PlatformIO package of the Teensy core framework compatible with GCC 10 & C++20
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

613 lines
18KB

  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL2_TX_BUFFER_SIZE
  37. #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL2_RX_BUFFER_SIZE
  40. #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL2_TX_BUFFER_SIZE > 65535
  76. static volatile uint32_t tx_buffer_head = 0;
  77. static volatile uint32_t tx_buffer_tail = 0;
  78. #elif SERIAL2_TX_BUFFER_SIZE > 255
  79. static volatile uint16_t tx_buffer_head = 0;
  80. static volatile uint16_t tx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t tx_buffer_head = 0;
  83. static volatile uint8_t tx_buffer_tail = 0;
  84. #endif
  85. #if SERIAL2_RX_BUFFER_SIZE > 65535
  86. static volatile uint32_t rx_buffer_head = 0;
  87. static volatile uint32_t rx_buffer_tail = 0;
  88. #elif SERIAL2_RX_BUFFER_SIZE > 255
  89. static volatile uint16_t rx_buffer_head = 0;
  90. static volatile uint16_t rx_buffer_tail = 0;
  91. #else
  92. static volatile uint8_t rx_buffer_head = 0;
  93. static volatile uint8_t rx_buffer_tail = 0;
  94. #endif
  95. #if defined(KINETISK)
  96. static uint8_t rx_pin_num = 9;
  97. static uint8_t tx_pin_num = 10;
  98. #endif
  99. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  100. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  101. #ifdef HAS_KINETISK_UART1_FIFO
  102. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  103. #else
  104. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  105. #endif
  106. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  107. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  108. #define C2_TX_INACTIVE C2_ENABLE
  109. void serial2_begin(uint32_t divisor)
  110. {
  111. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  112. rx_buffer_head = 0;
  113. rx_buffer_tail = 0;
  114. tx_buffer_head = 0;
  115. tx_buffer_tail = 0;
  116. transmitting = 0;
  117. #if defined(KINETISK)
  118. switch (rx_pin_num) {
  119. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  120. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  121. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  122. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  123. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  124. #endif
  125. }
  126. switch (tx_pin_num) {
  127. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  128. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  129. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  130. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  131. case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  132. #endif
  133. }
  134. #elif defined(KINETISL)
  135. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  136. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  137. #endif
  138. #if defined(HAS_KINETISK_UART1)
  139. if (divisor < 32) divisor = 32;
  140. UART1_BDH = (divisor >> 13) & 0x1F;
  141. UART1_BDL = (divisor >> 5) & 0xFF;
  142. UART1_C4 = divisor & 0x1F;
  143. #ifdef HAS_KINETISK_UART1_FIFO
  144. UART1_C1 = UART_C1_ILT;
  145. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  146. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  147. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  148. #else
  149. UART1_C1 = 0;
  150. UART1_PFIFO = 0;
  151. #endif
  152. #elif defined(HAS_KINETISL_UART1)
  153. if (divisor < 1) divisor = 1;
  154. UART1_BDH = (divisor >> 8) & 0x1F;
  155. UART1_BDL = divisor & 0xFF;
  156. UART1_C1 = 0;
  157. #endif
  158. UART1_C2 = C2_TX_INACTIVE;
  159. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  160. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  161. }
  162. void serial2_format(uint32_t format)
  163. {
  164. uint8_t c;
  165. c = UART1_C1;
  166. c = (c & ~0x13) | (format & 0x03); // configure parity
  167. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  168. UART1_C1 = c;
  169. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  170. c = UART1_S2 & ~0x10;
  171. if (format & 0x10) c |= 0x10; // rx invert
  172. UART1_S2 = c;
  173. c = UART1_C3 & ~0x10;
  174. if (format & 0x20) c |= 0x10; // tx invert
  175. UART1_C3 = c;
  176. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  177. c = UART1_C4 & 0x1F;
  178. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  179. UART1_C4 = c;
  180. use9Bits = format & 0x80;
  181. #endif
  182. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  183. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  184. if ( format & 0x100) {
  185. uint8_t bdl = UART1_BDL;
  186. UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  187. UART1_BDL = bdl; // Says BDH not acted on until BDL is written
  188. }
  189. #endif
  190. }
  191. void serial2_end(void)
  192. {
  193. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  194. while (transmitting) yield(); // wait for buffered data to send
  195. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  196. UART1_C2 = 0;
  197. #if defined(KINETISK)
  198. switch (rx_pin_num) {
  199. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  200. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  201. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  202. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  203. case 59: CORE_PIN59_CONFIG = 0; break;
  204. #endif
  205. }
  206. switch (tx_pin_num & 127) {
  207. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  208. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  209. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  210. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  211. case 58: CORE_PIN58_CONFIG = 0; break;
  212. #endif
  213. }
  214. #elif defined(KINETISL)
  215. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
  216. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
  217. #endif
  218. UART1_S1;
  219. UART1_D; // clear leftover error status
  220. rx_buffer_head = 0;
  221. rx_buffer_tail = 0;
  222. if (rts_pin) rts_deassert();
  223. }
  224. void serial2_set_transmit_pin(uint8_t pin)
  225. {
  226. while (transmitting) ;
  227. pinMode(pin, OUTPUT);
  228. digitalWrite(pin, LOW);
  229. transmit_pin = portOutputRegister(pin);
  230. #if defined(KINETISL)
  231. transmit_mask = digitalPinToBitMask(pin);
  232. #endif
  233. }
  234. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  235. {
  236. #if defined(KINETISK)
  237. uint32_t cfg;
  238. if (opendrain) pin |= 128;
  239. if (pin == tx_pin_num) return;
  240. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  241. switch (tx_pin_num & 127) {
  242. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  243. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  244. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  245. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  246. case 58: CORE_PIN58_CONFIG = 0; break;
  247. #endif
  248. }
  249. if (opendrain) {
  250. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  251. } else {
  252. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  253. }
  254. switch (pin & 127) {
  255. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  256. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  257. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  258. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  259. case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break;
  260. #endif
  261. }
  262. }
  263. tx_pin_num = pin;
  264. #endif
  265. }
  266. void serial2_set_rx(uint8_t pin)
  267. {
  268. #if defined(KINETISK)
  269. if (pin == rx_pin_num) return;
  270. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  271. switch (rx_pin_num) {
  272. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  273. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  274. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  275. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  276. case 59: CORE_PIN59_CONFIG = 0; break;
  277. #endif
  278. }
  279. switch (pin) {
  280. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  281. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  282. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  283. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  284. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  285. #endif
  286. }
  287. }
  288. rx_pin_num = pin;
  289. #endif
  290. }
  291. int serial2_set_rts(uint8_t pin)
  292. {
  293. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  294. if (pin < CORE_NUM_DIGITAL) {
  295. rts_pin = portOutputRegister(pin);
  296. #if defined(KINETISL)
  297. rts_mask = digitalPinToBitMask(pin);
  298. #endif
  299. pinMode(pin, OUTPUT);
  300. rts_assert();
  301. } else {
  302. rts_pin = NULL;
  303. return 0;
  304. }
  305. /*
  306. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  307. if (pin == 22) {
  308. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  309. } else {
  310. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  311. return 0;
  312. }
  313. UART1_MODEM |= UART_MODEM_RXRTSE;
  314. */
  315. return 1;
  316. }
  317. int serial2_set_cts(uint8_t pin)
  318. {
  319. #if defined(KINETISK)
  320. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  321. if (pin == 23) {
  322. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  323. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6
  324. } else if (pin == 60) {
  325. CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  326. #endif
  327. } else {
  328. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  329. return 0;
  330. }
  331. UART1_MODEM |= UART_MODEM_TXCTSE;
  332. return 1;
  333. #else
  334. return 0;
  335. #endif
  336. }
  337. void serial2_putchar(uint32_t c)
  338. {
  339. uint32_t head, n;
  340. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  341. if (transmit_pin) transmit_assert();
  342. head = tx_buffer_head;
  343. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  344. while (tx_buffer_tail == head) {
  345. int priority = nvic_execution_priority();
  346. if (priority <= IRQ_PRIORITY) {
  347. if ((UART1_S1 & UART_S1_TDRE)) {
  348. uint32_t tail = tx_buffer_tail;
  349. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  350. n = tx_buffer[tail];
  351. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  352. UART1_D = n;
  353. tx_buffer_tail = tail;
  354. }
  355. } else if (priority >= 256) {
  356. yield(); // wait
  357. }
  358. }
  359. tx_buffer[head] = c;
  360. transmitting = 1;
  361. tx_buffer_head = head;
  362. UART1_C2 = C2_TX_ACTIVE;
  363. }
  364. #ifdef HAS_KINETISK_UART1_FIFO
  365. void serial2_write(const void *buf, unsigned int count)
  366. {
  367. const uint8_t *p = (const uint8_t *)buf;
  368. const uint8_t *end = p + count;
  369. uint32_t head, n;
  370. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  371. if (transmit_pin) transmit_assert();
  372. while (p < end) {
  373. head = tx_buffer_head;
  374. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  375. if (tx_buffer_tail == head) {
  376. UART1_C2 = C2_TX_ACTIVE;
  377. do {
  378. int priority = nvic_execution_priority();
  379. if (priority <= IRQ_PRIORITY) {
  380. if ((UART1_S1 & UART_S1_TDRE)) {
  381. uint32_t tail = tx_buffer_tail;
  382. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  383. n = tx_buffer[tail];
  384. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  385. UART1_D = n;
  386. tx_buffer_tail = tail;
  387. }
  388. } else if (priority >= 256) {
  389. yield();
  390. }
  391. } while (tx_buffer_tail == head);
  392. }
  393. tx_buffer[head] = *p++;
  394. transmitting = 1;
  395. tx_buffer_head = head;
  396. }
  397. UART1_C2 = C2_TX_ACTIVE;
  398. }
  399. #else
  400. void serial2_write(const void *buf, unsigned int count)
  401. {
  402. const uint8_t *p = (const uint8_t *)buf;
  403. while (count-- > 0) serial2_putchar(*p++);
  404. }
  405. #endif
  406. void serial2_flush(void)
  407. {
  408. while (transmitting) yield(); // wait
  409. }
  410. int serial2_write_buffer_free(void)
  411. {
  412. uint32_t head, tail;
  413. head = tx_buffer_head;
  414. tail = tx_buffer_tail;
  415. if (head >= tail) return SERIAL2_TX_BUFFER_SIZE - 1 - head + tail;
  416. return tail - head - 1;
  417. }
  418. int serial2_available(void)
  419. {
  420. uint32_t head, tail;
  421. head = rx_buffer_head;
  422. tail = rx_buffer_tail;
  423. if (head >= tail) return head - tail;
  424. return SERIAL2_RX_BUFFER_SIZE + head - tail;
  425. }
  426. int serial2_getchar(void)
  427. {
  428. uint32_t head, tail;
  429. int c;
  430. head = rx_buffer_head;
  431. tail = rx_buffer_tail;
  432. if (head == tail) return -1;
  433. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  434. c = rx_buffer[tail];
  435. rx_buffer_tail = tail;
  436. if (rts_pin) {
  437. int avail;
  438. if (head >= tail) avail = head - tail;
  439. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  440. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  441. }
  442. return c;
  443. }
  444. int serial2_peek(void)
  445. {
  446. uint32_t head, tail;
  447. head = rx_buffer_head;
  448. tail = rx_buffer_tail;
  449. if (head == tail) return -1;
  450. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  451. return rx_buffer[tail];
  452. }
  453. void serial2_clear(void)
  454. {
  455. #ifdef HAS_KINETISK_UART1_FIFO
  456. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  457. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  458. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  459. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  460. #endif
  461. rx_buffer_head = rx_buffer_tail;
  462. if (rts_pin) rts_assert();
  463. }
  464. // status interrupt combines
  465. // Transmit data below watermark UART_S1_TDRE
  466. // Transmit complete UART_S1_TC
  467. // Idle line UART_S1_IDLE
  468. // Receive data above watermark UART_S1_RDRF
  469. // LIN break detect UART_S2_LBKDIF
  470. // RxD pin active edge UART_S2_RXEDGIF
  471. void uart1_status_isr(void)
  472. {
  473. uint32_t head, tail, n;
  474. uint8_t c;
  475. #ifdef HAS_KINETISK_UART1_FIFO
  476. uint32_t newhead;
  477. uint8_t avail;
  478. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  479. __disable_irq();
  480. avail = UART1_RCFIFO;
  481. if (avail == 0) {
  482. // The only way to clear the IDLE interrupt flag is
  483. // to read the data register. But reading with no
  484. // data causes a FIFO underrun, which causes the
  485. // FIFO to return corrupted data. If anyone from
  486. // Freescale reads this, what a poor design! There
  487. // write should be a write-1-to-clear for IDLE.
  488. c = UART1_D;
  489. // flushing the fifo recovers from the underrun,
  490. // but there's a possible race condition where a
  491. // new character could be received between reading
  492. // RCFIFO == 0 and flushing the FIFO. To minimize
  493. // the chance, interrupts are disabled so a higher
  494. // priority interrupt (hopefully) doesn't delay.
  495. // TODO: change this to disabling the IDLE interrupt
  496. // which won't be simple, since we already manage
  497. // which transmit interrupts are enabled.
  498. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  499. __enable_irq();
  500. } else {
  501. __enable_irq();
  502. head = rx_buffer_head;
  503. tail = rx_buffer_tail;
  504. do {
  505. if (use9Bits && (UART1_C3 & 0x80)) {
  506. n = UART1_D | 0x100;
  507. } else {
  508. n = UART1_D;
  509. }
  510. newhead = head + 1;
  511. if (newhead >= SERIAL2_RX_BUFFER_SIZE) newhead = 0;
  512. if (newhead != tail) {
  513. head = newhead;
  514. rx_buffer[head] = n;
  515. }
  516. } while (--avail > 0);
  517. rx_buffer_head = head;
  518. if (rts_pin) {
  519. int avail;
  520. if (head >= tail) avail = head - tail;
  521. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  522. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  523. }
  524. }
  525. }
  526. c = UART1_C2;
  527. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  528. head = tx_buffer_head;
  529. tail = tx_buffer_tail;
  530. do {
  531. if (tail == head) break;
  532. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  533. avail = UART1_S1;
  534. n = tx_buffer[tail];
  535. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  536. UART1_D = n;
  537. } while (UART1_TCFIFO < 8);
  538. tx_buffer_tail = tail;
  539. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  540. }
  541. #else
  542. if (UART1_S1 & UART_S1_RDRF) {
  543. if (use9Bits && (UART1_C3 & 0x80)) {
  544. n = UART1_D | 0x100;
  545. } else {
  546. n = UART1_D;
  547. }
  548. head = rx_buffer_head + 1;
  549. if (head >= SERIAL2_RX_BUFFER_SIZE) head = 0;
  550. if (head != rx_buffer_tail) {
  551. rx_buffer[head] = n;
  552. rx_buffer_head = head;
  553. }
  554. }
  555. c = UART1_C2;
  556. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  557. head = tx_buffer_head;
  558. tail = tx_buffer_tail;
  559. if (head == tail) {
  560. UART1_C2 = C2_TX_COMPLETING;
  561. } else {
  562. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  563. n = tx_buffer[tail];
  564. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  565. UART1_D = n;
  566. tx_buffer_tail = tail;
  567. }
  568. }
  569. #endif
  570. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  571. transmitting = 0;
  572. if (transmit_pin) transmit_deassert();
  573. UART1_C2 = C2_TX_INACTIVE;
  574. }
  575. }