|
- // Copyright (c) 2014, Freescale Semiconductor, Inc.
- // All rights reserved.
- // vim: set ts=4:
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright
- // notice, this list of conditions and the following disclaimer in the
- // documentation and/or other materials provided with the distribution.
- // * Neither the name of Freescale Semiconductor, Inc. nor the
- // names of its contributors may be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- // DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR ANY
- // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- // This is the file that contains the fusion routines. It is STRONGLY RECOMMENDED
- // that the casual developer NOT TOUCH THIS FILE. The mathematics behind this file
- // is extremely complex, and it will be very easy (almost inevitable) that you screw
- // it up.
- //
-
- #include "NXPMotionSense.h"
-
- // kalman filter noise variances
- #define FQVA_9DOF_GBY_KALMAN 2E-6F // accelerometer noise g^2 so 1.4mg RMS
- #define FQVM_9DOF_GBY_KALMAN 0.1F // magnetometer noise uT^2
- #define FQVG_9DOF_GBY_KALMAN 0.3F // gyro noise (deg/s)^2
- #define FQWB_9DOF_GBY_KALMAN 1E-9F // gyro offset drift (deg/s)^2: 1E-9 implies 0.09deg/s max at 50Hz
- #define FQWA_9DOF_GBY_KALMAN 1E-4F // linear acceleration drift g^2 (increase slows convergence to g but reduces sensitivity to shake)
- #define FQWD_9DOF_GBY_KALMAN 0.5F // magnetic disturbance drift uT^2 (increase slows convergence to B but reduces sensitivity to magnet)
- // initialization of Qw covariance matrix
- #define FQWINITTHTH_9DOF_GBY_KALMAN 2000E-5F // th_e * th_e terms
- #define FQWINITBB_9DOF_GBY_KALMAN 250E-3F // b_e * b_e terms
- #define FQWINITTHB_9DOF_GBY_KALMAN 0.0F // th_e * b_e terms
- #define FQWINITAA_9DOF_GBY_KALMAN 10E-5F // a_e * a_e terms (increase slows convergence to g but reduces sensitivity to shake)
- #define FQWINITDD_9DOF_GBY_KALMAN 600E-3F // d_e * d_e terms (increase slows convergence to B but reduces sensitivity to magnet)
- // linear acceleration and magnetic disturbance time constants
- #define FCA_9DOF_GBY_KALMAN 0.5F // linear acceleration decay factor
- #define FCD_9DOF_GBY_KALMAN 0.5F // magnetic disturbance decay factor
- // maximum geomagnetic inclination angle tracked by Kalman filter
- #define SINDELTAMAX 0.9063078F // sin of max +ve geomagnetic inclination angle: here 65.0 deg
- #define COSDELTAMAX 0.4226183F // cos of max +ve geomagnetic inclination angle: here 65.0 deg
- #define DEFAULTB 50.0F // default geomagnetic field (uT)
- #define X 0 // vector components
- #define Y 1
- #define Z 2
- #define FDEGTORAD 0.01745329251994F // degrees to radians conversion = pi / 180
- #define FRADTODEG 57.2957795130823F // radians to degrees conversion = 180 / pi
- #define ONEOVER48 0.02083333333F // 1 / 48
- #define ONEOVER3840 0.0002604166667F // 1 / 3840
-
-
- #define Quaternion_t NXPSensorFusion::Quaternion_t
-
- static void fqAeq1(Quaternion_t *pqA);
- static void feCompassNED(float fR[][3], float *pfDelta, const float fBc[], const float fGp[]);
- static void fNEDAnglesDegFromRotationMatrix(float R[][3], float *pfPhiDeg,
- float *pfTheDeg, float *pfPsiDeg, float *pfRhoDeg, float *pfChiDeg);
- static void fQuaternionFromRotationMatrix(float R[][3], Quaternion_t *pq);
- static void fQuaternionFromRotationVectorDeg(Quaternion_t *pq, const float rvecdeg[], float fscaling);
- static void fRotationMatrixFromQuaternion(float R[][3], const Quaternion_t *pq);
- static void fRotationVectorDegFromQuaternion(Quaternion_t *pq, float rvecdeg[]);
- static void qAeqAxB(Quaternion_t *pqA, const Quaternion_t *pqB);
- static void qAeqBxC(Quaternion_t *pqA, const Quaternion_t *pqB, const Quaternion_t *pqC);
- //static Quaternion_t qconjgAxB(const Quaternion_t *pqA, const Quaternion_t *pqB);
- static void fqAeqNormqA(Quaternion_t *pqA);
- static float fasin_deg(float x);
- static float facos_deg(float x);
- static float fatan_deg(float x);
- static float fatan2_deg(float y, float x);
- static float fatan_15deg(float x);
-
- extern "C"{
- void f3x3matrixAeqI(float A[][3]);
- void fmatrixAeqI(float *A[], int16_t rc);
- void f3x3matrixAeqScalar(float A[][3], float Scalar);
- void f3x3matrixAeqInvSymB(float A[][3], float B[][3]);
- void f3x3matrixAeqAxScalar(float A[][3], float Scalar);
- void f3x3matrixAeqMinusA(float A[][3]);
- float f3x3matrixDetA(float A[][3]);
- void eigencompute(float A[][10], float eigval[], float eigvec[][10], int8_t n);
- void fmatrixAeqInvA(float *A[], int8_t iColInd[], int8_t iRowInd[], int8_t iPivot[], int8_t isize);
- void fmatrixAeqRenormRotA(float A[][3]);
- }
-
-
- // initialize the 9DOF Kalman filter
- void NXPSensorFusion::begin(float sampleRate)
- {
- int8_t i, j;
-
- // reset the flag denoting that a first 9DOF orientation lock has been achieved
- FirstOrientationLock = 0;
-
- // compute and store useful product terms to save floating point calculations later
- Fastdeltat = 1.0f / sampleRate;
- deltat = Fastdeltat;
- deltatsq = deltat * deltat;
- casq = FCA_9DOF_GBY_KALMAN * FCA_9DOF_GBY_KALMAN;
- cdsq = FCD_9DOF_GBY_KALMAN * FCD_9DOF_GBY_KALMAN;
- QwbplusQvG = FQWB_9DOF_GBY_KALMAN + FQVG_9DOF_GBY_KALMAN;
-
- // initialize the fixed entries in the measurement matrix C
- for (i = 0; i < 6; i++) {
- for (j = 0; j < 12; j++) {
- C6x12[i][j]= 0.0F;
- }
- }
- C6x12[0][6] = C6x12[1][7] = C6x12[2][8] = 1.0F;
- C6x12[3][9] = C6x12[4][10] = C6x12[5][11] = -1.0F;
-
- // zero a posteriori orientation, error vector xe+ (thetae+, be+, de+, ae+) and b+ and inertial
- f3x3matrixAeqI(RPl);
- fqAeq1(&qPl);
- for (i = X; i <= Z; i++) {
- ThErrPl[i] = bErrPl[i] = aErrSePl[i] = dErrSePl[i] = bPl[i] = 0.0F;
- }
-
- // initialize the reference geomagnetic vector (uT, global frame)
- DeltaPl = 0.0F;
- // initialize NED geomagnetic vector to zero degrees inclination
- mGl[X] = DEFAULTB;
- mGl[Y] = 0.0F;
- mGl[Z] = 0.0F;
-
- // initialize noise variances for Qv and Qw matrix updates
- QvAA = FQVA_9DOF_GBY_KALMAN + FQWA_9DOF_GBY_KALMAN +
- FDEGTORAD * FDEGTORAD * deltatsq * (FQWB_9DOF_GBY_KALMAN + FQVG_9DOF_GBY_KALMAN);
- QvMM = FQVM_9DOF_GBY_KALMAN + FQWD_9DOF_GBY_KALMAN +
- FDEGTORAD * FDEGTORAD * deltatsq * DEFAULTB * DEFAULTB *
- (FQWB_9DOF_GBY_KALMAN + FQVG_9DOF_GBY_KALMAN);
-
- // initialize the 12x12 noise covariance matrix Qw of the a priori error vector xe-
- // Qw is then recursively updated as P+ = (1 - K * C) * P- = (1 - K * C) * Qw and Qw
- // updated from P+
- // zero the matrix Qw
- for (i = 0; i < 12; i++) {
- for (j = 0; j < 12; j++) {
- Qw12x12[i][j] = 0.0F;
- }
- }
- // loop over non-zero values
- for (i = 0; i < 3; i++) {
- // theta_e * theta_e terms
- Qw12x12[i][i] = FQWINITTHTH_9DOF_GBY_KALMAN;
- // b_e * b_e terms
- Qw12x12[i + 3][i + 3] = FQWINITBB_9DOF_GBY_KALMAN;
- // th_e * b_e terms
- Qw12x12[i][i + 3] = Qw12x12[i + 3][i] = FQWINITTHB_9DOF_GBY_KALMAN;
- // a_e * a_e terms
- Qw12x12[i + 6][i + 6] = FQWINITAA_9DOF_GBY_KALMAN;
- // d_e * d_e terms
- Qw12x12[i + 9][i + 9] = FQWINITDD_9DOF_GBY_KALMAN;
- }
-
- // clear the reset flag
- resetflag = 0;
- }
-
-
-
-
- // 9DOF orientation function implemented using a 12 element Kalman filter
- //void fRun_9DOF_GBY_KALMAN(SV_9DOF_GBY_KALMAN_t *SV,
- //const AccelSensor_t *Accel, const MagSensor_t *Mag, const GyroSensor_t *Gyro,
- //const MagCalibration_t *MagCal)
-
- void NXPSensorFusion::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz)
- {
- float Accel[3]={ax, ay, az}; // Accel
- float Yp[3]={gx, gy, gz}; // Gryo
- float Mag[3]={mx, my, mz}; // Mag
-
- // local scalars and arrays
- float fopp, fadj, fhyp; // opposite, adjacent and hypoteneuse
- float fsindelta, fcosdelta; // sin and cos of inclination angle delta
- float rvec[3]; // rotation vector
- float ftmp; // scratch variable
- float ftmpA12x6[12][6]; // scratch array
- int8_t i, j, k; // loop counters
- int8_t iMagJamming; // magnetic jamming flag
- int8_t ValidMagCal;
-
- // assorted array pointers
- float *pfPPlus12x12ij;
- float *pfPPlus12x12kj;
- float *pfQw12x12ij;
- float *pfQw12x12ik;
- float *pfQw12x12kj;
- float *pfK12x6ij;
- float *pfK12x6ik;
- float *pftmpA12x6ik;
- float *pftmpA12x6kj;
- float *pftmpA12x6ij;
- float *pfC6x12ik;
- float *pfC6x12jk;
-
- // working arrays for 6x6 matrix inversion
- float *pfRows[6];
- int8_t iColInd[6];
- int8_t iRowInd[6];
- int8_t iPivot[6];
-
- // do a reset and return if requested
- if (resetflag) {
- begin(1.0f / deltat);
- return;
- }
-
- // *********************************************************************************
- // initial orientation lock to accelerometer and magnetometer eCompass orientation
- // *********************************************************************************
- if (fabsf(mx) >= 20.0f && fabsf(mx) >= 20.0f && fabsf(mx) >= 20.0f) {
- ValidMagCal = 1;
- } else {
- ValidMagCal = 0;
- }
-
- // do a once-only orientation lock after the first valid magnetic calibration
- if (ValidMagCal && !FirstOrientationLock) {
- // get the 6DOF orientation matrix and initial inclination angle
- feCompassNED(RPl, &DeltaPl, Mag, Accel);
-
- // get the orientation quaternion from the orientation matrix
- fQuaternionFromRotationMatrix(RPl, &qPl);
-
- // set the orientation lock flag so this initial alignment is only performed once
- FirstOrientationLock = 1;
- }
-
- // *********************************************************************************
- // calculate a priori rotation matrix
- // *********************************************************************************
-
- // compute the angular velocity from the averaged high frequency gyro reading.
- // omega[k] = yG[k] - b-[k] = yG[k] - b+[k-1] (deg/s)
- Omega[X] = Yp[X] - bPl[X];
- Omega[Y] = Yp[Y] - bPl[Y];
- Omega[Z] = Yp[Z] - bPl[Z];
-
- // initialize the a priori orientation quaternion to the previous a posteriori estimate
- qMi = qPl;
-
- // integrate the buffered high frequency (typically 200Hz) gyro readings
- //for (j = 0; j < OVERSAMPLE_RATIO; j++) {
- // compute the incremental fast (typically 200Hz) rotation vector rvec (deg)
- for (i = X; i <= Z; i++) {
- rvec[i] = (Yp[i] - bPl[i]) * Fastdeltat;
- }
-
- // compute the incremental quaternion fDeltaq from the rotation vector
- fQuaternionFromRotationVectorDeg(&Deltaq, rvec, 1.0F);
-
- // incrementally rotate the a priori orientation quaternion fqMi
- // the a posteriori quaternion fqPl is re-normalized later so this update is stable
- qAeqAxB(&qMi, &Deltaq);
- //}
-
- // get the a priori rotation matrix from the a priori quaternion
- fRotationMatrixFromQuaternion(RMi, &qMi);
-
- // *********************************************************************************
- // calculate a priori gyro, accelerometer and magnetometer estimates
- // of the gravity and geomagnetic vectors and errors
- // the most recent 'Fast' measurements are used to reduce phase errors
- // *********************************************************************************
-
- for (i = X; i <= Z; i++) {
- // compute the a priori gyro estimate of the gravitational vector (g, sensor frame)
- // using an absolute rotation of the global frame gravity vector (with magnitude 1g)
- // NED gravity is along positive z axis
- gSeGyMi[i] = RMi[i][Z];
-
- // compute a priori acceleration (a-) (g, sensor frame) from decayed a
- // posteriori estimate (g, sensor frame)
- aSeMi[i] = FCA_9DOF_GBY_KALMAN * aSePl[i];
-
- // compute the a priori gravity error vector (accelerometer minus gyro estimates)
- // (g, sensor frame)
- // NED and Windows 8 have positive sign for gravity: y = g - a and g = y + a
- gErrSeMi[i] = Accel[i] + aSeMi[i] - gSeGyMi[i];
-
- // compute the a priori gyro estimate of the geomagnetic vector (uT, sensor frame)
- // using an absolute rotation of the global frame geomagnetic vector (with magnitude B uT)
- // NED y component of geomagnetic vector in global frame is zero
- mSeGyMi[i] = RMi[i][X] * mGl[X] + RMi[i][Z] * mGl[Z];
-
- // compute the a priori geomagnetic error vector (magnetometer minus gyro estimates)
- // (g, sensor frame)
- mErrSeMi[i] = Mag[i] - mSeGyMi[i];
- }
-
- // *********************************************************************************
- // update variable elements of measurement matrix C
- // *********************************************************************************
-
- // update measurement matrix C with -alpha(g-)x and -alpha(m-)x from gyro (g, uT, sensor frame)
- C6x12[0][1] = FDEGTORAD * gSeGyMi[Z];
- C6x12[0][2] = -FDEGTORAD * gSeGyMi[Y];
- C6x12[1][2] = FDEGTORAD * gSeGyMi[X];
- C6x12[1][0] = -C6x12[0][1];
- C6x12[2][0] = -C6x12[0][2];
- C6x12[2][1] = -C6x12[1][2];
- C6x12[3][1] = FDEGTORAD * mSeGyMi[Z];
- C6x12[3][2] = -FDEGTORAD * mSeGyMi[Y];
- C6x12[4][2] = FDEGTORAD * mSeGyMi[X];
- C6x12[4][0] = -C6x12[3][1];
- C6x12[5][0] = -C6x12[3][2];
- C6x12[5][1] = -C6x12[4][2];
- C6x12[0][4] = -deltat * C6x12[0][1];
- C6x12[0][5] = -deltat * C6x12[0][2];
- C6x12[1][5] = -deltat * C6x12[1][2];
- C6x12[1][3]= -C6x12[0][4];
- C6x12[2][3]= -C6x12[0][5];
- C6x12[2][4]= -C6x12[1][5];
- C6x12[3][4] = -deltat * C6x12[3][1];
- C6x12[3][5] = -deltat * C6x12[3][2];
- C6x12[4][5] = -deltat * C6x12[4][2];
- C6x12[4][3] = -C6x12[3][4];
- C6x12[5][3] = -C6x12[3][5];
- C6x12[5][4] = -C6x12[4][5];
-
- // *********************************************************************************
- // calculate the Kalman gain matrix K
- // K = P- * C^T * inv(C * P- * C^T + Qv) = Qw * C^T * inv(C * Qw * C^T + Qv)
- // Qw is used as a proxy for P- throughout the code
- // P+ is used here as a working array to reduce RAM usage and is re-computed later
- // *********************************************************************************
-
- // set ftmpA12x6 = P- * C^T = Qw * C^T where Qw and C are both sparse
- // C also has a significant number of +1 and -1 entries
- // ftmpA12x6 is also sparse but not symmetric
- for (i = 0; i < 12; i++) { // loop over rows of ftmpA12x6
- // initialize pftmpA12x6ij for current i, j=0
- pftmpA12x6ij = ftmpA12x6[i];
-
- for (j = 0; j < 6; j++) { // loop over columns of ftmpA12x6
- // zero ftmpA12x6[i][j]
- *pftmpA12x6ij = 0.0F;
-
- // initialize pfC6x12jk for current j, k=0
- pfC6x12jk = C6x12[j];
-
- // initialize pfQw12x12ik for current i, k=0
- pfQw12x12ik = Qw12x12[i];
-
- // sum matrix products over inner loop over k
- for (k = 0; k < 12; k++) {
- if ((*pfQw12x12ik != 0.0F) && (*pfC6x12jk != 0.0F)) {
- if (*pfC6x12jk == 1.0F)
- *pftmpA12x6ij += *pfQw12x12ik;
- else if (*pfC6x12jk == -1.0F)
- *pftmpA12x6ij -= *pfQw12x12ik;
- else
- *pftmpA12x6ij += *pfQw12x12ik * *pfC6x12jk;
- }
-
- // increment pfC6x12jk and pfQw12x12ik for next iteration of k
- pfC6x12jk++;
- pfQw12x12ik++;
-
- }
-
- // increment pftmpA12x6ij for next iteration of j
- pftmpA12x6ij++;
-
- }
- }
-
- // set symmetric P+ (6x6 scratch sub-matrix) to C * P- * C^T + Qv
- // = C * (Qw * C^T) + Qv = C * ftmpA12x6 + Qv
- // both C and ftmpA12x6 are sparse but not symmetric
- for (i = 0; i < 6; i++) { // loop over rows of P+
- // initialize pfPPlus12x12ij for current i, j=i
- pfPPlus12x12ij = PPlus12x12[i] + i;
-
- for (j = i; j < 6; j++) { // loop over above diagonal columns of P+
- // zero P+[i][j]
- *pfPPlus12x12ij = 0.0F;
-
- // initialize pfC6x12ik for current i, k=0
- pfC6x12ik = C6x12[i];
-
- // initialize pftmpA12x6kj for current j, k=0
- pftmpA12x6kj = *ftmpA12x6 + j;
-
- // sum matrix products over inner loop over k
- for (k = 0; k < 12; k++) {
- if ((*pfC6x12ik != 0.0F) && (*pftmpA12x6kj != 0.0F)) {
- if (*pfC6x12ik == 1.0F)
- *pfPPlus12x12ij += *pftmpA12x6kj;
- else if (*pfC6x12ik == -1.0F)
- *pfPPlus12x12ij -= *pftmpA12x6kj;
- else
- *pfPPlus12x12ij += *pfC6x12ik * *pftmpA12x6kj;
- }
-
- // update pfC6x12ik and pftmpA12x6kj for next iteration of k
- pfC6x12ik++;
- pftmpA12x6kj += 6;
-
- }
-
- // increment pfPPlus12x12ij for next iteration of j
- pfPPlus12x12ij++;
-
- }
- }
-
- // add in noise covariance terms to the diagonal
- PPlus12x12[0][0] += QvAA;
- PPlus12x12[1][1] += QvAA;
- PPlus12x12[2][2] += QvAA;
- PPlus12x12[3][3] += QvMM;
- PPlus12x12[4][4] += QvMM;
- PPlus12x12[5][5] += QvMM;
-
- // copy above diagonal elements of P+ (6x6 scratch sub-matrix) to below diagonal
- for (i = 1; i < 6; i++)
- for (j = 0; j < i; j++)
- PPlus12x12[i][j] = PPlus12x12[j][i];
-
- // calculate inverse of P+ (6x6 scratch sub-matrix) = inv(C * P- * C^T + Qv) = inv(C * Qw * C^T + Qv)
- for (i = 0; i < 6; i++) {
- pfRows[i] = PPlus12x12[i];
- }
- fmatrixAeqInvA(pfRows, iColInd, iRowInd, iPivot, 3);
-
- // set K = P- * C^T * inv(C * P- * C^T + Qv) = Qw * C^T * inv(C * Qw * C^T + Qv)
- // = ftmpA12x6 * P+ (6x6 sub-matrix)
- // ftmpA12x6 = Qw * C^T is sparse but P+ (6x6 sub-matrix) is not
- // K is not symmetric because C is not symmetric
- for (i = 0; i < 12; i++) { // loop over rows of K12x6
- // initialize pfK12x6ij for current i, j=0
- pfK12x6ij = K12x6[i];
-
- for (j = 0; j < 6; j++) { // loop over columns of K12x6
- // zero the matrix element fK12x6[i][j]
- *pfK12x6ij = 0.0F;
-
- // initialize pftmpA12x6ik for current i, k=0
- pftmpA12x6ik = ftmpA12x6[i];
-
- // initialize pfPPlus12x12kj for current j, k=0
- pfPPlus12x12kj = *PPlus12x12 + j;
-
- // sum matrix products over inner loop over k
- for (k = 0; k < 6; k++) {
- if (*pftmpA12x6ik != 0.0F) {
- *pfK12x6ij += *pftmpA12x6ik * *pfPPlus12x12kj;
- }
-
- // increment pftmpA12x6ik and pfPPlus12x12kj for next iteration of k
- pftmpA12x6ik++;
- pfPPlus12x12kj += 12;
-
- }
-
- // increment pfK12x6ij for the next iteration of j
- pfK12x6ij++;
-
- }
- }
-
- // *********************************************************************************
- // calculate a posteriori error estimate: xe+ = K * ze-
- // *********************************************************************************
-
- // first calculate all four error vector components using accelerometer error component only
- // for fThErrPl, fbErrPl, faErrSePl but also magnetometer for fdErrSePl
- for (i = X; i <= Z; i++) {
- ThErrPl[i] = K12x6[i][0] * gErrSeMi[X] +
- K12x6[i][1] * gErrSeMi[Y] +
- K12x6[i][2] * gErrSeMi[Z];
- bErrPl[i] = K12x6[i + 3][0] * gErrSeMi[X] +
- K12x6[i + 3][1] * gErrSeMi[Y] +
- K12x6[i + 3][2] * gErrSeMi[Z];
- aErrSePl[i] = K12x6[i + 6][0] * gErrSeMi[X] +
- K12x6[i + 6][1] * gErrSeMi[Y] +
- K12x6[i + 6][2] * gErrSeMi[Z];
- dErrSePl[i] = K12x6[i + 9][0] * gErrSeMi[X] +
- K12x6[i + 9][1] * gErrSeMi[Y] +
- K12x6[i + 9][2] * gErrSeMi[Z] +
- K12x6[i + 9][3] * mErrSeMi[X] +
- K12x6[i + 9][4] * mErrSeMi[Y] +
- K12x6[i + 9][5] * mErrSeMi[Z];
- }
-
- // set the magnetic jamming flag if there is a significant magnetic error power after calibration
- ftmp = dErrSePl[X] * dErrSePl[X] + dErrSePl[Y] * dErrSePl[Y] +
- dErrSePl[Z] * dErrSePl[Z];
- //iMagJamming = (ValidMagCal) && (ftmp > MagCal->FourBsq);
- iMagJamming = (ValidMagCal) && (ftmp > (DEFAULTB*DEFAULTB*4.0f)); // TODO: FourBsq....
-
-
- // add the remaining magnetic error terms if there is calibration and no magnetic jamming
- if (ValidMagCal && !iMagJamming) {
- for (i = X; i <= Z; i++) {
- ThErrPl[i] += K12x6[i][3] * mErrSeMi[X] +
- K12x6[i][4] * mErrSeMi[Y] +
- K12x6[i][5] * mErrSeMi[Z];
- bErrPl[i] += K12x6[i + 3][3] * mErrSeMi[X] +
- K12x6[i + 3][4] * mErrSeMi[Y] +
- K12x6[i + 3][5] * mErrSeMi[Z];
- aErrSePl[i] += K12x6[i + 6][3] * mErrSeMi[X] +
- K12x6[i + 6][4] * mErrSeMi[Y] +
- K12x6[i + 6][5] * mErrSeMi[Z];
- }
- }
-
- // *********************************************************************************
- // apply the a posteriori error corrections to the a posteriori state vector
- // *********************************************************************************
-
- // get the a posteriori delta quaternion
- fQuaternionFromRotationVectorDeg(&Deltaq, ThErrPl, -1.0F);
-
- // compute the a posteriori orientation quaternion fqPl = fqMi * Deltaq(-thetae+)
- // the resulting quaternion may have negative scalar component q0
- qAeqBxC(&qPl, &qMi, &Deltaq);
-
- // normalize the a posteriori orientation quaternion to stop error propagation
- // the renormalization function ensures that the scalar component q0 is non-negative
- fqAeqNormqA(&qPl);
-
- // compute the a posteriori rotation matrix from the a posteriori quaternion
- fRotationMatrixFromQuaternion(RPl, &qPl);
-
- // compute the rotation vector from the a posteriori quaternion
- fRotationVectorDegFromQuaternion(&qPl, RVecPl);
-
- // update the a posteriori gyro offset vector b+ and
- // assign the entire linear acceleration error vector to update the linear acceleration
- for (i = X; i <= Z; i++) {
- // b+[k] = b-[k] - be+[k] = b+[k] - be+[k] (deg/s)
- bPl[i] -= bErrPl[i];
- // a+ = a- - ae+ (g, sensor frame)
- aSePl[i] = aSeMi[i] - aErrSePl[i];
- }
-
- // compute the linear acceleration in the global frame from the accelerometer measurement (sensor frame).
- // de-rotate the accelerometer measurement from the sensor to global frame using the inverse (transpose)
- // of the a posteriori rotation matrix
- aGlPl[X] = RPl[X][X] * Accel[X] + RPl[Y][X] * Accel[Y] + RPl[Z][X] * Accel[Z];
- aGlPl[Y] = RPl[X][Y] * Accel[X] + RPl[Y][Y] * Accel[Y] + RPl[Z][Y] * Accel[Z];
- aGlPl[Z] = RPl[X][Z] * Accel[X] + RPl[Y][Z] * Accel[Y] + RPl[Z][Z] * Accel[Z];
- // remove gravity and correct the sign if the coordinate system is gravity positive / acceleration negative
- // gravity positive NED
- aGlPl[X] = -aGlPl[X];
- aGlPl[Y] = -aGlPl[Y];
- aGlPl[Z] = -(aGlPl[Z] - 1.0F);
-
- // update the reference geomagnetic vector using magnetic disturbance error if valid calibration and no jamming
- if (ValidMagCal && !iMagJamming) {
- // de-rotate the NED magnetic disturbance error de+ from the sensor to the global reference frame
- // using the inverse (transpose) of the a posteriori rotation matrix
- dErrGlPl[X] = RPl[X][X] * dErrSePl[X] +
- RPl[Y][X] * dErrSePl[Y] +
- RPl[Z][X] * dErrSePl[Z];
- dErrGlPl[Z] = RPl[X][Z] * dErrSePl[X] +
- RPl[Y][Z] * dErrSePl[Y] +
- RPl[Z][Z] * dErrSePl[Z];
-
- // compute components of the new geomagnetic vector
- // the north pointing component fadj must always be non-negative
- fopp = mGl[Z] - dErrGlPl[Z];
- fadj = mGl[X] - dErrGlPl[X];
- if (fadj < 0.0F) {
- fadj = 0.0F;
- }
- fhyp = sqrtf(fopp * fopp + fadj * fadj);
-
- // check for the pathological condition of zero geomagnetic field
- if (fhyp != 0.0F) {
- // compute the sine and cosine of the new geomagnetic vector
- ftmp = 1.0F / fhyp;
- fsindelta = fopp * ftmp;
- fcosdelta = fadj * ftmp;
-
- // limit the inclination angle between limits to prevent runaway
- if (fsindelta > SINDELTAMAX) {
- fsindelta = SINDELTAMAX;
- fcosdelta = COSDELTAMAX;
- } else if (fsindelta < -SINDELTAMAX) {
- fsindelta = -SINDELTAMAX;
- fcosdelta = COSDELTAMAX;
- }
-
- // compute the new geomagnetic vector (always north pointing)
- DeltaPl = fasin_deg(fsindelta);
- //mGl[X] = MagCal->B * fcosdelta; // TODO: MagCal->B
- //mGl[Z] = MagCal->B * fsindelta;
- mGl[X] = DEFAULTB * fcosdelta; // TODO: MagCal->B
- mGl[Z] = DEFAULTB * fsindelta;
- } // end hyp == 0.0F
- } // end ValidMagCal
-
- // *********************************************************************************
- // compute the a posteriori Euler angles from the orientation matrix
- // *********************************************************************************
-
- // calculate the NED Euler angles
- fNEDAnglesDegFromRotationMatrix(RPl, &PhiPl, &ThePl, &PsiPl, &RhoPl, &ChiPl);
-
- // ***********************************************************************************
- // calculate (symmetric) a posteriori error covariance matrix P+
- // P+ = (I12 - K * C) * P- = (I12 - K * C) * Qw = Qw - K * (C * Qw)
- // both Qw and P+ are used as working arrays in this section
- // at the end of this section, P+ is valid but Qw is over-written
- // ***********************************************************************************
-
- // set P+ (6x12 scratch sub-matrix) to the product C (6x12) * Qw (12x12)
- // where both C and Qw are sparse and C has a significant number of +1 and -1 entries
- // the resulting matrix is sparse but not symmetric
- for (i = 0; i < 6; i++) {
- // initialize pfPPlus12x12ij for current i, j=0
- pfPPlus12x12ij = PPlus12x12[i];
-
- for (j = 0; j < 12; j++) {
- // zero P+[i][j]
- *pfPPlus12x12ij = 0.0F;
-
- // initialize pfC6x12ik for current i, k=0
- pfC6x12ik = C6x12[i];
-
- // initialize pfQw12x12kj for current j, k=0
- pfQw12x12kj = &Qw12x12[0][j];
-
- // sum matrix products over inner loop over k
- for (k = 0; k < 12; k++) {
- if ((*pfC6x12ik != 0.0F) && (*pfQw12x12kj != 0.0F)) {
- if (*pfC6x12ik == 1.0F)
- *pfPPlus12x12ij += *pfQw12x12kj;
- else if (*pfC6x12ik == -1.0F)
- *pfPPlus12x12ij -= *pfQw12x12kj;
- else
- *pfPPlus12x12ij += *pfC6x12ik * *pfQw12x12kj;
- }
-
- // update pfC6x12ik and pfQw12x12kj for next iteration of k
- pfC6x12ik++;
- pfQw12x12kj += 12;
-
- }
-
- // increment pfPPlus12x12ij for next iteration of j
- pfPPlus12x12ij++;
-
- }
- }
-
- // compute P+ = (I12 - K * C) * Qw = Qw - K * (C * Qw) = Qw - K * P+ (6x12 sub-matrix)
- // storing result P+ in Qw and over-writing Qw which is OK since Qw is later computed from P+
- // where working array P+ (6x12 sub-matrix) is sparse but K is not sparse
- // only on and above diagonal terms of P+ are computed since P+ is symmetric
- for (i = 0; i < 12; i++) {
- // initialize pfQw12x12ij for current i, j=i
- pfQw12x12ij = Qw12x12[i] + i;
-
- for (j = i; j < 12; j++) {
- // initialize pfK12x6ik for current i, k=0
- pfK12x6ik = K12x6[i];
-
- // initialize pfPPlus12x12kj for current j, k=0
- pfPPlus12x12kj = *PPlus12x12 + j;
-
- // compute on and above diagonal matrix entry
- for (k = 0; k < 6; k++) {
- // check for non-zero values since P+ (6x12 scratch sub-matrix) is sparse
- if (*pfPPlus12x12kj != 0.0F) {
- *pfQw12x12ij -= *pfK12x6ik * *pfPPlus12x12kj;
- }
- // increment pfK12x6ik and pfPPlus12x12kj for next iteration of k
- pfK12x6ik++;
- pfPPlus12x12kj += 12;
- }
-
- // increment pfQw12x12ij for next iteration of j
- pfQw12x12ij++;
- }
- }
-
- // Qw now holds the on and above diagonal elements of P+
- // so perform a simple copy to the all elements of P+
- // after execution of this code P+ is valid but Qw remains invalid
- for (i = 0; i < 12; i++) {
- // initialize pfPPlus12x12ij and pfQw12x12ij for current i, j=i
- pfPPlus12x12ij = PPlus12x12[i] + i;
- pfQw12x12ij = Qw12x12[i] + i;
-
- // copy the on-diagonal elements and increment pointers to enter loop at j=i+1
- *(pfPPlus12x12ij++) = *(pfQw12x12ij++);
-
- // loop over above diagonal columns j copying to below-diagonal elements
- for (j = i + 1; j < 12; j++) {
- *(pfPPlus12x12ij++)= PPlus12x12[j][i] = *(pfQw12x12ij++);
- }
- }
-
- // *********************************************************************************
- // re-create the noise covariance matrix Qw=fn(P+) for the next iteration
- // using the elements of P+ which are now valid
- // Qw was over-written earlier but is here recomputed (all elements)
- // *********************************************************************************
-
- // zero the matrix Qw
- for (i = 0; i < 12; i++) {
- for (j = 0; j < 12; j++) {
- Qw12x12[i][j] = 0.0F;
- }
- }
-
- // update the covariance matrix components
- for (i = 0; i < 3; i++) {
- // Qw[th-th-] = Qw[0-2][0-2] = E[th-(th-)^T] = Q[th+th+] + deltat^2 * (Q[b+b+] + (Qwb + QvG) * I)
- Qw12x12[i][i] = PPlus12x12[i][i] + deltatsq * (PPlus12x12[i + 3][i + 3] + QwbplusQvG);
-
- // Qw[b-b-] = Qw[3-5][3-5] = E[b-(b-)^T] = Q[b+b+] + Qwb * I
- Qw12x12[i + 3][i + 3] = PPlus12x12[i + 3][i + 3] + FQWB_9DOF_GBY_KALMAN;
-
- // Qw[th-b-] = Qw[0-2][3-5] = E[th-(b-)^T] = -deltat * (Q[b+b+] + Qwb * I) = -deltat * Qw[b-b-]
- Qw12x12[i][i + 3] = Qw12x12[i + 3][i] = -deltat * Qw12x12[i + 3][i + 3];
-
- // Qw[a-a-] = Qw[6-8][6-8] = E[a-(a-)^T] = ca^2 * Q[a+a+] + Qwa * I
- Qw12x12[i + 6][i + 6] = casq * PPlus12x12[i + 6][i + 6] + FQWA_9DOF_GBY_KALMAN;
-
- // Qw[d-d-] = Qw[9-11][9-11] = E[d-(d-)^T] = cd^2 * Q[d+d+] + Qwd * I
- Qw12x12[i + 9][i + 9] = cdsq * PPlus12x12[i + 9][i + 9] + FQWD_9DOF_GBY_KALMAN;
- }
- }
-
-
-
-
-
-
-
- // compile time constants that are private to this file
- #define SMALLQ0 0.01F // limit of quaternion scalar component requiring special algorithm
- #define CORRUPTQUAT 0.001F // threshold for deciding rotation quaternion is corrupt
- #define SMALLMODULUS 0.01F // limit where rounding errors may appear
-
- // Aerospace NED accelerometer 3DOF tilt function computing rotation matrix fR
- void f3DOFTiltNED(float fR[][3], float fGp[])
- {
- // the NED self-consistency twist occurs at 90 deg pitch
-
- // local variables
- int16_t i; // counter
- float fmodGxyz; // modulus of the x, y, z accelerometer readings
- float fmodGyz; // modulus of the y, z accelerometer readings
- float frecipmodGxyz; // reciprocal of modulus
- float ftmp; // scratch variable
-
- // compute the accelerometer squared magnitudes
- fmodGyz = fGp[Y] * fGp[Y] + fGp[Z] * fGp[Z];
- fmodGxyz = fmodGyz + fGp[X] * fGp[X];
-
- // check for freefall special case where no solution is possible
- if (fmodGxyz == 0.0F) {
- f3x3matrixAeqI(fR);
- return;
- }
-
- // check for vertical up or down gimbal lock case
- if (fmodGyz == 0.0F) {
- f3x3matrixAeqScalar(fR, 0.0F);
- fR[Y][Y] = 1.0F;
- if (fGp[X] >= 0.0F) {
- fR[X][Z] = 1.0F;
- fR[Z][X] = -1.0F;
- } else {
- fR[X][Z] = -1.0F;
- fR[Z][X] = 1.0F;
- }
- return;
- }
-
- // compute moduli for the general case
- fmodGyz = sqrtf(fmodGyz);
- fmodGxyz = sqrtf(fmodGxyz);
- frecipmodGxyz = 1.0F / fmodGxyz;
- ftmp = fmodGxyz / fmodGyz;
-
- // normalize the accelerometer reading into the z column
- for (i = X; i <= Z; i++) {
- fR[i][Z] = fGp[i] * frecipmodGxyz;
- }
-
- // construct x column of orientation matrix
- fR[X][X] = fmodGyz * frecipmodGxyz;
- fR[Y][X] = -fR[X][Z] * fR[Y][Z] * ftmp;
- fR[Z][X] = -fR[X][Z] * fR[Z][Z] * ftmp;
-
- // // construct y column of orientation matrix
- fR[X][Y] = 0.0F;
- fR[Y][Y] = fR[Z][Z] * ftmp;
- fR[Z][Y] = -fR[Y][Z] * ftmp;
- }
-
-
- // Aerospace NED magnetometer 3DOF flat eCompass function computing rotation matrix fR
- void f3DOFMagnetometerMatrixNED(float fR[][3], float fBc[])
- {
- // local variables
- float fmodBxy; // modulus of the x, y magnetometer readings
-
- // compute the magnitude of the horizontal (x and y) magnetometer reading
- fmodBxy = sqrtf(fBc[X] * fBc[X] + fBc[Y] * fBc[Y]);
-
- // check for zero field special case where no solution is possible
- if (fmodBxy == 0.0F) {
- f3x3matrixAeqI(fR);
- return;
- }
-
- // define the fixed entries in the z row and column
- fR[Z][X] = fR[Z][Y] = fR[X][Z] = fR[Y][Z] = 0.0F;
- fR[Z][Z] = 1.0F;
-
- // define the remaining entries
- fR[X][X] = fR[Y][Y] = fBc[X] / fmodBxy;
- fR[Y][X] = fBc[Y] / fmodBxy;
- fR[X][Y] = -fR[Y][X];
- }
-
-
- // NED: 6DOF e-Compass function computing rotation matrix fR
- static void feCompassNED(float fR[][3], float *pfDelta, const float fBc[], const float fGp[])
- {
- // local variables
- float fmod[3]; // column moduli
- float fmodBc; // modulus of Bc
- float fGdotBc; // dot product of vectors G.Bc
- float ftmp; // scratch variable
- int8_t i, j; // loop counters
-
- // set the inclination angle to zero in case it is not computed later
- *pfDelta = 0.0F;
-
- // place the un-normalized gravity and geomagnetic vectors into the rotation matrix z and x axes
- for (i = X; i <= Z; i++) {
- fR[i][Z] = fGp[i];
- fR[i][X] = fBc[i];
- }
-
- // set y vector to vector product of z and x vectors
- fR[X][Y] = fR[Y][Z] * fR[Z][X] - fR[Z][Z] * fR[Y][X];
- fR[Y][Y] = fR[Z][Z] * fR[X][X] - fR[X][Z] * fR[Z][X];
- fR[Z][Y] = fR[X][Z] * fR[Y][X] - fR[Y][Z] * fR[X][X];
-
- // set x vector to vector product of y and z vectors
- fR[X][X] = fR[Y][Y] * fR[Z][Z] - fR[Z][Y] * fR[Y][Z];
- fR[Y][X] = fR[Z][Y] * fR[X][Z] - fR[X][Y] * fR[Z][Z];
- fR[Z][X] = fR[X][Y] * fR[Y][Z] - fR[Y][Y] * fR[X][Z];
-
- // calculate the rotation matrix column moduli
- fmod[X] = sqrtf(fR[X][X] * fR[X][X] + fR[Y][X] * fR[Y][X] + fR[Z][X] * fR[Z][X]);
- fmod[Y] = sqrtf(fR[X][Y] * fR[X][Y] + fR[Y][Y] * fR[Y][Y] + fR[Z][Y] * fR[Z][Y]);
- fmod[Z] = sqrtf(fR[X][Z] * fR[X][Z] + fR[Y][Z] * fR[Y][Z] + fR[Z][Z] * fR[Z][Z]);
-
- // normalize the rotation matrix columns
- if (!((fmod[X] == 0.0F) || (fmod[Y] == 0.0F) || (fmod[Z] == 0.0F))) {
- // loop over columns j
- for (j = X; j <= Z; j++) {
- ftmp = 1.0F / fmod[j];
- // loop over rows i
- for (i = X; i <= Z; i++) {
- // normalize by the column modulus
- fR[i][j] *= ftmp;
- }
- }
- } else {
- // no solution is possible to set rotation to identity matrix
- f3x3matrixAeqI(fR);
- return;
- }
-
- // compute the geomagnetic inclination angle
- fmodBc = sqrtf(fBc[X] * fBc[X] + fBc[Y] * fBc[Y] + fBc[Z] * fBc[Z]);
- fGdotBc = fGp[X] * fBc[X] + fGp[Y] * fBc[Y] + fGp[Z] * fBc[Z];
- if (!((fmod[Z] == 0.0F) || (fmodBc == 0.0F))) {
- *pfDelta = fasin_deg(fGdotBc / (fmod[Z] * fmodBc));
- }
- }
-
-
- // extract the NED angles in degrees from the NED rotation matrix
- static void fNEDAnglesDegFromRotationMatrix(float R[][3], float *pfPhiDeg,
- float *pfTheDeg, float *pfPsiDeg, float *pfRhoDeg, float *pfChiDeg)
- {
- // calculate the pitch angle -90.0 <= Theta <= 90.0 deg
- *pfTheDeg = fasin_deg(-R[X][Z]);
-
- // calculate the roll angle range -180.0 <= Phi < 180.0 deg
- *pfPhiDeg = fatan2_deg(R[Y][Z], R[Z][Z]);
-
- // map +180 roll onto the functionally equivalent -180 deg roll
- if (*pfPhiDeg == 180.0F) {
- *pfPhiDeg = -180.0F;
- }
-
- // calculate the yaw (compass) angle 0.0 <= Psi < 360.0 deg
- if (*pfTheDeg == 90.0F) {
- // vertical upwards gimbal lock case
- *pfPsiDeg = fatan2_deg(R[Z][Y], R[Y][Y]) + *pfPhiDeg;
- } else if (*pfTheDeg == -90.0F) {
- // vertical downwards gimbal lock case
- *pfPsiDeg = fatan2_deg(-R[Z][Y], R[Y][Y]) - *pfPhiDeg;
- } else {
- // general case
- *pfPsiDeg = fatan2_deg(R[X][Y], R[X][X]);
- }
-
- // map yaw angle Psi onto range 0.0 <= Psi < 360.0 deg
- if (*pfPsiDeg < 0.0F) {
- *pfPsiDeg += 360.0F;
- }
-
- // check for rounding errors mapping small negative angle to 360 deg
- if (*pfPsiDeg >= 360.0F) {
- *pfPsiDeg = 0.0F;
- }
-
- // for NED, the compass heading Rho equals the yaw angle Psi
- *pfRhoDeg = *pfPsiDeg;
-
- // calculate the tilt angle from vertical Chi (0 <= Chi <= 180 deg)
- *pfChiDeg = facos_deg(R[Z][Z]);
-
- return;
- }
-
-
- // computes normalized rotation quaternion from a rotation vector (deg)
- static void fQuaternionFromRotationVectorDeg(Quaternion_t *pq, const float rvecdeg[], float fscaling)
- {
- float fetadeg; // rotation angle (deg)
- float fetarad; // rotation angle (rad)
- float fetarad2; // eta (rad)^2
- float fetarad4; // eta (rad)^4
- float sinhalfeta; // sin(eta/2)
- float fvecsq; // q1^2+q2^2+q3^2
- float ftmp; // scratch variable
-
- // compute the scaled rotation angle eta (deg) which can be both positve or negative
- fetadeg = fscaling * sqrtf(rvecdeg[X] * rvecdeg[X] + rvecdeg[Y] * rvecdeg[Y] + rvecdeg[Z] * rvecdeg[Z]);
- fetarad = fetadeg * FDEGTORAD;
- fetarad2 = fetarad * fetarad;
-
- // calculate the sine and cosine using small angle approximations or exact
- // angles under sqrt(0.02)=0.141 rad is 8.1 deg and 1620 deg/s (=936deg/s in 3 axes) at 200Hz and 405 deg/s at 50Hz
- if (fetarad2 <= 0.02F) {
- // use MacLaurin series up to and including third order
- sinhalfeta = fetarad * (0.5F - ONEOVER48 * fetarad2);
- } else if (fetarad2 <= 0.06F) {
- // use MacLaurin series up to and including fifth order
- // angles under sqrt(0.06)=0.245 rad is 14.0 deg and 2807 deg/s (=1623deg/s in 3 axes) at 200Hz and 703 deg/s at 50Hz
- fetarad4 = fetarad2 * fetarad2;
- sinhalfeta = fetarad * (0.5F - ONEOVER48 * fetarad2 + ONEOVER3840 * fetarad4);
- } else {
- // use exact calculation
- sinhalfeta = (float)sinf(0.5F * fetarad);
- }
-
- // compute the vector quaternion components q1, q2, q3
- if (fetadeg != 0.0F) {
- // general case with non-zero rotation angle
- ftmp = fscaling * sinhalfeta / fetadeg;
- pq->q1 = rvecdeg[X] * ftmp; // q1 = nx * sin(eta/2)
- pq->q2 = rvecdeg[Y] * ftmp; // q2 = ny * sin(eta/2)
- pq->q3 = rvecdeg[Z] * ftmp; // q3 = nz * sin(eta/2)
- } else {
- // zero rotation angle giving zero vector component
- pq->q1 = pq->q2 = pq->q3 = 0.0F;
- }
-
- // compute the scalar quaternion component q0 by explicit normalization
- // taking care to avoid rounding errors giving negative operand to sqrt
- fvecsq = pq->q1 * pq->q1 + pq->q2 * pq->q2 + pq->q3 * pq->q3;
- if (fvecsq <= 1.0F) {
- // normal case
- pq->q0 = sqrtf(1.0F - fvecsq);
- } else {
- // rounding errors are present
- pq->q0 = 0.0F;
- }
- }
-
- // compute the orientation quaternion from a 3x3 rotation matrix
- static void fQuaternionFromRotationMatrix(float R[][3], Quaternion_t *pq)
- {
- float fq0sq; // q0^2
- float recip4q0; // 1/4q0
-
- // the quaternion is not explicitly normalized in this function on the assumption that it
- // is supplied with a normalized rotation matrix. if the rotation matrix is normalized then
- // the quaternion will also be normalized even if the case of small q0
-
- // get q0^2 and q0
- fq0sq = 0.25F * (1.0F + R[X][X] + R[Y][Y] + R[Z][Z]);
- pq->q0 = sqrtf(fabs(fq0sq));
-
- // normal case when q0 is not small meaning rotation angle not near 180 deg
- if (pq->q0 > SMALLQ0) {
- // calculate q1 to q3 (general case)
- recip4q0 = 0.25F / pq->q0;
- pq->q1 = recip4q0 * (R[Y][Z] - R[Z][Y]);
- pq->q2 = recip4q0 * (R[Z][X] - R[X][Z]);
- pq->q3 = recip4q0 * (R[X][Y] - R[Y][X]);
- } else {
- // special case of near 180 deg corresponds to nearly symmetric matrix
- // which is not numerically well conditioned for division by small q0
- // instead get absolute values of q1 to q3 from leading diagonal
- pq->q1 = sqrtf(fabs(0.5F * (1.0F + R[X][X]) - fq0sq));
- pq->q2 = sqrtf(fabs(0.5F * (1.0F + R[Y][Y]) - fq0sq));
- pq->q3 = sqrtf(fabs(0.5F * (1.0F + R[Z][Z]) - fq0sq));
-
- // correct the signs of q1 to q3 by examining the signs of differenced off-diagonal terms
- if ((R[Y][Z] - R[Z][Y]) < 0.0F) pq->q1 = -pq->q1;
- if ((R[Z][X] - R[X][Z]) < 0.0F) pq->q2 = -pq->q2;
- if ((R[X][Y] - R[Y][X]) < 0.0F) pq->q3 = -pq->q3;
- }
- }
-
- // compute the rotation matrix from an orientation quaternion
- static void fRotationMatrixFromQuaternion(float R[][3], const Quaternion_t *pq)
- {
- float f2q;
- float f2q0q0, f2q0q1, f2q0q2, f2q0q3;
- float f2q1q1, f2q1q2, f2q1q3;
- float f2q2q2, f2q2q3;
- float f2q3q3;
-
- // calculate products
- f2q = 2.0F * pq->q0;
- f2q0q0 = f2q * pq->q0;
- f2q0q1 = f2q * pq->q1;
- f2q0q2 = f2q * pq->q2;
- f2q0q3 = f2q * pq->q3;
- f2q = 2.0F * pq->q1;
- f2q1q1 = f2q * pq->q1;
- f2q1q2 = f2q * pq->q2;
- f2q1q3 = f2q * pq->q3;
- f2q = 2.0F * pq->q2;
- f2q2q2 = f2q * pq->q2;
- f2q2q3 = f2q * pq->q3;
- f2q3q3 = 2.0F * pq->q3 * pq->q3;
-
- // calculate the rotation matrix assuming the quaternion is normalized
- R[X][X] = f2q0q0 + f2q1q1 - 1.0F;
- R[X][Y] = f2q1q2 + f2q0q3;
- R[X][Z] = f2q1q3 - f2q0q2;
- R[Y][X] = f2q1q2 - f2q0q3;
- R[Y][Y] = f2q0q0 + f2q2q2 - 1.0F;
- R[Y][Z] = f2q2q3 + f2q0q1;
- R[Z][X] = f2q1q3 + f2q0q2;
- R[Z][Y] = f2q2q3 - f2q0q1;
- R[Z][Z] = f2q0q0 + f2q3q3 - 1.0F;
- }
-
- // function calculate the rotation vector from a rotation matrix
- void fRotationVectorDegFromRotationMatrix(float R[][3], float rvecdeg[])
- {
- float ftrace; // trace of the rotation matrix
- float fetadeg; // rotation angle eta (deg)
- float fmodulus; // modulus of axis * angle vector = 2|sin(eta)|
- float ftmp; // scratch variable
-
- // calculate the trace of the rotation matrix = 1+2cos(eta) in range -1 to +3
- // and eta (deg) in range 0 to 180 deg inclusive
- // checking for rounding errors that might take the trace outside this range
- ftrace = R[X][X] + R[Y][Y] + R[Z][Z];
- if (ftrace >= 3.0F) {
- fetadeg = 0.0F;
- } else if (ftrace <= -1.0F) {
- fetadeg = 180.0F;
- } else {
- fetadeg = acosf(0.5F * (ftrace - 1.0F)) * FRADTODEG;
- }
-
- // set the rvecdeg vector to differences across the diagonal = 2*n*sin(eta)
- // and calculate its modulus equal to 2|sin(eta)|
- // the modulus approaches zero near 0 and 180 deg (when sin(eta) approaches zero)
- rvecdeg[X] = R[Y][Z] - R[Z][Y];
- rvecdeg[Y] = R[Z][X] - R[X][Z];
- rvecdeg[Z] = R[X][Y] - R[Y][X];
- fmodulus = sqrtf(rvecdeg[X] * rvecdeg[X] + rvecdeg[Y] * rvecdeg[Y] + rvecdeg[Z] * rvecdeg[Z]);
-
- // normalize the rotation vector for general, 0 deg and 180 deg rotation cases
- if (fmodulus > SMALLMODULUS) {
- // general case away from 0 and 180 deg rotation
- ftmp = fetadeg / fmodulus;
- rvecdeg[X] *= ftmp; // set x component to eta(deg) * nx
- rvecdeg[Y] *= ftmp; // set y component to eta(deg) * ny
- rvecdeg[Z] *= ftmp; // set z component to eta(deg) * nz
- } else if (ftrace >= 0.0F) {
- // near 0 deg rotation (trace = 3): matrix is nearly identity matrix
- // R[Y][Z]-R[Z][Y]=2*nx*eta(rad) and similarly for other components
- ftmp = 0.5F * FRADTODEG;
- rvecdeg[X] *= ftmp;
- rvecdeg[Y] *= ftmp;
- rvecdeg[Z] *= ftmp;
- } else {
- // near 180 deg (trace = -1): matrix is nearly symmetric
- // calculate the absolute value of the components of the axis-angle vector
- rvecdeg[X] = 180.0F * sqrtf(fabs(0.5F * (R[X][X] + 1.0F)));
- rvecdeg[Y] = 180.0F * sqrtf(fabs(0.5F * (R[Y][Y] + 1.0F)));
- rvecdeg[Z] = 180.0F * sqrtf(fabs(0.5F * (R[Z][Z] + 1.0F)));
-
- // correct the signs of the three components by examining the signs of differenced off-diagonal terms
- if ((R[Y][Z] - R[Z][Y]) < 0.0F) rvecdeg[X] = -rvecdeg[X];
- if ((R[Z][X] - R[X][Z]) < 0.0F) rvecdeg[Y] = -rvecdeg[Y];
- if ((R[X][Y] - R[Y][X]) < 0.0F) rvecdeg[Z] = -rvecdeg[Z];
-
- }
- }
-
- // computes rotation vector (deg) from rotation quaternion
- static void fRotationVectorDegFromQuaternion(Quaternion_t *pq, float rvecdeg[])
- {
- float fetarad; // rotation angle (rad)
- float fetadeg; // rotation angle (deg)
- float sinhalfeta; // sin(eta/2)
- float ftmp; // scratch variable
-
- // calculate the rotation angle in the range 0 <= eta < 360 deg
- if ((pq->q0 >= 1.0F) || (pq->q0 <= -1.0F)) {
- // rotation angle is 0 deg or 2*180 deg = 360 deg = 0 deg
- fetarad = 0.0F;
- fetadeg = 0.0F;
- } else {
- // general case returning 0 < eta < 360 deg
- fetarad = 2.0F * acosf(pq->q0);
- fetadeg = fetarad * FRADTODEG;
- }
-
- // map the rotation angle onto the range -180 deg <= eta < 180 deg
- if (fetadeg >= 180.0F) {
- fetadeg -= 360.0F;
- fetarad = fetadeg * FDEGTORAD;
- }
-
- // calculate sin(eta/2) which will be in the range -1 to +1
- sinhalfeta = (float)sinf(0.5F * fetarad);
-
- // calculate the rotation vector (deg)
- if (sinhalfeta == 0.0F) {
- // the rotation angle eta is zero and the axis is irrelevant
- rvecdeg[X] = rvecdeg[Y] = rvecdeg[Z] = 0.0F;
- } else {
- // general case with non-zero rotation angle
- ftmp = fetadeg / sinhalfeta;
- rvecdeg[X] = pq->q1 * ftmp;
- rvecdeg[Y] = pq->q2 * ftmp;
- rvecdeg[Z] = pq->q3 * ftmp;
- }
- }
-
- #if 0
- // function low pass filters an orientation quaternion and computes virtual gyro rotation rate
- void fLPFOrientationQuaternion(Quaternion_t *pq, Quaternion_t *pLPq, float flpf, float fdeltat,
- float fOmega[], int32_t loopcounter)
- {
- // local variables
- Quaternion_t fdeltaq; // delta rotation quaternion
- float rvecdeg[3]; // rotation vector (deg)
- float ftmp; // scratch variable
-
- // initialize delay line on first pass: LPq[n]=q[n]
- if (loopcounter == 0) {
- *pLPq = *pq;
- }
-
- // set fdeltaqn to the delta rotation quaternion conjg(fLPq[n-1) . fqn
- fdeltaq = qconjgAxB(pLPq, pq);
- if (fdeltaq.q0 < 0.0F) {
- fdeltaq.q0 = -fdeltaq.q0;
- fdeltaq.q1 = -fdeltaq.q1;
- fdeltaq.q2 = -fdeltaq.q2;
- fdeltaq.q3 = -fdeltaq.q3;
- }
-
- // set ftmp to a scaled lpf value which equals flpf in the limit of small rotations (q0=1)
- // but which rises as the delta rotation angle increases (q0 tends to zero)
- ftmp = flpf + 0.75F * (1.0F - fdeltaq.q0);
- if (ftmp > 1.0F) {
- ftmp = 1.0F;
- }
-
- // scale the delta rotation by the corrected lpf value
- fdeltaq.q1 *= ftmp;
- fdeltaq.q2 *= ftmp;
- fdeltaq.q3 *= ftmp;
-
- // compute the scalar component q0
- ftmp = fdeltaq.q1 * fdeltaq.q1 + fdeltaq.q2 * fdeltaq.q2 + fdeltaq.q3 * fdeltaq.q3;
- if (ftmp <= 1.0F) {
- // normal case
- fdeltaq.q0 = sqrtf(1.0F - ftmp);
- } else {
- // rounding errors present so simply set scalar component to 0
- fdeltaq.q0 = 0.0F;
- }
-
- // calculate the delta rotation vector from fdeltaqn and the virtual gyro angular velocity (deg/s)
- fRotationVectorDegFromQuaternion(&fdeltaq, rvecdeg);
- ftmp = 1.0F / fdeltat;
- fOmega[X] = rvecdeg[X] * ftmp;
- fOmega[Y] = rvecdeg[Y] * ftmp;
- fOmega[Z] = rvecdeg[Z] * ftmp;
-
- // set LPq[n] = LPq[n-1] . deltaq[n]
- qAeqAxB(pLPq, &fdeltaq);
-
- // renormalize the low pass filtered quaternion to prevent error accumulation
- // the renormalization function ensures that q0 is non-negative
- fqAeqNormqA(pLPq);
- }
-
- // function low pass filters a scalar
- void fLPFScalar(float *pfS, float *pfLPS, float flpf, int32_t loopcounter)
- {
- // set S[LP,n]=S[n] on first pass
- if (loopcounter == 0) {
- *pfLPS = *pfS;
- }
-
- // apply the exponential low pass filter
- *pfLPS += flpf * (*pfS - *pfLPS);
- }
- #endif
-
- // function compute the quaternion product qA * qB
- static void qAeqBxC(Quaternion_t *pqA, const Quaternion_t *pqB, const Quaternion_t *pqC)
- {
- pqA->q0 = pqB->q0 * pqC->q0 - pqB->q1 * pqC->q1 - pqB->q2 * pqC->q2 - pqB->q3 * pqC->q3;
- pqA->q1 = pqB->q0 * pqC->q1 + pqB->q1 * pqC->q0 + pqB->q2 * pqC->q3 - pqB->q3 * pqC->q2;
- pqA->q2 = pqB->q0 * pqC->q2 - pqB->q1 * pqC->q3 + pqB->q2 * pqC->q0 + pqB->q3 * pqC->q1;
- pqA->q3 = pqB->q0 * pqC->q3 + pqB->q1 * pqC->q2 - pqB->q2 * pqC->q1 + pqB->q3 * pqC->q0;
- }
-
- // function compute the quaternion product qA = qA * qB
- static void qAeqAxB(Quaternion_t *pqA, const Quaternion_t *pqB)
- {
- Quaternion_t qProd;
-
- // perform the quaternion product
- qProd.q0 = pqA->q0 * pqB->q0 - pqA->q1 * pqB->q1 - pqA->q2 * pqB->q2 - pqA->q3 * pqB->q3;
- qProd.q1 = pqA->q0 * pqB->q1 + pqA->q1 * pqB->q0 + pqA->q2 * pqB->q3 - pqA->q3 * pqB->q2;
- qProd.q2 = pqA->q0 * pqB->q2 - pqA->q1 * pqB->q3 + pqA->q2 * pqB->q0 + pqA->q3 * pqB->q1;
- qProd.q3 = pqA->q0 * pqB->q3 + pqA->q1 * pqB->q2 - pqA->q2 * pqB->q1 + pqA->q3 * pqB->q0;
-
- // copy the result back into qA
- *pqA = qProd;
- }
-
- #if 0
- // function compute the quaternion product conjg(qA) * qB
- static Quaternion_t qconjgAxB(const Quaternion_t *pqA, const Quaternion_t *pqB)
- {
- Quaternion_t qProd;
-
- qProd.q0 = pqA->q0 * pqB->q0 + pqA->q1 * pqB->q1 + pqA->q2 * pqB->q2 + pqA->q3 * pqB->q3;
- qProd.q1 = pqA->q0 * pqB->q1 - pqA->q1 * pqB->q0 - pqA->q2 * pqB->q3 + pqA->q3 * pqB->q2;
- qProd.q2 = pqA->q0 * pqB->q2 + pqA->q1 * pqB->q3 - pqA->q2 * pqB->q0 - pqA->q3 * pqB->q1;
- qProd.q3 = pqA->q0 * pqB->q3 - pqA->q1 * pqB->q2 + pqA->q2 * pqB->q1 - pqA->q3 * pqB->q0;
-
- return qProd;
- }
- #endif
-
- // function normalizes a rotation quaternion and ensures q0 is non-negative
- static void fqAeqNormqA(Quaternion_t *pqA)
- {
- float fNorm; // quaternion Norm
-
- // calculate the quaternion Norm
- fNorm = sqrtf(pqA->q0 * pqA->q0 + pqA->q1 * pqA->q1 + pqA->q2 * pqA->q2 + pqA->q3 * pqA->q3);
- if (fNorm > CORRUPTQUAT) {
- // general case
- fNorm = 1.0F / fNorm;
- pqA->q0 *= fNorm;
- pqA->q1 *= fNorm;
- pqA->q2 *= fNorm;
- pqA->q3 *= fNorm;
- } else {
- // return with identity quaternion since the quaternion is corrupted
- pqA->q0 = 1.0F;
- pqA->q1 = pqA->q2 = pqA->q3 = 0.0F;
- }
-
- // correct a negative scalar component if the function was called with negative q0
- if (pqA->q0 < 0.0F) {
- pqA->q0 = -pqA->q0;
- pqA->q1 = -pqA->q1;
- pqA->q2 = -pqA->q2;
- pqA->q3 = -pqA->q3;
- }
- }
-
- // set a quaternion to the unit quaternion
- static void fqAeq1(Quaternion_t *pqA)
- {
- pqA->q0 = 1.0F;
- pqA->q1 = pqA->q2 = pqA->q3 = 0.0F;
- }
-
-
-
- // function returns an approximation to angle(deg)=asin(x) for x in the range -1 <= x <= 1
- // and returns -90 <= angle <= 90 deg
- // maximum error is 10.29E-6 deg
- static float fasin_deg(float x)
- {
- // for robustness, check for invalid argument
- if (x >= 1.0F) return 90.0F;
- if (x <= -1.0F) return -90.0F;
-
- // call the atan which will return an angle in the correct range -90 to 90 deg
- // this line cannot fail from division by zero or negative square root since |x| < 1
- return (fatan_deg(x / sqrtf(1.0F - x * x)));
- }
-
- // function returns an approximation to angle(deg)=acos(x) for x in the range -1 <= x <= 1
- // and returns 0 <= angle <= 180 deg
- // maximum error is 14.67E-6 deg
- static float facos_deg(float x)
- {
- // for robustness, check for invalid arguments
- if (x >= 1.0F) return 0.0F;
- if (x <= -1.0F) return 180.0F;
-
- // call the atan which will return an angle in the incorrect range -90 to 90 deg
- // these lines cannot fail from division by zero or negative square root
- if (x == 0.0F) return 90.0F;
- if (x > 0.0F) return fatan_deg((sqrtf(1.0F - x * x) / x));
- return 180.0F + fatan_deg((sqrtf(1.0F - x * x) / x));
- }
-
- // function returns angle in range -90 to 90 deg
- // maximum error is 9.84E-6 deg
- static float fatan_deg(float x)
- {
- float fangledeg; // compute computed (deg)
- int8_t ixisnegative; // argument x is negative
- int8_t ixexceeds1; // argument x is greater than 1.0
- int8_t ixmapped; // argument in range tan(15 deg) to tan(45 deg)=1.0
-
- #define TAN15DEG 0.26794919243F // tan(15 deg) = 2 - sqrt(3)
- #define TAN30DEG 0.57735026919F // tan(30 deg) = 1/sqrt(3)
-
- // reset all flags
- ixisnegative = ixexceeds1 = ixmapped = 0;
-
- // test for negative argument to allow use of tan(-x)=-tan(x)
- if (x < 0.0F) {
- x = -x;
- ixisnegative = 1;
- }
-
- // test for argument above 1 to allow use of atan(x)=pi/2-atan(1/x)
- if (x > 1.0F) {
- x = 1.0F / x;
- ixexceeds1 = 1;
- }
-
- // at this point, x is in the range 0 to 1 inclusive
- // map argument onto range -tan(15 deg) to tan(15 deg)
- // using tan(angle-30deg) = (tan(angle)-tan(30deg)) / (1 + tan(angle)tan(30deg))
- // tan(15deg) maps to tan(-15 deg) = -tan(15 deg)
- // 1. maps to (sqrt(3) - 1) / (sqrt(3) + 1) = 2 - sqrt(3) = tan(15 deg)
- if (x > TAN15DEG) {
- x = (x - TAN30DEG)/(1.0F + TAN30DEG * x);
- ixmapped = 1;
- }
-
- // call the atan estimator to obtain -15 deg <= angle <= 15 deg
- fangledeg = fatan_15deg(x);
-
- // undo the distortions applied earlier to obtain -90 deg <= angle <= 90 deg
- if (ixmapped) fangledeg += 30.0F;
- if (ixexceeds1) fangledeg = 90.0F - fangledeg;
- if (ixisnegative) fangledeg = -fangledeg;
-
- return (fangledeg);
- }
-
- // function returns approximate atan2 angle in range -180 to 180 deg
- // maximum error is 14.58E-6 deg
- static float fatan2_deg(float y, float x)
- {
- // check for zero x to avoid division by zero
- if (x == 0.0F) {
- // return 90 deg for positive y
- if (y > 0.0F) return 90.0F;
- // return -90 deg for negative y
- if (y < 0.0F) return -90.0F;
- // otherwise y= 0.0 and return 0 deg (invalid arguments)
- return 0.0F;
- }
-
- // from here onwards, x is guaranteed to be non-zero
- // compute atan2 for quadrant 1 (0 to 90 deg) and quadrant 4 (-90 to 0 deg)
- if (x > 0.0F) return (fatan_deg(y / x));
- // compute atan2 for quadrant 2 (90 to 180 deg)
- if ((x < 0.0F) && (y > 0.0F)) return (180.0F + fatan_deg(y / x));
- // compute atan2 for quadrant 3 (-180 to -90 deg)
- return (-180.0F + fatan_deg(y / x));
- }
-
- // approximation to inverse tan function (deg) for x in range
- // -tan(15 deg) to tan(15 deg) giving an output -15 deg <= angle <= 15 deg
- // using modified Pade[3/2] approximation
- static float fatan_15deg(float x)
- {
- float x2; // x^2
-
- #define PADE_A 96.644395816F // theoretical Pade[3/2] value is 5/3*180/PI=95.49296
- #define PADE_B 25.086941612F // theoretical Pade[3/2] value is 4/9*180/PI=25.46479
- #define PADE_C 1.6867633134F // theoretical Pade[3/2] value is 5/3=1.66667
-
- // compute the approximation to the inverse tangent
- // the function is anti-symmetric as required for positive and negative arguments
- x2 = x * x;
- return (x * (PADE_A + x2 * PADE_B) / (PADE_C + x2));
- }
-
-
|