX.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOC, &GPIO_InitStructure_TX); GPIO_Init(GPIOD, &GPIO_InitStructure_RX); // Initialise the USART USART_Init(UART5, &USART_InitStructure); // Enable the RXNE interrupt USART_ITConfig(UART5, USART_IT_RXNE, ENABLE); // Enable global interrupt NVIC_EnableIRQ(UART5_IRQn); } else if (_usart == USART6) { // Initialise the clocks for this USART and its RX, TX pins port RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART6, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); GPIO_PinAFConfig(GPIOC, GPIO_PinSource6, GPIO_AF_USART6); GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_USART6); GPIO_InitStructure_TX.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure_RX.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOC, &GPIO_InitStructure_TX); GPIO_Init(GPIOC, &GPIO_InitStructure_RX); // Initialise the USART USART_Init(USART6, &USART_InitStructure); // Enable the RXNE interrupt USART_ITConfig(USART6, USART_IT_RXNE, ENABLE); // Enable global interrupt NVIC_EnableIRQ(USART6_IRQn); } USART_Cmd(_usart, ENABLE); } void HardwareSerial::end() { USART_Cmd(_usart, DISABLE); USART_DeInit(_usart); } int HardwareSerial::available(void) { return !_rxRingBuffer.isEmpty(); } int HardwareSerial::read(void) { return _rxRingBuffer.read(); } size_t HardwareSerial::write(uint8_t ch) { _txRingBuffer.write(ch); // Queue it USART_ITConfig(_usart, USART_IT_TXE, ENABLE); // Enable the TX interrupt return 1; } extern "C" { void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { Serial1._rxRingBuffer.write(USART_ReceiveData(USART1)); } if (USART_GetITStatus(USART1, USART_IT_TXE) != RESET) { // Transmitter is empty, maybe send another char? if (Serial1._txRingBuffer.isEmpty()) USART_ITConfig(USART1, USART_IT_TXE, DISABLE); // No more to send, disable the TX interrupt else USART_SendData(USART1, Serial1._txRingBuffer.read()); } } void USART2_IRQHandler(void) { if (USART_GetITStatus(USART2, USART_IT_RXNE) != RESET) { // Newly received char, try to put it in our rx buffer Serial2._rxRingBuffer.write(USART_ReceiveData(USART2)); } if (USART_GetITStatus(USART2, USART_IT_TXE) != RESET) { // Transmitter is empty, maybe send another char? if (Serial2._txRingBuffer.isEmpty()) USART_ITConfig(USART2, USART_IT_TXE, DISABLE); // No more to send, disable the TX interrupt else USART_SendData(USART2, Serial2._txRingBuffer.read()); } } void USART3_IRQHandler(void) { if (USART_GetITStatus(USART3, USART_IT_RXNE) != RESET) { // Newly received char, try to put it in our rx buffer Serial3._rxRingBuffer.write(USART_ReceiveData(USART3)); } if (USART_GetITStatus(USART3, USART_IT_TXE) != RESET) { // Transmitter is empty, maybe send another char? if (Serial3._txRingBuffer.isEmpty()) USART_ITConfig(USART3, USART_IT_TXE, DISABLE); // No more to send, disable the TX interrupt else USART_SendData(USART3, Serial3._txRingBuffer.read()); } } void UART4_IRQHandler(void) { if (USART_GetITStatus(UART4, USART_IT_RXNE) != RESET) { // Newly received char, try to put it in our rx buffer Serial4._rxRingBuffer.write(USART_ReceiveData(UART4)); } if (USART_GetITStatus(UART4, USART_IT_TXE) != RESET) { // Transmitter is empty, maybe send another char? if (Serial4._txRingBuffer.isEmpty()) USART_ITConfig(UART4, USART_IT_TXE, DISABLE); // No more to send, disable the TX interrupt else USART_SendData(UART4, Serial4._txRingBuffer.read()); } } void UART5_IRQHandler(void) { if (USART_GetITStatus(UART5, USART_IT_RXNE) != RESET) { // Newly received char, try to put it in our rx buffer Serial5._rxRingBuffer.write(USART_ReceiveData(UART5)); } if (USART_GetITStatus(UART5, USART_IT_TXE) != RESET) { // Transmitter is empty, maybe send another char? if (Serial5._txRingBuffer.isEmpty()) USART_ITConfig(UART5, USART_IT_TXE, DISABLE); // No more to send, disable the TX interrupt else USART_SendData(UART5, Serial5._txRingBuffer.read()); } } void USART6_IRQHandler(void) { if (USART_GetITStatus(USART6, USART_IT_RXNE) != RESET) { // Newly received char, try to put it in our rx buffer Serial6._rxRingBuffer.write(USART_ReceiveData(USART6)); } if (USART_GetITStatus(USART6, USART_IT_TXE) != RESET) { // Transmitter is empty, maybe send another char? if (Serial6._txRingBuffer.isEmpty()) USART_ITConfig(USART6, USART_IT_TXE, DISABLE); // No more to send, disable the TX interrupt else USART_SendData(USART6, Serial6._txRingBuffer.read()); } } } #endif