|
- // Copyright (c) 2014, Freescale Semiconductor, Inc.
- // All rights reserved.
- // vim: set ts=4:
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright
- // notice, this list of conditions and the following disclaimer in the
- // documentation and/or other materials provided with the distribution.
- // * Neither the name of Freescale Semiconductor, Inc. nor the
- // names of its contributors may be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- // DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR ANY
- // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- //
- // This file contains matrix manipulation functions.
- //
-
- #include <inttypes.h>
- #include <math.h>
-
- // compile time constants that are private to this file
- #define CORRUPTMATRIX 0.001F // column vector modulus limit for rotation matrix
-
- // vector components
- #define X 0
- #define Y 1
- #define Z 2
-
- // function sets the 3x3 matrix A to the identity matrix
- void f3x3matrixAeqI(float A[][3])
- {
- float *pAij; // pointer to A[i][j]
- int8_t i, j; // loop counters
-
- for (i = 0; i < 3; i++) {
- // set pAij to &A[i][j=0]
- pAij = A[i];
- for (j = 0; j < 3; j++) {
- *(pAij++) = 0.0F;
- }
- A[i][i] = 1.0F;
- }
- }
-
- // function sets the matrix A to the identity matrix
- void fmatrixAeqI(float *A[], int16_t rc)
- {
- // rc = rows and columns in A
-
- float *pAij; // pointer to A[i][j]
- int8_t i, j; // loop counters
-
- for (i = 0; i < rc; i++) {
- // set pAij to &A[i][j=0]
- pAij = A[i];
- for (j = 0; j < rc; j++) {
- *(pAij++) = 0.0F;
- }
- A[i][i] = 1.0F;
- }
- }
-
- // function sets every entry in the 3x3 matrix A to a constant scalar
- void f3x3matrixAeqScalar(float A[][3], float Scalar)
- {
- float *pAij; // pointer to A[i][j]
- int8_t i, j; // counters
-
- for (i = 0; i < 3; i++) {
- // set pAij to &A[i][j=0]
- pAij = A[i];
- for (j = 0; j < 3; j++) {
- *(pAij++) = Scalar;
- }
- }
- }
-
- // function multiplies all elements of 3x3 matrix A by the specified scalar
- void f3x3matrixAeqAxScalar(float A[][3], float Scalar)
- {
- float *pAij; // pointer to A[i][j]
- int8_t i, j; // loop counters
-
- for (i = 0; i < 3; i++) {
- // set pAij to &A[i][j=0]
- pAij = A[i];
- for (j = 0; j < 3; j++) {
- *(pAij++) *= Scalar;
- }
- }
- }
-
- // function negates all elements of 3x3 matrix A
- void f3x3matrixAeqMinusA(float A[][3])
- {
- float *pAij; // pointer to A[i][j]
- int8_t i, j; // loop counters
-
- for (i = 0; i < 3; i++) {
- // set pAij to &A[i][j=0]
- pAij = A[i];
- for (j = 0; j < 3; j++) {
- *pAij = -*pAij;
- pAij++;
- }
- }
- }
-
- // function directly calculates the symmetric inverse of a symmetric 3x3 matrix
- // only the on and above diagonal terms in B are used and need to be specified
- void f3x3matrixAeqInvSymB(float A[][3], float B[][3])
- {
- float fB11B22mB12B12; // B[1][1] * B[2][2] - B[1][2] * B[1][2]
- float fB12B02mB01B22; // B[1][2] * B[0][2] - B[0][1] * B[2][2]
- float fB01B12mB11B02; // B[0][1] * B[1][2] - B[1][1] * B[0][2]
- float ftmp; // determinant and then reciprocal
-
- // calculate useful products
- fB11B22mB12B12 = B[1][1] * B[2][2] - B[1][2] * B[1][2];
- fB12B02mB01B22 = B[1][2] * B[0][2] - B[0][1] * B[2][2];
- fB01B12mB11B02 = B[0][1] * B[1][2] - B[1][1] * B[0][2];
-
- // set ftmp to the determinant of the input matrix B
- ftmp = B[0][0] * fB11B22mB12B12 + B[0][1] * fB12B02mB01B22 + B[0][2] * fB01B12mB11B02;
-
- // set A to the inverse of B for any determinant except zero
- if (ftmp != 0.0F) {
- ftmp = 1.0F / ftmp;
- A[0][0] = fB11B22mB12B12 * ftmp;
- A[1][0] = A[0][1] = fB12B02mB01B22 * ftmp;
- A[2][0] = A[0][2] = fB01B12mB11B02 * ftmp;
- A[1][1] = (B[0][0] * B[2][2] - B[0][2] * B[0][2]) * ftmp;
- A[2][1] = A[1][2] = (B[0][2] * B[0][1] - B[0][0] * B[1][2]) * ftmp;
- A[2][2] = (B[0][0] * B[1][1] - B[0][1] * B[0][1]) * ftmp;
- } else {
- // provide the identity matrix if the determinant is zero
- f3x3matrixAeqI(A);
- }
- }
-
- // function calculates the determinant of a 3x3 matrix
- float f3x3matrixDetA(float A[][3])
- {
- return (A[X][X] * (A[Y][Y] * A[Z][Z] - A[Y][Z] * A[Z][Y]) +
- A[X][Y] * (A[Y][Z] * A[Z][X] - A[Y][X] * A[Z][Z]) +
- A[X][Z] * (A[Y][X] * A[Z][Y] - A[Y][Y] * A[Z][X]));
- }
-
- // function computes all eigenvalues and eigenvectors of a real symmetric matrix A[0..n-1][0..n-1]
- // stored in the top left of a 10x10 array A[10][10]
- // A[][] is changed on output.
- // eigval[0..n-1] returns the eigenvalues of A[][].
- // eigvec[0..n-1][0..n-1] returns the normalized eigenvectors of A[][]
- // the eigenvectors are not sorted by value
- void eigencompute(float A[][10], float eigval[], float eigvec[][10], int8_t n)
- {
- // maximum number of iterations to achieve convergence: in practice 6 is typical
- #define NITERATIONS 15
-
- // various trig functions of the jacobi rotation angle phi
- float cot2phi, tanhalfphi, tanphi, sinphi, cosphi;
- // scratch variable to prevent over-writing during rotations
- float ftmp;
- // residue from remaining non-zero above diagonal terms
- float residue;
- // matrix row and column indices
- int8_t ir, ic;
- // general loop counter
- int8_t j;
- // timeout ctr for number of passes of the algorithm
- int8_t ctr;
-
- // initialize eigenvectors matrix and eigenvalues array
- for (ir = 0; ir < n; ir++) {
- // loop over all columns
- for (ic = 0; ic < n; ic++) {
- // set on diagonal and off-diagonal elements to zero
- eigvec[ir][ic] = 0.0F;
- }
-
- // correct the diagonal elements to 1.0
- eigvec[ir][ir] = 1.0F;
-
- // initialize the array of eigenvalues to the diagonal elements of m
- eigval[ir] = A[ir][ir];
- }
-
- // initialize the counter and loop until converged or NITERATIONS reached
- ctr = 0;
- do {
- // compute the absolute value of the above diagonal elements as exit criterion
- residue = 0.0F;
- // loop over rows excluding last row
- for (ir = 0; ir < n - 1; ir++) {
- // loop over above diagonal columns
- for (ic = ir + 1; ic < n; ic++) {
- // accumulate the residual off diagonal terms which are being driven to zero
- residue += fabsf(A[ir][ic]);
- }
- }
-
- // check if we still have work to do
- if (residue > 0.0F) {
- // loop over all rows with the exception of the last row (since only rotating above diagonal elements)
- for (ir = 0; ir < n - 1; ir++) {
- // loop over columns ic (where ic is always greater than ir since above diagonal)
- for (ic = ir + 1; ic < n; ic++) {
- // only continue with this element if the element is non-zero
- if (fabsf(A[ir][ic]) > 0.0F) {
- // calculate cot(2*phi) where phi is the Jacobi rotation angle
- cot2phi = 0.5F * (eigval[ic] - eigval[ir]) / (A[ir][ic]);
-
- // calculate tan(phi) correcting sign to ensure the smaller solution is used
- tanphi = 1.0F / (fabsf(cot2phi) + sqrtf(1.0F + cot2phi * cot2phi));
- if (cot2phi < 0.0F) {
- tanphi = -tanphi;
- }
-
- // calculate the sine and cosine of the Jacobi rotation angle phi
- cosphi = 1.0F / sqrtf(1.0F + tanphi * tanphi);
- sinphi = tanphi * cosphi;
-
- // calculate tan(phi/2)
- tanhalfphi = sinphi / (1.0F + cosphi);
-
- // set tmp = tan(phi) times current matrix element used in update of leading diagonal elements
- ftmp = tanphi * A[ir][ic];
-
- // apply the jacobi rotation to diagonal elements [ir][ir] and [ic][ic] stored in the eigenvalue array
- // eigval[ir] = eigval[ir] - tan(phi) * A[ir][ic]
- eigval[ir] -= ftmp;
- // eigval[ic] = eigval[ic] + tan(phi) * A[ir][ic]
- eigval[ic] += ftmp;
-
- // by definition, applying the jacobi rotation on element ir, ic results in 0.0
- A[ir][ic] = 0.0F;
-
- // apply the jacobi rotation to all elements of the eigenvector matrix
- for (j = 0; j < n; j++) {
- // store eigvec[j][ir]
- ftmp = eigvec[j][ir];
- // eigvec[j][ir] = eigvec[j][ir] - sin(phi) * (eigvec[j][ic] + tan(phi/2) * eigvec[j][ir])
- eigvec[j][ir] = ftmp - sinphi * (eigvec[j][ic] + tanhalfphi * ftmp);
- // eigvec[j][ic] = eigvec[j][ic] + sin(phi) * (eigvec[j][ir] - tan(phi/2) * eigvec[j][ic])
- eigvec[j][ic] = eigvec[j][ic] + sinphi * (ftmp - tanhalfphi * eigvec[j][ic]);
- }
-
- // apply the jacobi rotation only to those elements of matrix m that can change
- for (j = 0; j <= ir - 1; j++) {
- // store A[j][ir]
- ftmp = A[j][ir];
- // A[j][ir] = A[j][ir] - sin(phi) * (A[j][ic] + tan(phi/2) * A[j][ir])
- A[j][ir] = ftmp - sinphi * (A[j][ic] + tanhalfphi * ftmp);
- // A[j][ic] = A[j][ic] + sin(phi) * (A[j][ir] - tan(phi/2) * A[j][ic])
- A[j][ic] = A[j][ic] + sinphi * (ftmp - tanhalfphi * A[j][ic]);
- }
- for (j = ir + 1; j <= ic - 1; j++) {
- // store A[ir][j]
- ftmp = A[ir][j];
- // A[ir][j] = A[ir][j] - sin(phi) * (A[j][ic] + tan(phi/2) * A[ir][j])
- A[ir][j] = ftmp - sinphi * (A[j][ic] + tanhalfphi * ftmp);
- // A[j][ic] = A[j][ic] + sin(phi) * (A[ir][j] - tan(phi/2) * A[j][ic])
- A[j][ic] = A[j][ic] + sinphi * (ftmp - tanhalfphi * A[j][ic]);
- }
- for (j = ic + 1; j < n; j++) {
- // store A[ir][j]
- ftmp = A[ir][j];
- // A[ir][j] = A[ir][j] - sin(phi) * (A[ic][j] + tan(phi/2) * A[ir][j])
- A[ir][j] = ftmp - sinphi * (A[ic][j] + tanhalfphi * ftmp);
- // A[ic][j] = A[ic][j] + sin(phi) * (A[ir][j] - tan(phi/2) * A[ic][j])
- A[ic][j] = A[ic][j] + sinphi * (ftmp - tanhalfphi * A[ic][j]);
- }
- } // end of test for matrix element already zero
- } // end of loop over columns
- } // end of loop over rows
- } // end of test for non-zero residue
- } while ((residue > 0.0F) && (ctr++ < NITERATIONS)); // end of main loop
- }
-
- // function uses Gauss-Jordan elimination to compute the inverse of matrix A in situ
- // on exit, A is replaced with its inverse
- void fmatrixAeqInvA(float *A[], int8_t iColInd[], int8_t iRowInd[], int8_t iPivot[], int8_t isize)
- {
- float largest; // largest element used for pivoting
- float scaling; // scaling factor in pivoting
- float recippiv; // reciprocal of pivot element
- float ftmp; // temporary variable used in swaps
- int8_t i, j, k, l, m; // index counters
- int8_t iPivotRow, iPivotCol; // row and column of pivot element
-
- // to avoid compiler warnings
- iPivotRow = iPivotCol = 0;
-
- // initialize the pivot array to 0
- for (j = 0; j < isize; j++) {
- iPivot[j] = 0;
- }
-
- // main loop i over the dimensions of the square matrix A
- for (i = 0; i < isize; i++) {
- // zero the largest element found for pivoting
- largest = 0.0F;
- // loop over candidate rows j
- for (j = 0; j < isize; j++) {
- // check if row j has been previously pivoted
- if (iPivot[j] != 1) {
- // loop over candidate columns k
- for (k = 0; k < isize; k++) {
- // check if column k has previously been pivoted
- if (iPivot[k] == 0) {
- // check if the pivot element is the largest found so far
- if (fabsf(A[j][k]) >= largest) {
- // and store this location as the current best candidate for pivoting
- iPivotRow = j;
- iPivotCol = k;
- largest = (float) fabsf(A[iPivotRow][iPivotCol]);
- }
- } else if (iPivot[k] > 1) {
- // zero determinant situation: exit with identity matrix
- fmatrixAeqI(A, isize);
- return;
- }
- }
- }
- }
- // increment the entry in iPivot to denote it has been selected for pivoting
- iPivot[iPivotCol]++;
-
- // check the pivot rows iPivotRow and iPivotCol are not the same before swapping
- if (iPivotRow != iPivotCol) {
- // loop over columns l
- for (l = 0; l < isize; l++) {
- // and swap all elements of rows iPivotRow and iPivotCol
- ftmp = A[iPivotRow][l];
- A[iPivotRow][l] = A[iPivotCol][l];
- A[iPivotCol][l] = ftmp;
- }
- }
-
- // record that on the i-th iteration rows iPivotRow and iPivotCol were swapped
- iRowInd[i] = iPivotRow;
- iColInd[i] = iPivotCol;
-
- // check for zero on-diagonal element (singular matrix) and return with identity matrix if detected
- if (A[iPivotCol][iPivotCol] == 0.0F) {
- // zero determinant situation: exit with identity matrix
- fmatrixAeqI(A, isize);
- return;
- }
-
- // calculate the reciprocal of the pivot element knowing it's non-zero
- recippiv = 1.0F / A[iPivotCol][iPivotCol];
- // by definition, the diagonal element normalizes to 1
- A[iPivotCol][iPivotCol] = 1.0F;
- // multiply all of row iPivotCol by the reciprocal of the pivot element including the diagonal element
- // the diagonal element A[iPivotCol][iPivotCol] now has value equal to the reciprocal of its previous value
- for (l = 0; l < isize; l++) {
- A[iPivotCol][l] *= recippiv;
- }
- // loop over all rows m of A
- for (m = 0; m < isize; m++) {
- if (m != iPivotCol) {
- // scaling factor for this row m is in column iPivotCol
- scaling = A[m][iPivotCol];
- // zero this element
- A[m][iPivotCol] = 0.0F;
- // loop over all columns l of A and perform elimination
- for (l = 0; l < isize; l++) {
- A[m][l] -= A[iPivotCol][l] * scaling;
- }
- }
- }
- } // end of loop i over the matrix dimensions
-
- // finally, loop in inverse order to apply the missing column swaps
- for (l = isize - 1; l >= 0; l--) {
- // set i and j to the two columns to be swapped
- i = iRowInd[l];
- j = iColInd[l];
-
- // check that the two columns i and j to be swapped are not the same
- if (i != j) {
- // loop over all rows k to swap columns i and j of A
- for (k = 0; k < isize; k++) {
- ftmp = A[k][i];
- A[k][i] = A[k][j];
- A[k][j] = ftmp;
- }
- }
- }
- }
-
- // function re-orthonormalizes a 3x3 rotation matrix
- void fmatrixAeqRenormRotA(float A[][3])
- {
- float ftmp; // scratch variable
-
- // normalize the X column of the low pass filtered orientation matrix
- ftmp = sqrtf(A[X][X] * A[X][X] + A[Y][X] * A[Y][X] + A[Z][X] * A[Z][X]);
- if (ftmp > CORRUPTMATRIX) {
- // normalize the x column vector
- ftmp = 1.0F / ftmp;
- A[X][X] *= ftmp;
- A[Y][X] *= ftmp;
- A[Z][X] *= ftmp;
- } else {
- // set x column vector to {1, 0, 0}
- A[X][X] = 1.0F;
- A[Y][X] = A[Z][X] = 0.0F;
- }
-
- // force the y column vector to be orthogonal to x using y = y-(x.y)x
- ftmp = A[X][X] * A[X][Y] + A[Y][X] * A[Y][Y] + A[Z][X] * A[Z][Y];
- A[X][Y] -= ftmp * A[X][X];
- A[Y][Y] -= ftmp * A[Y][X];
- A[Z][Y] -= ftmp * A[Z][X];
-
- // normalize the y column vector
- ftmp = sqrtf(A[X][Y] * A[X][Y] + A[Y][Y] * A[Y][Y] + A[Z][Y] * A[Z][Y]);
- if (ftmp > CORRUPTMATRIX) {
- // normalize the y column vector
- ftmp = 1.0F / ftmp;
- A[X][Y] *= ftmp;
- A[Y][Y] *= ftmp;
- A[Z][Y] *= ftmp;
- } else {
- // set y column vector to {0, 1, 0}
- A[Y][Y] = 1.0F;
- A[X][Y] = A[Z][Y] = 0.0F;
- }
-
- // finally set the z column vector to x vector cross y vector (automatically normalized)
- A[X][Z] = A[Y][X] * A[Z][Y] - A[Z][X] * A[Y][Y];
- A[Y][Z] = A[Z][X] * A[X][Y] - A[X][X] * A[Z][Y];
- A[Z][Z] = A[X][X] * A[Y][Y] - A[Y][X] * A[X][Y];
- }
|