|
- /*
- Copyright (c) 2007, Jim Studt (original old version - many contributors since)
-
- The latest version of this library may be found at:
- http://www.pjrc.com/teensy/td_libs_OneWire.html
-
- OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
- January 2010.
-
- DO NOT EMAIL for technical support, especially not for ESP chips!
- All project support questions must be posted on public forums
- relevant to the board or chips used. If using Arduino, post on
- Arduino's forum. If using ESP, post on the ESP community forums.
- There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
-
- Github's issue tracker for OneWire should be used only to report
- specific bugs. DO NOT request project support via Github. All
- project and tech support questions must be posted on forums, not
- github issues. If you experience a problem and you are not
- absolutely sure it's an issue with the library, ask on a forum
- first. Only use github to report issues after experts have
- confirmed the issue is with OneWire rather than your project.
-
- Back in 2010, OneWire was in need of many bug fixes, but had
- been abandoned the original author (Jim Studt). None of the known
- contributors were interested in maintaining OneWire. Paul typically
- works on OneWire every 6 to 12 months. Patches usually wait that
- long. If anyone is interested in more actively maintaining OneWire,
- please contact Paul (this is pretty much the only reason to use
- private email about OneWire).
-
- OneWire is now very mature code. No changes other than adding
- definitions for newer hardware support are anticipated.
-
- Version 2.3:
- Unknown chip fallback mode, Roger Clark
- Teensy-LC compatibility, Paul Stoffregen
- Search bug fix, Love Nystrom
-
- Version 2.2:
- Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
- Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
- Fix DS18B20 example negative temperature
- Fix DS18B20 example's low res modes, Ken Butcher
- Improve reset timing, Mark Tillotson
- Add const qualifiers, Bertrik Sikken
- Add initial value input to crc16, Bertrik Sikken
- Add target_search() function, Scott Roberts
-
- Version 2.1:
- Arduino 1.0 compatibility, Paul Stoffregen
- Improve temperature example, Paul Stoffregen
- DS250x_PROM example, Guillermo Lovato
- PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
- Improvements from Glenn Trewitt:
- - crc16() now works
- - check_crc16() does all of calculation/checking work.
- - Added read_bytes() and write_bytes(), to reduce tedious loops.
- - Added ds2408 example.
- Delete very old, out-of-date readme file (info is here)
-
- Version 2.0: Modifications by Paul Stoffregen, January 2010:
- http://www.pjrc.com/teensy/td_libs_OneWire.html
- Search fix from Robin James
- http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
- Use direct optimized I/O in all cases
- Disable interrupts during timing critical sections
- (this solves many random communication errors)
- Disable interrupts during read-modify-write I/O
- Reduce RAM consumption by eliminating unnecessary
- variables and trimming many to 8 bits
- Optimize both crc8 - table version moved to flash
-
- Modified to work with larger numbers of devices - avoids loop.
- Tested in Arduino 11 alpha with 12 sensors.
- 26 Sept 2008 -- Robin James
- http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
-
- Updated to work with arduino-0008 and to include skip() as of
- 2007/07/06. --RJL20
-
- Modified to calculate the 8-bit CRC directly, avoiding the need for
- the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
- -- Tom Pollard, Jan 23, 2008
-
- Jim Studt's original library was modified by Josh Larios.
-
- Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
-
- Permission is hereby granted, free of charge, to any person obtaining
- a copy of this software and associated documentation files (the
- "Software"), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to
- permit persons to whom the Software is furnished to do so, subject to
- the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
- Much of the code was inspired by Derek Yerger's code, though I don't
- think much of that remains. In any event that was..
- (copyleft) 2006 by Derek Yerger - Free to distribute freely.
-
- The CRC code was excerpted and inspired by the Dallas Semiconductor
- sample code bearing this copyright.
- //---------------------------------------------------------------------------
- // Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
- //
- // Permission is hereby granted, free of charge, to any person obtaining a
- // copy of this software and associated documentation files (the "Software"),
- // to deal in the Software without restriction, including without limitation
- // the rights to use, copy, modify, merge, publish, distribute, sublicense,
- // and/or sell copies of the Software, and to permit persons to whom the
- // Software is furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included
- // in all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- // IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
- // OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- // OTHER DEALINGS IN THE SOFTWARE.
- //
- // Except as contained in this notice, the name of Dallas Semiconductor
- // shall not be used except as stated in the Dallas Semiconductor
- // Branding Policy.
- //--------------------------------------------------------------------------
- */
-
- #include <Arduino.h>
- #include "OneWire.h"
- #include "util/OneWire_direct_gpio.h"
-
-
- void OneWire::begin(uint8_t pin)
- {
- pinMode(pin, INPUT);
- bitmask = PIN_TO_BITMASK(pin);
- baseReg = PIN_TO_BASEREG(pin);
- #if ONEWIRE_SEARCH
- reset_search();
- #endif
- }
-
-
- // Perform the onewire reset function. We will wait up to 250uS for
- // the bus to come high, if it doesn't then it is broken or shorted
- // and we return a 0;
- //
- // Returns 1 if a device asserted a presence pulse, 0 otherwise.
- //
- uint8_t OneWire::reset(void)
- {
- IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
- volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
- uint8_t r;
- uint8_t retries = 125;
-
- noInterrupts();
- DIRECT_MODE_INPUT(reg, mask);
- interrupts();
- // wait until the wire is high... just in case
- do {
- if (--retries == 0) return 0;
- delayMicroseconds(2);
- } while ( !DIRECT_READ(reg, mask));
-
- noInterrupts();
- DIRECT_WRITE_LOW(reg, mask);
- DIRECT_MODE_OUTPUT(reg, mask); // drive output low
- interrupts();
- delayMicroseconds(480);
- noInterrupts();
- DIRECT_MODE_INPUT(reg, mask); // allow it to float
- delayMicroseconds(70);
- r = !DIRECT_READ(reg, mask);
- interrupts();
- delayMicroseconds(410);
- return r;
- }
-
- //
- // Write a bit. Port and bit is used to cut lookup time and provide
- // more certain timing.
- //
- void OneWire::write_bit(uint8_t v)
- {
- IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
- volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
-
- if (v & 1) {
- noInterrupts();
- DIRECT_WRITE_LOW(reg, mask);
- DIRECT_MODE_OUTPUT(reg, mask); // drive output low
- delayMicroseconds(10);
- DIRECT_WRITE_HIGH(reg, mask); // drive output high
- interrupts();
- delayMicroseconds(55);
- } else {
- noInterrupts();
- DIRECT_WRITE_LOW(reg, mask);
- DIRECT_MODE_OUTPUT(reg, mask); // drive output low
- delayMicroseconds(65);
- DIRECT_WRITE_HIGH(reg, mask); // drive output high
- interrupts();
- delayMicroseconds(5);
- }
- }
-
- //
- // Read a bit. Port and bit is used to cut lookup time and provide
- // more certain timing.
- //
- uint8_t OneWire::read_bit(void)
- {
- IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
- volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
- uint8_t r;
-
- noInterrupts();
- DIRECT_MODE_OUTPUT(reg, mask);
- DIRECT_WRITE_LOW(reg, mask);
- delayMicroseconds(3);
- DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
- delayMicroseconds(10);
- r = DIRECT_READ(reg, mask);
- interrupts();
- delayMicroseconds(53);
- return r;
- }
-
- //
- // Write a byte. The writing code uses the active drivers to raise the
- // pin high, if you need power after the write (e.g. DS18S20 in
- // parasite power mode) then set 'power' to 1, otherwise the pin will
- // go tri-state at the end of the write to avoid heating in a short or
- // other mishap.
- //
- void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
- uint8_t bitMask;
-
- for (bitMask = 0x01; bitMask; bitMask <<= 1) {
- OneWire::write_bit( (bitMask & v)?1:0);
- }
- if ( !power) {
- noInterrupts();
- DIRECT_MODE_INPUT(baseReg, bitmask);
- DIRECT_WRITE_LOW(baseReg, bitmask);
- interrupts();
- }
- }
-
- void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
- for (uint16_t i = 0 ; i < count ; i++)
- write(buf[i]);
- if (!power) {
- noInterrupts();
- DIRECT_MODE_INPUT(baseReg, bitmask);
- DIRECT_WRITE_LOW(baseReg, bitmask);
- interrupts();
- }
- }
-
- //
- // Read a byte
- //
- uint8_t OneWire::read() {
- uint8_t bitMask;
- uint8_t r = 0;
-
- for (bitMask = 0x01; bitMask; bitMask <<= 1) {
- if ( OneWire::read_bit()) r |= bitMask;
- }
- return r;
- }
-
- void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
- for (uint16_t i = 0 ; i < count ; i++)
- buf[i] = read();
- }
-
- //
- // Do a ROM select
- //
- void OneWire::select(const uint8_t rom[8])
- {
- uint8_t i;
-
- write(0x55); // Choose ROM
-
- for (i = 0; i < 8; i++) write(rom[i]);
- }
-
- //
- // Do a ROM skip
- //
- void OneWire::skip()
- {
- write(0xCC); // Skip ROM
- }
-
- void OneWire::depower()
- {
- noInterrupts();
- DIRECT_MODE_INPUT(baseReg, bitmask);
- interrupts();
- }
-
- #if ONEWIRE_SEARCH
-
- //
- // You need to use this function to start a search again from the beginning.
- // You do not need to do it for the first search, though you could.
- //
- void OneWire::reset_search()
- {
- // reset the search state
- LastDiscrepancy = 0;
- LastDeviceFlag = false;
- LastFamilyDiscrepancy = 0;
- for(int i = 7; ; i--) {
- ROM_NO[i] = 0;
- if ( i == 0) break;
- }
- }
-
- // Setup the search to find the device type 'family_code' on the next call
- // to search(*newAddr) if it is present.
- //
- void OneWire::target_search(uint8_t family_code)
- {
- // set the search state to find SearchFamily type devices
- ROM_NO[0] = family_code;
- for (uint8_t i = 1; i < 8; i++)
- ROM_NO[i] = 0;
- LastDiscrepancy = 64;
- LastFamilyDiscrepancy = 0;
- LastDeviceFlag = false;
- }
-
- //
- // Perform a search. If this function returns a '1' then it has
- // enumerated the next device and you may retrieve the ROM from the
- // OneWire::address variable. If there are no devices, no further
- // devices, or something horrible happens in the middle of the
- // enumeration then a 0 is returned. If a new device is found then
- // its address is copied to newAddr. Use OneWire::reset_search() to
- // start over.
- //
- // --- Replaced by the one from the Dallas Semiconductor web site ---
- //--------------------------------------------------------------------------
- // Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
- // search state.
- // Return TRUE : device found, ROM number in ROM_NO buffer
- // FALSE : device not found, end of search
- //
- bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
- {
- uint8_t id_bit_number;
- uint8_t last_zero, rom_byte_number;
- bool search_result;
- uint8_t id_bit, cmp_id_bit;
-
- unsigned char rom_byte_mask, search_direction;
-
- // initialize for search
- id_bit_number = 1;
- last_zero = 0;
- rom_byte_number = 0;
- rom_byte_mask = 1;
- search_result = false;
-
- // if the last call was not the last one
- if (!LastDeviceFlag) {
- // 1-Wire reset
- if (!reset()) {
- // reset the search
- LastDiscrepancy = 0;
- LastDeviceFlag = false;
- LastFamilyDiscrepancy = 0;
- return false;
- }
-
- // issue the search command
- if (search_mode == true) {
- write(0xF0); // NORMAL SEARCH
- } else {
- write(0xEC); // CONDITIONAL SEARCH
- }
-
- // loop to do the search
- do
- {
- // read a bit and its complement
- id_bit = read_bit();
- cmp_id_bit = read_bit();
-
- // check for no devices on 1-wire
- if ((id_bit == 1) && (cmp_id_bit == 1)) {
- break;
- } else {
- // all devices coupled have 0 or 1
- if (id_bit != cmp_id_bit) {
- search_direction = id_bit; // bit write value for search
- } else {
- // if this discrepancy if before the Last Discrepancy
- // on a previous next then pick the same as last time
- if (id_bit_number < LastDiscrepancy) {
- search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
- } else {
- // if equal to last pick 1, if not then pick 0
- search_direction = (id_bit_number == LastDiscrepancy);
- }
- // if 0 was picked then record its position in LastZero
- if (search_direction == 0) {
- last_zero = id_bit_number;
-
- // check for Last discrepancy in family
- if (last_zero < 9)
- LastFamilyDiscrepancy = last_zero;
- }
- }
-
- // set or clear the bit in the ROM byte rom_byte_number
- // with mask rom_byte_mask
- if (search_direction == 1)
- ROM_NO[rom_byte_number] |= rom_byte_mask;
- else
- ROM_NO[rom_byte_number] &= ~rom_byte_mask;
-
- // serial number search direction write bit
- write_bit(search_direction);
-
- // increment the byte counter id_bit_number
- // and shift the mask rom_byte_mask
- id_bit_number++;
- rom_byte_mask <<= 1;
-
- // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
- if (rom_byte_mask == 0) {
- rom_byte_number++;
- rom_byte_mask = 1;
- }
- }
- }
- while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
-
- // if the search was successful then
- if (!(id_bit_number < 65)) {
- // search successful so set LastDiscrepancy,LastDeviceFlag,search_result
- LastDiscrepancy = last_zero;
-
- // check for last device
- if (LastDiscrepancy == 0) {
- LastDeviceFlag = true;
- }
- search_result = true;
- }
- }
-
- // if no device found then reset counters so next 'search' will be like a first
- if (!search_result || !ROM_NO[0]) {
- LastDiscrepancy = 0;
- LastDeviceFlag = false;
- LastFamilyDiscrepancy = 0;
- search_result = false;
- } else {
- for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
- }
- return search_result;
- }
-
- #endif
-
- #if ONEWIRE_CRC
- // The 1-Wire CRC scheme is described in Maxim Application Note 27:
- // "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
- //
-
- #if ONEWIRE_CRC8_TABLE
- // Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0
- // Tiny 2x16 entry CRC table created by Arjen Lentz
- // See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table
- static const uint8_t PROGMEM dscrc2x16_table[] = {
- 0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83,
- 0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41,
- 0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8,
- 0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74
- };
-
- // Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
- // and the registers. (Use tiny 2x16 entry CRC table)
- uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
- {
- uint8_t crc = 0;
-
- while (len--) {
- crc = *addr++ ^ crc; // just re-using crc as intermediate
- crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^
- pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f));
- }
-
- return crc;
- }
- #else
- //
- // Compute a Dallas Semiconductor 8 bit CRC directly.
- // this is much slower, but a little smaller, than the lookup table.
- //
- uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
- {
- uint8_t crc = 0;
-
- while (len--) {
- #if defined(__AVR__)
- crc = _crc_ibutton_update(crc, *addr++);
- #else
- uint8_t inbyte = *addr++;
- for (uint8_t i = 8; i; i--) {
- uint8_t mix = (crc ^ inbyte) & 0x01;
- crc >>= 1;
- if (mix) crc ^= 0x8C;
- inbyte >>= 1;
- }
- #endif
- }
- return crc;
- }
- #endif
-
- #if ONEWIRE_CRC16
- bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
- {
- crc = ~crc16(input, len, crc);
- return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
- }
-
- uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
- {
- #if defined(__AVR__)
- for (uint16_t i = 0 ; i < len ; i++) {
- crc = _crc16_update(crc, input[i]);
- }
- #else
- static const uint8_t oddparity[16] =
- { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
-
- for (uint16_t i = 0 ; i < len ; i++) {
- // Even though we're just copying a byte from the input,
- // we'll be doing 16-bit computation with it.
- uint16_t cdata = input[i];
- cdata = (cdata ^ crc) & 0xff;
- crc >>= 8;
-
- if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
- crc ^= 0xC001;
-
- cdata <<= 6;
- crc ^= cdata;
- cdata <<= 1;
- crc ^= cdata;
- }
- #endif
- return crc;
- }
- #endif
-
- #endif
|