PlatformIO package of the Teensy core framework compatible with GCC 10 & C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

201 satır
7.6KB

  1. //******************************************************************************
  2. // IRremote
  3. // Version 2.0.1 June, 2015
  4. // Copyright 2009 Ken Shirriff
  5. // For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
  6. //
  7. // Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
  8. // Modified by Mitra Ardron <mitra@mitra.biz>
  9. // Added Sanyo and Mitsubishi controllers
  10. // Modified Sony to spot the repeat codes that some Sony's send
  11. //
  12. // Interrupt code based on NECIRrcv by Joe Knapp
  13. // http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
  14. // Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
  15. //
  16. // JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
  17. // LG added by Darryl Smith (based on the JVC protocol)
  18. // Whynter A/C ARC-110WD added by Francesco Meschia
  19. //******************************************************************************
  20. // Defining IR_GLOBAL here allows us to declare the instantiation of global variables
  21. #define IR_GLOBAL
  22. # include "IRremote.h"
  23. # include "IRremoteInt.h"
  24. #undef IR_GLOBAL
  25. #ifndef IR_TIMER_USE_ESP32
  26. #include <avr/interrupt.h>
  27. #endif
  28. //+=============================================================================
  29. // The match functions were (apparently) originally MACROs to improve code speed
  30. // (although this would have bloated the code) hence the names being CAPS
  31. // A later release implemented debug output and so they needed to be converted
  32. // to functions.
  33. // I tried to implement a dual-compile mode (DEBUG/non-DEBUG) but for some
  34. // reason, no matter what I did I could not get them to function as macros again.
  35. // I have found a *lot* of bugs in the Arduino compiler over the last few weeks,
  36. // and I am currently assuming that one of these bugs is my problem.
  37. // I may revisit this code at a later date and look at the assembler produced
  38. // in a hope of finding out what is going on, but for now they will remain as
  39. // functions even in non-DEBUG mode
  40. //
  41. int MATCH (int measured, int desired)
  42. {
  43. DBG_PRINT(F("Testing: "));
  44. DBG_PRINT(TICKS_LOW(desired), DEC);
  45. DBG_PRINT(F(" <= "));
  46. DBG_PRINT(measured, DEC);
  47. DBG_PRINT(F(" <= "));
  48. DBG_PRINT(TICKS_HIGH(desired), DEC);
  49. bool passed = ((measured >= TICKS_LOW(desired)) && (measured <= TICKS_HIGH(desired)));
  50. if (passed)
  51. DBG_PRINTLN(F("?; passed"));
  52. else
  53. DBG_PRINTLN(F("?; FAILED"));
  54. return passed;
  55. }
  56. //+========================================================
  57. // Due to sensor lag, when received, Marks tend to be 100us too long
  58. //
  59. int MATCH_MARK (int measured_ticks, int desired_us)
  60. {
  61. DBG_PRINT(F("Testing mark (actual vs desired): "));
  62. DBG_PRINT(measured_ticks * USECPERTICK, DEC);
  63. DBG_PRINT(F("us vs "));
  64. DBG_PRINT(desired_us, DEC);
  65. DBG_PRINT("us");
  66. DBG_PRINT(": ");
  67. DBG_PRINT(TICKS_LOW(desired_us + MARK_EXCESS) * USECPERTICK, DEC);
  68. DBG_PRINT(F(" <= "));
  69. DBG_PRINT(measured_ticks * USECPERTICK, DEC);
  70. DBG_PRINT(F(" <= "));
  71. DBG_PRINT(TICKS_HIGH(desired_us + MARK_EXCESS) * USECPERTICK, DEC);
  72. bool passed = ((measured_ticks >= TICKS_LOW (desired_us + MARK_EXCESS))
  73. && (measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS)));
  74. if (passed)
  75. DBG_PRINTLN(F("?; passed"));
  76. else
  77. DBG_PRINTLN(F("?; FAILED"));
  78. return passed;
  79. }
  80. //+========================================================
  81. // Due to sensor lag, when received, Spaces tend to be 100us too short
  82. //
  83. int MATCH_SPACE (int measured_ticks, int desired_us)
  84. {
  85. DBG_PRINT(F("Testing space (actual vs desired): "));
  86. DBG_PRINT(measured_ticks * USECPERTICK, DEC);
  87. DBG_PRINT(F("us vs "));
  88. DBG_PRINT(desired_us, DEC);
  89. DBG_PRINT("us");
  90. DBG_PRINT(": ");
  91. DBG_PRINT(TICKS_LOW(desired_us - MARK_EXCESS) * USECPERTICK, DEC);
  92. DBG_PRINT(F(" <= "));
  93. DBG_PRINT(measured_ticks * USECPERTICK, DEC);
  94. DBG_PRINT(F(" <= "));
  95. DBG_PRINT(TICKS_HIGH(desired_us - MARK_EXCESS) * USECPERTICK, DEC);
  96. bool passed = ((measured_ticks >= TICKS_LOW (desired_us - MARK_EXCESS))
  97. && (measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS)));
  98. if (passed)
  99. DBG_PRINTLN(F("?; passed"));
  100. else
  101. DBG_PRINTLN(F("?; FAILED"));
  102. return passed;
  103. }
  104. //+=============================================================================
  105. // Interrupt Service Routine - Fires every 50uS
  106. // TIMER2 interrupt code to collect raw data.
  107. // Widths of alternating SPACE, MARK are recorded in rawbuf.
  108. // Recorded in ticks of 50uS [microseconds, 0.000050 seconds]
  109. // 'rawlen' counts the number of entries recorded so far.
  110. // First entry is the SPACE between transmissions.
  111. // As soon as a the first [SPACE] entry gets long:
  112. // Ready is set; State switches to IDLE; Timing of SPACE continues.
  113. // As soon as first MARK arrives:
  114. // Gap width is recorded; Ready is cleared; New logging starts
  115. //
  116. #ifdef IR_TIMER_USE_ESP32
  117. void IRTimer()
  118. #else
  119. ISR (TIMER_INTR_NAME)
  120. #endif
  121. {
  122. TIMER_RESET;
  123. // Read if IR Receiver -> SPACE [xmt LED off] or a MARK [xmt LED on]
  124. // digitalRead() is very slow. Optimisation is possible, but makes the code unportable
  125. uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
  126. irparams.timer++; // One more 50uS tick
  127. if (irparams.rawlen >= RAWBUF) irparams.rcvstate = STATE_OVERFLOW ; // Buffer overflow
  128. switch(irparams.rcvstate) {
  129. //......................................................................
  130. case STATE_IDLE: // In the middle of a gap
  131. if (irdata == MARK) {
  132. if (irparams.timer < GAP_TICKS) { // Not big enough to be a gap.
  133. irparams.timer = 0;
  134. } else {
  135. // Gap just ended; Record duration; Start recording transmission
  136. irparams.overflow = false;
  137. irparams.rawlen = 0;
  138. irparams.rawbuf[irparams.rawlen++] = irparams.timer;
  139. irparams.timer = 0;
  140. irparams.rcvstate = STATE_MARK;
  141. }
  142. }
  143. break;
  144. //......................................................................
  145. case STATE_MARK: // Timing Mark
  146. if (irdata == SPACE) { // Mark ended; Record time
  147. irparams.rawbuf[irparams.rawlen++] = irparams.timer;
  148. irparams.timer = 0;
  149. irparams.rcvstate = STATE_SPACE;
  150. }
  151. break;
  152. //......................................................................
  153. case STATE_SPACE: // Timing Space
  154. if (irdata == MARK) { // Space just ended; Record time
  155. irparams.rawbuf[irparams.rawlen++] = irparams.timer;
  156. irparams.timer = 0;
  157. irparams.rcvstate = STATE_MARK;
  158. } else if (irparams.timer > GAP_TICKS) { // Space
  159. // A long Space, indicates gap between codes
  160. // Flag the current code as ready for processing
  161. // Switch to STOP
  162. // Don't reset timer; keep counting Space width
  163. irparams.rcvstate = STATE_STOP;
  164. }
  165. break;
  166. //......................................................................
  167. case STATE_STOP: // Waiting; Measuring Gap
  168. if (irdata == MARK) irparams.timer = 0 ; // Reset gap timer
  169. break;
  170. //......................................................................
  171. case STATE_OVERFLOW: // Flag up a read overflow; Stop the State Machine
  172. irparams.overflow = true;
  173. irparams.rcvstate = STATE_STOP;
  174. break;
  175. }
  176. // If requested, flash LED while receiving IR data
  177. if (irparams.blinkflag) {
  178. if (irdata == MARK)
  179. if (irparams.blinkpin) digitalWrite(irparams.blinkpin, HIGH); // Turn user defined pin LED on
  180. else BLINKLED_ON() ; // if no user defined LED pin, turn default LED pin for the hardware on
  181. else if (irparams.blinkpin) digitalWrite(irparams.blinkpin, LOW); // Turn user defined pin LED on
  182. else BLINKLED_OFF() ; // if no user defined LED pin, turn default LED pin for the hardware on
  183. }
  184. }