// cc110_server.pde // -*- mode: C++ -*- // Example sketch showing how to create a simple messageing server // with the RH_CC110 class. RH_CC110 class does not provide for addressing or // reliability, so you should only use RH_CC110 if you do not need the higher // level messaging abilities. // It is designed to work with the other example cc110_client // Tested with Teensy 3.1 and Anaren 430BOOST-CC110L #include #include // Singleton instance of the radio driver RH_CC110 cc110; void setup() { Serial.begin(9600); while (!Serial) ; // wait for serial port to connect. Needed for native USB // CC110L may be equipped with either 26 or 27MHz crystals. You MUST // tell the driver if a 27MHz crystal is installed for the correct configuration to // occur. Failure to correctly set this flag will cause incorrect frequency and modulation // characteristics to be used. You can call this function, or pass it to the constructor cc110.setIs27MHz(true); // Anaren 430BOOST-CC110L Air BoosterPack test boards have 27MHz if (!cc110.init()) Serial.println("init failed"); // After init(), the following default values apply: // TxPower: TransmitPower5dBm // Frequency: 915.0 // Modulation: GFSK_Rb1_2Fd5_2 (GFSK, Data Rate: 1.2kBaud, Dev: 5.2kHz, RX BW 58kHz, optimised for sensitivity) // Sync Words: 0xd3, 0x91 // But you can change them: // cc110.setTxPower(RH_CC110::TransmitPowerM30dBm); // cc110.setModemConfig(RH_CC110::GFSK_Rb250Fd127); //cc110.setFrequency(928.0); } void loop() { if (cc110.available()) { // Should be a message for us now uint8_t buf[RH_CC110_MAX_MESSAGE_LEN]; uint8_t len = sizeof(buf); if (cc110.recv(buf, &len)) { // RH_CC110::printBuffer("request: ", buf, len); Serial.print("got request: "); Serial.println((char*)buf); // Serial.print("RSSI: "); // Serial.println(cc110.lastRssi(), DEC); // Send a reply uint8_t data[] = "And hello back to you"; cc110.send(data, sizeof(data)); cc110.waitPacketSent(); Serial.println("Sent a reply"); } else { Serial.println("recv failed"); } } }