|
- // RH_RF22.h
- // Author: Mike McCauley (mikem@airspayce.com)
- // Copyright (C) 2011 Mike McCauley
- // $Id: RH_RF22.h,v 1.30 2016/07/07 00:02:53 mikem Exp mikem $
- //
-
- #ifndef RH_RF22_h
- #define RH_RF22_h
-
- #include <RHGenericSPI.h>
- #include <RHSPIDriver.h>
-
- // This is the maximum number of interrupts the library can support
- // Most Arduinos can handle 2, Megas can handle more
- #define RH_RF22_NUM_INTERRUPTS 3
-
- // This is the bit in the SPI address that marks it as a write
- #define RH_RF22_SPI_WRITE_MASK 0x80
-
- // This is the maximum message length that can be supported by this library. Limited by
- // the single message length octet in the header.
- // Yes, 255 is correct even though the FIFO size in the RF22 is only
- // 64 octets. We use interrupts to refill the Tx FIFO during transmission and to empty the
- // Rx FIFO during reception
- // Can be pre-defined to a smaller size (to save SRAM) prior to including this header
- #ifndef RH_RF22_MAX_MESSAGE_LEN
- //#define RH_RF22_MAX_MESSAGE_LEN 255
- #define RH_RF22_MAX_MESSAGE_LEN 50
- #endif
-
- // Max number of octets the RF22 Rx and Tx FIFOs can hold
- #define RH_RF22_FIFO_SIZE 64
-
- // These values we set for FIFO thresholds (4, 55) are actually the same as the POR values
- #define RH_RF22_TXFFAEM_THRESHOLD 4
- #define RH_RF22_RXFFAFULL_THRESHOLD 55
-
- // Number of registers to be passed to setModemConfig(). Obsolete.
- #define RH_RF22_NUM_MODEM_CONFIG_REGS 18
-
- // Register names
- #define RH_RF22_REG_00_DEVICE_TYPE 0x00
- #define RH_RF22_REG_01_VERSION_CODE 0x01
- #define RH_RF22_REG_02_DEVICE_STATUS 0x02
- #define RH_RF22_REG_03_INTERRUPT_STATUS1 0x03
- #define RH_RF22_REG_04_INTERRUPT_STATUS2 0x04
- #define RH_RF22_REG_05_INTERRUPT_ENABLE1 0x05
- #define RH_RF22_REG_06_INTERRUPT_ENABLE2 0x06
- #define RH_RF22_REG_07_OPERATING_MODE1 0x07
- #define RH_RF22_REG_08_OPERATING_MODE2 0x08
- #define RH_RF22_REG_09_OSCILLATOR_LOAD_CAPACITANCE 0x09
- #define RH_RF22_REG_0A_UC_OUTPUT_CLOCK 0x0a
- #define RH_RF22_REG_0B_GPIO_CONFIGURATION0 0x0b
- #define RH_RF22_REG_0C_GPIO_CONFIGURATION1 0x0c
- #define RH_RF22_REG_0D_GPIO_CONFIGURATION2 0x0d
- #define RH_RF22_REG_0E_IO_PORT_CONFIGURATION 0x0e
- #define RH_RF22_REG_0F_ADC_CONFIGURATION 0x0f
- #define RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET 0x10
- #define RH_RF22_REG_11_ADC_VALUE 0x11
- #define RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION 0x12
- #define RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET 0x13
- #define RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1 0x14
- #define RH_RF22_REG_15_WAKEUP_TIMER_PERIOD2 0x15
- #define RH_RF22_REG_16_WAKEUP_TIMER_PERIOD3 0x16
- #define RH_RF22_REG_17_WAKEUP_TIMER_VALUE1 0x17
- #define RH_RF22_REG_18_WAKEUP_TIMER_VALUE2 0x18
- #define RH_RF22_REG_19_LDC_MODE_DURATION 0x19
- #define RH_RF22_REG_1A_LOW_BATTERY_DETECTOR_THRESHOLD 0x1a
- #define RH_RF22_REG_1B_BATTERY_VOLTAGE_LEVEL 0x1b
- #define RH_RF22_REG_1C_IF_FILTER_BANDWIDTH 0x1c
- #define RH_RF22_REG_1D_AFC_LOOP_GEARSHIFT_OVERRIDE 0x1d
- #define RH_RF22_REG_1E_AFC_TIMING_CONTROL 0x1e
- #define RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE 0x1f
- #define RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE 0x20
- #define RH_RF22_REG_21_CLOCK_RECOVERY_OFFSET2 0x21
- #define RH_RF22_REG_22_CLOCK_RECOVERY_OFFSET1 0x22
- #define RH_RF22_REG_23_CLOCK_RECOVERY_OFFSET0 0x23
- #define RH_RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1 0x24
- #define RH_RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0 0x25
- #define RH_RF22_REG_26_RSSI 0x26
- #define RH_RF22_REG_27_RSSI_THRESHOLD 0x27
- #define RH_RF22_REG_28_ANTENNA_DIVERSITY1 0x28
- #define RH_RF22_REG_29_ANTENNA_DIVERSITY2 0x29
- #define RH_RF22_REG_2A_AFC_LIMITER 0x2a
- #define RH_RF22_REG_2B_AFC_CORRECTION_READ 0x2b
- #define RH_RF22_REG_2C_OOK_COUNTER_VALUE_1 0x2c
- #define RH_RF22_REG_2D_OOK_COUNTER_VALUE_2 0x2d
- #define RH_RF22_REG_2E_SLICER_PEAK_HOLD 0x2e
- #define RH_RF22_REG_30_DATA_ACCESS_CONTROL 0x30
- #define RH_RF22_REG_31_EZMAC_STATUS 0x31
- #define RH_RF22_REG_32_HEADER_CONTROL1 0x32
- #define RH_RF22_REG_33_HEADER_CONTROL2 0x33
- #define RH_RF22_REG_34_PREAMBLE_LENGTH 0x34
- #define RH_RF22_REG_35_PREAMBLE_DETECTION_CONTROL1 0x35
- #define RH_RF22_REG_36_SYNC_WORD3 0x36
- #define RH_RF22_REG_37_SYNC_WORD2 0x37
- #define RH_RF22_REG_38_SYNC_WORD1 0x38
- #define RH_RF22_REG_39_SYNC_WORD0 0x39
- #define RH_RF22_REG_3A_TRANSMIT_HEADER3 0x3a
- #define RH_RF22_REG_3B_TRANSMIT_HEADER2 0x3b
- #define RH_RF22_REG_3C_TRANSMIT_HEADER1 0x3c
- #define RH_RF22_REG_3D_TRANSMIT_HEADER0 0x3d
- #define RH_RF22_REG_3E_PACKET_LENGTH 0x3e
- #define RH_RF22_REG_3F_CHECK_HEADER3 0x3f
- #define RH_RF22_REG_40_CHECK_HEADER2 0x40
- #define RH_RF22_REG_41_CHECK_HEADER1 0x41
- #define RH_RF22_REG_42_CHECK_HEADER0 0x42
- #define RH_RF22_REG_43_HEADER_ENABLE3 0x43
- #define RH_RF22_REG_44_HEADER_ENABLE2 0x44
- #define RH_RF22_REG_45_HEADER_ENABLE1 0x45
- #define RH_RF22_REG_46_HEADER_ENABLE0 0x46
- #define RH_RF22_REG_47_RECEIVED_HEADER3 0x47
- #define RH_RF22_REG_48_RECEIVED_HEADER2 0x48
- #define RH_RF22_REG_49_RECEIVED_HEADER1 0x49
- #define RH_RF22_REG_4A_RECEIVED_HEADER0 0x4a
- #define RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH 0x4b
- #define RH_RF22_REG_50_ANALOG_TEST_BUS_SELECT 0x50
- #define RH_RF22_REG_51_DIGITAL_TEST_BUS_SELECT 0x51
- #define RH_RF22_REG_52_TX_RAMP_CONTROL 0x52
- #define RH_RF22_REG_53_PLL_TUNE_TIME 0x53
- #define RH_RF22_REG_55_CALIBRATION_CONTROL 0x55
- #define RH_RF22_REG_56_MODEM_TEST 0x56
- #define RH_RF22_REG_57_CHARGE_PUMP_TEST 0x57
- #define RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING 0x58
- #define RH_RF22_REG_59_DIVIDER_CURRENT_TRIMMING 0x59
- #define RH_RF22_REG_5A_VCO_CURRENT_TRIMMING 0x5a
- #define RH_RF22_REG_5B_VCO_CALIBRATION 0x5b
- #define RH_RF22_REG_5C_SYNTHESIZER_TEST 0x5c
- #define RH_RF22_REG_5D_BLOCK_ENABLE_OVERRIDE1 0x5d
- #define RH_RF22_REG_5E_BLOCK_ENABLE_OVERRIDE2 0x5e
- #define RH_RF22_REG_5F_BLOCK_ENABLE_OVERRIDE3 0x5f
- #define RH_RF22_REG_60_CHANNEL_FILTER_COEFFICIENT_ADDRESS 0x60
- #define RH_RF22_REG_61_CHANNEL_FILTER_COEFFICIENT_VALUE 0x61
- #define RH_RF22_REG_62_CRYSTAL_OSCILLATOR_POR_CONTROL 0x62
- #define RH_RF22_REG_63_RC_OSCILLATOR_COARSE_CALIBRATION 0x63
- #define RH_RF22_REG_64_RC_OSCILLATOR_FINE_CALIBRATION 0x64
- #define RH_RF22_REG_65_LDO_CONTROL_OVERRIDE 0x65
- #define RH_RF22_REG_66_LDO_LEVEL_SETTINGS 0x66
- #define RH_RF22_REG_67_DELTA_SIGMA_ADC_TUNING1 0x67
- #define RH_RF22_REG_68_DELTA_SIGMA_ADC_TUNING2 0x68
- #define RH_RF22_REG_69_AGC_OVERRIDE1 0x69
- #define RH_RF22_REG_6A_AGC_OVERRIDE2 0x6a
- #define RH_RF22_REG_6B_GFSK_FIR_FILTER_COEFFICIENT_ADDRESS 0x6b
- #define RH_RF22_REG_6C_GFSK_FIR_FILTER_COEFFICIENT_VALUE 0x6c
- #define RH_RF22_REG_6D_TX_POWER 0x6d
- #define RH_RF22_REG_6E_TX_DATA_RATE1 0x6e
- #define RH_RF22_REG_6F_TX_DATA_RATE0 0x6f
- #define RH_RF22_REG_70_MODULATION_CONTROL1 0x70
- #define RH_RF22_REG_71_MODULATION_CONTROL2 0x71
- #define RH_RF22_REG_72_FREQUENCY_DEVIATION 0x72
- #define RH_RF22_REG_73_FREQUENCY_OFFSET1 0x73
- #define RH_RF22_REG_74_FREQUENCY_OFFSET2 0x74
- #define RH_RF22_REG_75_FREQUENCY_BAND_SELECT 0x75
- #define RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1 0x76
- #define RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0 0x77
- #define RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT 0x79
- #define RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE 0x7a
- #define RH_RF22_REG_7C_TX_FIFO_CONTROL1 0x7c
- #define RH_RF22_REG_7D_TX_FIFO_CONTROL2 0x7d
- #define RH_RF22_REG_7E_RX_FIFO_CONTROL 0x7e
- #define RH_RF22_REG_7F_FIFO_ACCESS 0x7f
-
- // These register masks etc are named wherever possible
- // corresponding to the bit and field names in the RF-22 Manual
- // RH_RF22_REG_00_DEVICE_TYPE 0x00
- #define RH_RF22_DEVICE_TYPE_RX_TRX 0x08
- #define RH_RF22_DEVICE_TYPE_TX 0x07
-
- // RH_RF22_REG_02_DEVICE_STATUS 0x02
- #define RH_RF22_FFOVL 0x80
- #define RH_RF22_FFUNFL 0x40
- #define RH_RF22_RXFFEM 0x20
- #define RH_RF22_HEADERR 0x10
- #define RH_RF22_FREQERR 0x08
- #define RH_RF22_LOCKDET 0x04
- #define RH_RF22_CPS 0x03
- #define RH_RF22_CPS_IDLE 0x00
- #define RH_RF22_CPS_RX 0x01
- #define RH_RF22_CPS_TX 0x10
-
- // RH_RF22_REG_03_INTERRUPT_STATUS1 0x03
- #define RH_RF22_IFFERROR 0x80
- #define RH_RF22_ITXFFAFULL 0x40
- #define RH_RF22_ITXFFAEM 0x20
- #define RH_RF22_IRXFFAFULL 0x10
- #define RH_RF22_IEXT 0x08
- #define RH_RF22_IPKSENT 0x04
- #define RH_RF22_IPKVALID 0x02
- #define RH_RF22_ICRCERROR 0x01
-
- // RH_RF22_REG_04_INTERRUPT_STATUS2 0x04
- #define RH_RF22_ISWDET 0x80
- #define RH_RF22_IPREAVAL 0x40
- #define RH_RF22_IPREAINVAL 0x20
- #define RH_RF22_IRSSI 0x10
- #define RH_RF22_IWUT 0x08
- #define RH_RF22_ILBD 0x04
- #define RH_RF22_ICHIPRDY 0x02
- #define RH_RF22_IPOR 0x01
-
- // RH_RF22_REG_05_INTERRUPT_ENABLE1 0x05
- #define RH_RF22_ENFFERR 0x80
- #define RH_RF22_ENTXFFAFULL 0x40
- #define RH_RF22_ENTXFFAEM 0x20
- #define RH_RF22_ENRXFFAFULL 0x10
- #define RH_RF22_ENEXT 0x08
- #define RH_RF22_ENPKSENT 0x04
- #define RH_RF22_ENPKVALID 0x02
- #define RH_RF22_ENCRCERROR 0x01
-
- // RH_RF22_REG_06_INTERRUPT_ENABLE2 0x06
- #define RH_RF22_ENSWDET 0x80
- #define RH_RF22_ENPREAVAL 0x40
- #define RH_RF22_ENPREAINVAL 0x20
- #define RH_RF22_ENRSSI 0x10
- #define RH_RF22_ENWUT 0x08
- #define RH_RF22_ENLBDI 0x04
- #define RH_RF22_ENCHIPRDY 0x02
- #define RH_RF22_ENPOR 0x01
-
- // RH_RF22_REG_07_OPERATING_MODE 0x07
- #define RH_RF22_SWRES 0x80
- #define RH_RF22_ENLBD 0x40
- #define RH_RF22_ENWT 0x20
- #define RH_RF22_X32KSEL 0x10
- #define RH_RF22_TXON 0x08
- #define RH_RF22_RXON 0x04
- #define RH_RF22_PLLON 0x02
- #define RH_RF22_XTON 0x01
-
- // RH_RF22_REG_08_OPERATING_MODE2 0x08
- #define RH_RF22_ANTDIV 0xc0
- #define RH_RF22_RXMPK 0x10
- #define RH_RF22_AUTOTX 0x08
- #define RH_RF22_ENLDM 0x04
- #define RH_RF22_FFCLRRX 0x02
- #define RH_RF22_FFCLRTX 0x01
-
- // RH_RF22_REG_0F_ADC_CONFIGURATION 0x0f
- #define RH_RF22_ADCSTART 0x80
- #define RH_RF22_ADCDONE 0x80
- #define RH_RF22_ADCSEL 0x70
- #define RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR 0x00
- #define RH_RF22_ADCSEL_GPIO0_SINGLE_ENDED 0x10
- #define RH_RF22_ADCSEL_GPIO1_SINGLE_ENDED 0x20
- #define RH_RF22_ADCSEL_GPIO2_SINGLE_ENDED 0x30
- #define RH_RF22_ADCSEL_GPIO0_GPIO1_DIFFERENTIAL 0x40
- #define RH_RF22_ADCSEL_GPIO1_GPIO2_DIFFERENTIAL 0x50
- #define RH_RF22_ADCSEL_GPIO0_GPIO2_DIFFERENTIAL 0x60
- #define RH_RF22_ADCSEL_GND 0x70
- #define RH_RF22_ADCREF 0x0c
- #define RH_RF22_ADCREF_BANDGAP_VOLTAGE 0x00
- #define RH_RF22_ADCREF_VDD_ON_3 0x08
- #define RH_RF22_ADCREF_VDD_ON_2 0x0c
- #define RH_RF22_ADCGAIN 0x03
-
- // RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET 0x10
- #define RH_RF22_ADCOFFS 0x0f
-
- // RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION 0x12
- #define RH_RF22_TSRANGE 0xc0
- #define RH_RF22_TSRANGE_M64_64C 0x00
- #define RH_RF22_TSRANGE_M64_192C 0x40
- #define RH_RF22_TSRANGE_0_128C 0x80
- #define RH_RF22_TSRANGE_M40_216F 0xc0
- #define RH_RF22_ENTSOFFS 0x20
- #define RH_RF22_ENTSTRIM 0x10
- #define RH_RF22_TSTRIM 0x0f
-
- // RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1 0x14
- #define RH_RF22_WTR 0x3c
- #define RH_RF22_WTD 0x03
-
- // RH_RF22_REG_1D_AFC_LOOP_GEARSHIFT_OVERRIDE 0x1d
- #define RH_RF22_AFBCD 0x80
- #define RH_RF22_ENAFC 0x40
- #define RH_RF22_AFCGEARH 0x38
- #define RH_RF22_AFCGEARL 0x07
-
- // RH_RF22_REG_1E_AFC_TIMING_CONTROL 0x1e
- #define RH_RF22_SWAIT_TIMER 0xc0
- #define RH_RF22_SHWAIT 0x38
- #define RH_RF22_ANWAIT 0x07
-
- // RH_RF22_REG_30_DATA_ACCESS_CONTROL 0x30
- #define RH_RF22_ENPACRX 0x80
- #define RH_RF22_MSBFRST 0x00
- #define RH_RF22_LSBFRST 0x40
- #define RH_RF22_CRCHDRS 0x00
- #define RH_RF22_CRCDONLY 0x20
- #define RH_RF22_SKIP2PH 0x10
- #define RH_RF22_ENPACTX 0x08
- #define RH_RF22_ENCRC 0x04
- #define RH_RF22_CRC 0x03
- #define RH_RF22_CRC_CCITT 0x00
- #define RH_RF22_CRC_CRC_16_IBM 0x01
- #define RH_RF22_CRC_IEC_16 0x02
- #define RH_RF22_CRC_BIACHEVA 0x03
-
- // RH_RF22_REG_32_HEADER_CONTROL1 0x32
- #define RH_RF22_BCEN 0xf0
- #define RH_RF22_BCEN_NONE 0x00
- #define RH_RF22_BCEN_HEADER0 0x10
- #define RH_RF22_BCEN_HEADER1 0x20
- #define RH_RF22_BCEN_HEADER2 0x40
- #define RH_RF22_BCEN_HEADER3 0x80
- #define RH_RF22_HDCH 0x0f
- #define RH_RF22_HDCH_NONE 0x00
- #define RH_RF22_HDCH_HEADER0 0x01
- #define RH_RF22_HDCH_HEADER1 0x02
- #define RH_RF22_HDCH_HEADER2 0x04
- #define RH_RF22_HDCH_HEADER3 0x08
-
- // RH_RF22_REG_33_HEADER_CONTROL2 0x33
- #define RH_RF22_HDLEN 0x70
- #define RH_RF22_HDLEN_0 0x00
- #define RH_RF22_HDLEN_1 0x10
- #define RH_RF22_HDLEN_2 0x20
- #define RH_RF22_HDLEN_3 0x30
- #define RH_RF22_HDLEN_4 0x40
- #define RH_RF22_VARPKLEN 0x00
- #define RH_RF22_FIXPKLEN 0x08
- #define RH_RF22_SYNCLEN 0x06
- #define RH_RF22_SYNCLEN_1 0x00
- #define RH_RF22_SYNCLEN_2 0x02
- #define RH_RF22_SYNCLEN_3 0x04
- #define RH_RF22_SYNCLEN_4 0x06
- #define RH_RF22_PREALEN8 0x01
-
- // RH_RF22_REG_6D_TX_POWER 0x6d
- // https://www.sparkfun.com/datasheets/Wireless/General/RFM22B.pdf
- #define RH_RF22_PAPEAKVAL 0x80
- #define RH_RF22_PAPEAKEN 0x40
- #define RH_RF22_PAPEAKLVL 0x30
- #define RH_RF22_PAPEAKLVL6_5 0x00
- #define RH_RF22_PAPEAKLVL7 0x10
- #define RH_RF22_PAPEAKLVL7_5 0x20
- #define RH_RF22_PAPEAKLVL8 0x30
- #define RH_RF22_LNA_SW 0x08
- #define RH_RF22_TXPOW 0x07
- #define RH_RF22_TXPOW_4X31 0x08 // Not used in RFM22B
- // For RFM22B:
- #define RH_RF22_TXPOW_1DBM 0x00
- #define RH_RF22_TXPOW_2DBM 0x01
- #define RH_RF22_TXPOW_5DBM 0x02
- #define RH_RF22_TXPOW_8DBM 0x03
- #define RH_RF22_TXPOW_11DBM 0x04
- #define RH_RF22_TXPOW_14DBM 0x05
- #define RH_RF22_TXPOW_17DBM 0x06
- #define RH_RF22_TXPOW_20DBM 0x07
- // RFM23B only:
- #define RH_RF22_RF23B_TXPOW_M8DBM 0x00 // -8dBm
- #define RH_RF22_RF23B_TXPOW_M5DBM 0x01 // -5dBm
- #define RH_RF22_RF23B_TXPOW_M2DBM 0x02 // -2dBm
- #define RH_RF22_RF23B_TXPOW_1DBM 0x03 // 1dBm
- #define RH_RF22_RF23B_TXPOW_4DBM 0x04 // 4dBm
- #define RH_RF22_RF23B_TXPOW_7DBM 0x05 // 7dBm
- #define RH_RF22_RF23B_TXPOW_10DBM 0x06 // 10dBm
- #define RH_RF22_RF23B_TXPOW_13DBM 0x07 // 13dBm
- // RFM23BP only:
- #define RH_RF22_RF23BP_TXPOW_28DBM 0x05 // 28dBm
- #define RH_RF22_RF23BP_TXPOW_29DBM 0x06 // 29dBm
- #define RH_RF22_RF23BP_TXPOW_30DBM 0x07 // 30dBm
-
- // RH_RF22_REG_71_MODULATION_CONTROL2 0x71
- #define RH_RF22_TRCLK 0xc0
- #define RH_RF22_TRCLK_NONE 0x00
- #define RH_RF22_TRCLK_GPIO 0x40
- #define RH_RF22_TRCLK_SDO 0x80
- #define RH_RF22_TRCLK_NIRQ 0xc0
- #define RH_RF22_DTMOD 0x30
- #define RH_RF22_DTMOD_DIRECT_GPIO 0x00
- #define RH_RF22_DTMOD_DIRECT_SDI 0x10
- #define RH_RF22_DTMOD_FIFO 0x20
- #define RH_RF22_DTMOD_PN9 0x30
- #define RH_RF22_ENINV 0x08
- #define RH_RF22_FD8 0x04
- #define RH_RF22_MODTYP 0x30
- #define RH_RF22_MODTYP_UNMODULATED 0x00
- #define RH_RF22_MODTYP_OOK 0x01
- #define RH_RF22_MODTYP_FSK 0x02
- #define RH_RF22_MODTYP_GFSK 0x03
-
-
- // RH_RF22_REG_75_FREQUENCY_BAND_SELECT 0x75
- #define RH_RF22_SBSEL 0x40
- #define RH_RF22_HBSEL 0x20
- #define RH_RF22_FB 0x1f
-
- // Define this to include Serial printing in diagnostic routines
- #define RH_RF22_HAVE_SERIAL
-
- /////////////////////////////////////////////////////////////////////
- /// \class RH_RF22 RH_RF22.h <RH_RF22.h>
- /// \brief Driver to send and receive unaddressed, unreliable datagrams via an RF22 and compatible radio transceiver.
- ///
- /// Works with RF22, RF23 based radio modules, and compatible chips and modules, including:
- /// - RF22 bare module: http://www.sparkfun.com/products/10153
- /// (Caution, that is a 3.3V part, and requires a 3.3V CPU such as Teensy etc or level shifters)
- /// - RF22 shield: http://www.sparkfun.com/products/11018
- /// - RF22 integrated board http://www.anarduino.com/miniwireless
- /// - RFM23BP bare module: http://www.anarduino.com/details.jsp?pid=130
- /// - Silicon Labs Si4430/31/32 based modules. S4432 is equivalent to RF22. Si4431/30 is equivalent to RF23.
- ///
- /// Data based on https://www.sparkfun.com/datasheets/Wireless/General/RFM22B.pdf
- ///
- /// \par Overview
- ///
- /// This base class provides basic functions for sending and receiving unaddressed,
- /// unreliable datagrams of arbitrary length to 255 octets per packet.
- ///
- /// Manager classes may use this class to implement reliable, addressed datagrams and streams,
- /// mesh routers, repeaters, translators etc.
- ///
- /// On transmission, the TO and FROM addresses default to 0x00, unless changed by a subclass.
- /// On reception the TO addressed is checked against the node address (defaults to 0x00) or the
- /// broadcast address (which is 0xff). The ID and FLAGS are set to 0, and not checked by this class.
- /// This permits use of the this base RH_RF22 class as an
- /// unaddressed, unreliable datagram service without the use of one the RadioHead Manager classes.
- ///
- /// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
- /// modulation scheme.
- ///
- /// \par Details
- ///
- /// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
- /// RF22 and RF23 based radio modules, and compatible chips and modules,
- /// including the RFM22B transceiver module such as
- /// this bare module: http://www.sparkfun.com/products/10153
- /// and this shield: http://www.sparkfun.com/products/11018
- /// and this module: http://www.hoperfusa.com/details.jsp?pid=131
- /// and this integrated board: http://www.anarduino.com/miniwireless
- /// and RF23BP modules such as this http://www.anarduino.com/details.jsp?pid=130
- ///
- /// The Hope-RF (http://www.hoperf.com) RFM22B (http://www.hoperf.com/rf_fsk/fsk/RFM22B.htm)
- /// is a low-cost ISM transceiver module. It supports FSK, GFSK, OOK over a wide
- /// range of frequencies and programmable data rates.
- /// Manual can be found at https://www.sparkfun.com/datasheets/Wireless/General/RFM22.PDF
- ///
- /// This library provides functions for sending and receiving messages of up to 255 octets on any
- /// frequency supported by the RF22B, in a range of predefined data rates and frequency deviations.
- /// Frequency can be set with 312Hz precision to any frequency from 240.0MHz to 960.0MHz.
- ///
- /// Up to 3 RF22B modules can be connected to an Arduino, permitting the construction of translators
- /// and frequency changers, etc.
- ///
- /// The following modulation types are suppported with a range of modem configurations for
- /// common data rates and frequency deviations:
- /// - GFSK Gaussian Frequency Shift Keying
- /// - FSK Frequency Shift Keying
- /// - OOK On-Off Keying
- ///
- /// Support for other RF22B features such as on-chip temperature measurement, analog-digital
- /// converter, transmitter power control etc is also provided.
- ///
- /// Tested on Arduino Diecimila, Uno and Mega with arduino-0021, 1.0.5
- /// on OpenSuSE 13.1 and avr-libc-1.6.1-1.15,
- /// cross-avr-binutils-2.19-9.1, cross-avr-gcc-4.1.3_20080612-26.5.
- /// With HopeRF RFM22 modules that appear to have RF22B chips on board:
- /// - Device Type Code = 0x08 (RX/TRX)
- /// - Version Code = 0x06
- /// Works on Duo. Works with Sparkfun RFM22 Wireless shields. Works with RFM22 modules from http://www.hoperfusa.com/
- /// Works with Arduino 1.0 to at least 1.0.5. Works on Maple, Flymaple, Uno32 (with ChipKIT Core with Arduino IDE).
- ///
- /// \par Packet Format
- ///
- /// All messages sent and received by this Driver must conform to this packet format:
- ///
- /// - 8 nibbles (4 octets) PREAMBLE
- /// - 2 octets SYNC 0x2d, 0xd4
- /// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
- /// - 1 octet LENGTH (0 to 255), number of octets in DATA
- /// - 0 to 255 octets DATA
- /// - 2 octets CRC computed with CRC16(IBM), computed on HEADER, LENGTH and DATA
- ///
- /// For technical reasons, the message format is not protocol compatible with the
- /// 'HopeRF Radio Transceiver Message Library for Arduino' http://www.airspayce.com/mikem/arduino/HopeRF from the same author. Nor is it compatible with
- /// 'Virtual Wire' http://www.airspayce.com/mikem/arduino/VirtualWire.pdf also from the same author.
- ///
- /// \par Connecting RFM-22 to Arduino
- ///
- /// If you have the Sparkfun RFM22 Shield (https://www.sparkfun.com/products/11018)
- /// the connections described below are done for you on the shield, no changes required,
- /// just add headers and plug it in to an Arduino (but not and Arduino Mega, see below)
- ///
- /// The physical connection between the RF22B and the Arduino requires 3.3V,
- /// the 3 x SPI pins (SCK, SDI, SDO), a Slave Select pin and an interrupt pin.
- ///
- /// Note also that on the RFM22B (but not the RFM23B), it is required to control the TX_ANT and
- /// RX_ANT pins of the RFM22 in order to control the antenna connection properly. The RH_RF22
- /// driver is configured by default so that GPIO0 and GPIO1 outputs can
- /// control TX_ANT and RX_ANT input pins respectively automatically. On RFM22,
- /// you must connect GPIO0
- /// to TX_ANT and GPIO1 to RX_ANT for this automatic antenna switching to
- /// occur. See setGpioReversed() for more details. These connections are not required on RFM23B.
- ///
- /// If you are using the Sparkfun RF22 shield, it will work with any 5V arduino without modification.
- /// Connect the RFM-22 module to most Arduino's like this (Caution, Arduino Mega has different pins for SPI,
- /// see below).
- /// \code
- /// Arduino RFM-22B
- /// GND----------GND-\ (ground in)
- /// SDN-/ (shutdown in)
- /// 3V3----------VCC (3.3V in)
- /// interrupt 0 pin D2-----------NIRQ (interrupt request out)
- /// SS pin D10----------NSEL (chip select in)
- /// SCK pin D13----------SCK (SPI clock in)
- /// MOSI pin D11----------SDI (SPI Data in)
- /// MISO pin D12----------SDO (SPI data out)
- /// /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
- /// \--TX_ANT (TX antenna control in) RFM22B only
- /// /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
- /// \--RX_ANT (RX antenna control in) RFM22B only
- /// \endcode
- /// For an Arduino Mega:
- /// \code
- /// Mega RFM-22B
- /// GND----------GND-\ (ground in)
- /// SDN-/ (shutdown in)
- /// 3V3----------VCC (3.3V in)
- /// interrupt 0 pin D2-----------NIRQ (interrupt request out)
- /// SS pin D53----------NSEL (chip select in)
- /// SCK pin D52----------SCK (SPI clock in)
- /// MOSI pin D51----------SDI (SPI Data in)
- /// MISO pin D50----------SDO (SPI data out)
- /// /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
- /// \--TX_ANT (TX antenna control in) RFM22B only
- /// /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
- /// \--RX_ANT (RX antenna control in) RFM22B only
- /// \endcode
- /// For Chipkit Uno32. Caution: you must also ensure jumper JP4 on the Uno32 is set to RD4
- /// \code
- /// Arduino RFM-22B
- /// GND----------GND-\ (ground in)
- /// SDN-/ (shutdown in)
- /// 3V3----------VCC (3.3V in)
- /// interrupt 0 pin D38----------NIRQ (interrupt request out)
- /// SS pin D10----------NSEL (chip select in)
- /// SCK pin D13----------SCK (SPI clock in)
- /// MOSI pin D11----------SDI (SPI Data in)
- /// MISO pin D12----------SDO (SPI data out)
- /// /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
- /// \--TX_ANT (TX antenna control in) RFM22B only
- /// /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
- /// \--RX_ANT (RX antenna control in) RFM22B only
- /// \endcode
- /// For Teensy 3.1
- /// \code
- /// Teensy RFM-22B
- /// GND----------GND-\ (ground in)
- /// SDN-/ (shutdown in)
- /// 3V3----------VCC (3.3V in)
- /// interrupt 2 pin D2-----------NIRQ (interrupt request out)
- /// SS pin D10----------NSEL (chip select in)
- /// SCK pin D13----------SCK (SPI clock in)
- /// MOSI pin D11----------SDI (SPI Data in)
- /// MISO pin D12----------SDO (SPI data out)
- /// /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
- /// \--TX_ANT (TX antenna control in) RFM22B only
- /// /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
- /// \--RX_ANT (RX antenna control in) RFM22B only
- /// \endcode
- /// For an Arduino Due (the SPI pins do not come out on the Digital pins as for normal Arduino, but only
- /// appear on the SPI header)
- /// \code
- /// Due RFM-22B
- /// GND----------GND-\ (ground in)
- /// SDN-/ (shutdown in)
- /// 5V-----------VCC (5V in)
- /// interrupt 0 pin D2-----------NIRQ (interrupt request out)
- /// SS pin D10----------NSEL (chip select in)
- /// SCK SPI pin 3----------SCK (SPI clock in)
- /// MOSI SPI pin 4----------SDI (SPI Data in)
- /// MISO SPI pin 1----------SDO (SPI data out)
- /// /--GPIO0 (GPIO0 out to control transmitter antenna TX_ANT)
- /// \--TX_ANT (TX antenna control in) RFM22B only
- /// /--GPIO1 (GPIO1 out to control receiver antenna RX_ANT)
- /// \--RX_ANT (RX antenna control in) RFM22B only
- /// \endcode
- /// and use the default constructor:
- /// RH_RF22 driver;
-
- /// For connecting an Arduino to an RFM23BP module. Note that the antenna control pins are reversed
- /// compared to the RF22.
- /// \code
- /// Arduino RFM-23BP
- /// GND----------GND-\ (ground in)
- /// SDN-/ (shutdown in)
- /// 5V-----------VCC (5V in)
- /// interrupt 0 pin D2-----------NIRQ (interrupt request out)
- /// SS pin D10----------NSEL (chip select in)
- /// SCK pin D13----------SCK (SPI clock in)
- /// MOSI pin D11----------SDI (SPI Data in)
- /// MISO pin D12----------SDO (SPI data out)
- /// /--GPIO0 (GPIO0 out to control receiver antenna RXON)
- /// \--RXON (RX antenna control in)
- /// /--GPIO1 (GPIO1 out to control transmitter antenna TXON)
- /// \--TXON (TX antenna control in)
- /// \endcode
- ///
- /// and you can then use the default constructor RH_RF22().
- /// You can override the default settings for the SS pin and the interrupt
- /// in the RH_RF22 constructor if you wish to connect the slave select SS to other than the normal one for your
- /// Arduino (D10 for Diecimila, Uno etc and D53 for Mega)
- /// or the interrupt request to other than pin D2 (Caution, different processors have different constraints as to the
- /// pins available for interrupts).
- ///
- /// If you have an Arduino Zero, you should note that you cannot use Pin 2 for the interrupt line
- /// (Pin 2 is for the NMI only), instead you can use any other pin (we use Pin 3) and initialise RH_RF69 like this:
- /// \code
- /// // Slave Select is pin 10, interrupt is Pin 3
- /// RH_RF22 driver(10, 3);
- /// \endcode
- ///
- /// It is possible to have 2 radios connected to one Arduino, provided each radio has its own
- /// SS and interrupt line (SCK, SDI and SDO are common to both radios)
- ///
- /// Caution: on some Arduinos such as the Mega 2560, if you set the slave select pin to be other than the usual SS
- /// pin (D53 on Mega 2560), you may need to set the usual SS pin to be an output to force the Arduino into SPI
- /// master mode.
- ///
- /// Caution: Power supply requirements of the RF22 module may be relevant in some circumstances:
- /// RF22 modules are capable of pulling 80mA+ at full power, where Arduino's 3.3V line can
- /// give 50mA. You may need to make provision for alternate power supply for
- /// the RF22, especially if you wish to use full transmit power, and/or you have
- /// other shields demanding power. Inadequate power for the RF22 is reported to cause symptoms such as:
- /// - reset's/bootups terminate with "init failed" messages
- /// -random termination of communication after 5-30 packets sent/received
- /// -"fake ok" state, where initialization passes fluently, but communication doesn't happen
- /// -shields hang Arduino boards, especially during the flashing
- ///
- /// Caution: some RF22 breakout boards (such as the HAB-RFM22B-BOA HAB-RFM22B-BO) reportedly
- /// have the TX_ANT and RX_ANT pre-connected to GPIO0 and GPIO1 round the wrong way. You can work with this
- /// if you use setGpioReversed().
- ///
- /// Caution: If you are using a bare RF22 module without IO level shifters, you may have difficulty connecting
- /// to a 5V arduino. The RF22 module is 3.3V and its IO pins are 3.3V not 5V. Some Arduinos (Diecimila and
- /// Uno) seem to work OK with this, and some (Mega) do not always work reliably. Your Mileage May Vary.
- /// For best result, use level shifters, or use a RF22 shield or board with level shifters built in,
- /// such as the Sparkfun RFM22 shield http://www.sparkfun.com/products/11018.
- /// You could also use a 3.3V IO Arduino such as a Pro.
- /// It is recognised that it is difficult to connect
- /// the Sparkfun RFM22 shield to a Mega, since the SPI pins on the Mega are different to other Arduinos,
- /// But it is possible, by bending the SPI pins (D10, D11, D12, D13) on the
- /// shield out of the way before plugging it in to the Mega and jumpering the shield pins to the Mega like this:
- /// \code
- /// RF22 Shield Mega
- /// D10 D53
- /// D13 D52
- /// D11 D51
- /// D12 D50
- /// \endcode
- ///
- /// \par Interrupts
- ///
- /// The Driver uses interrupts to react to events in the RF22 module,
- /// such as the reception of a new packet, or the completion of transmission of a packet.
- /// The RH_RF22 interrupt service routine reads status from and writes data
- /// to the the RF22 module via the SPI interface. It is very important therefore,
- /// that if you are using the RF22 library with another SPI based deviced, that you
- /// disable interrupts while you transfer data to and from that other device.
- /// Use cli() to disable interrupts and sei() to reenable them.
- ///
- /// \par SPI Interface
- ///
- /// The RF22 module uses the SPI bus to communicate with the Arduino. Arduino
- /// IDE includes a hardware SPI class to communicate with SPI devices using
- /// the SPI facilities built into the Atmel chips, over the standard designated
- /// SPI pins MOSI, MISO, SCK, which are usually on Arduino pins 11, 12 and 13
- /// respectively (or 51, 50, 52 on a Mega).
- ///
- /// By default, the RH_RF22 Driver uses the Hardware SPI interface to
- /// communicate with the RF22 module. However, if your RF22 SPI is connected to
- /// the Arduino through non-standard pins, or the standard Hardware SPI
- /// interface will not work for you, you can instead use a bit-banged Software
- /// SPI class RHSoftwareSPI, which can be configured to work on any Arduino digital IO pins.
- /// See the documentation of RHSoftwareSPI for details.
- ///
- /// The advantages of the Software SPI interface are that it can be used on
- /// any Arduino pins, not just the usual dedicated hardware pins. The
- /// disadvantage is that it is significantly slower then hardware.
- /// If you observe reliable behaviour with the default hardware SPI RHHardwareSPI, but unreliable behaviour
- /// with Software SPI RHSoftwareSPI, it may be due to slow CPU performance.
- ///
- /// Initialisation example with hardware SPI
- /// \code
- /// #include <RH_RF22.h>
- /// RH_RF22 driver;
- /// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
- /// \endcode
- ///
- /// Initialisation example with software SPI
- /// \code
- /// #include <RH_RF22.h>
- /// #include <RHSoftwareSPI.h>
- /// RHSoftwareSPI spi;
- /// RH_RF22 driver(10, 2, spi);
- /// RHReliableDatagram manager(driver, CLIENT_ADDRESS);
- /// \endcode
- ///
- /// \par Memory
- ///
- /// The RH_RF22 Driver requires non-trivial amounts of memory. The sample programs all compile to
- /// about 9 to 14kbytes each on Arduino, which will fit in the flash proram memory of most Arduinos. However,
- /// the RAM requirements are more critical. Most sample programs above will run on Duemilanova,
- /// but not on Diecimila. Even on Duemilanova, the RAM requirements are very close to the
- /// available memory of 2kbytes. Therefore, you should be vary sparing with RAM use in programs that use
- /// the RH_RF22 Driver on Duemilanova.
- ///
- /// The sample RHRouter and RHMesh programs compile to about 14kbytes,
- /// and require more RAM than the others.
- /// They will not run on Duemilanova or Diecimila, but will run on Arduino Mega.
- ///
- /// It is often hard to accurately identify when you are hitting RAM limits on Arduino.
- /// The symptoms can include:
- /// - Mysterious crashes and restarts
- /// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
- /// - Hanging
- /// - Output from Serial.print() not appearing
- ///
- /// With an Arduino Mega, with 8 kbytes of SRAM, there is much more RAM headroom for
- /// your own elaborate programs.
- /// This library is reported to work with Arduino Pro Mini, but that has not been tested by me.
- ///
- /// The RF22M modules use an inexpensive crystal to control the frequency synthesizer, and therfore you can expect
- /// the transmitter and receiver frequencies to be subject to the usual inaccuracies of such crystals. The RF22
- /// contains an AFC circuit to compensate for differences in transmitter and receiver frequencies.
- /// It does this by altering the receiver frequency during reception by up to the pull-in frequency range.
- /// This RF22 library enables the AFC and by default sets the pull-in frequency range to
- /// 0.05MHz, which should be sufficient to handle most situations. However, if you observe unexplained packet losses
- /// or failure to operate correctly all the time it may be because your modules have a wider frequency difference, and
- /// you may need to set the afcPullInRange to a different value, using setFrequency();
- ///
- /// \par Transmitter Power
- ///
- /// You can control the transmitter power on the RF22 and RF23 transceivers
- /// with the RH_RF22::setTxPower() function. The argument can be any of the
- /// RH_RF22_TXPOW_* (for RFM22) or RH_RF22_RF23B_TXPOW_* (for RFM23) values.
- /// The default is RH_RF22_TXPOW_8DBM/RH_RF22_RF23B_TXPOW_1DBM . Eg:
- /// \code
- /// driver.setTxPower(RH_RF22_TXPOW_2DBM);
- /// \endcode
- ///
- /// The RF23BP has higher power capability, there are
- /// several power settings that are specific to the RF23BP only:
- ///
- /// - RH_RF22_RF23BP_TXPOW_28DBM
- /// - RH_RF22_RF23BP_TXPOW_29DBM
- /// - RH_RF22_RF23BP_TXPOW_38DBM
- ///
- /// CAUTION: the high power settings available on the RFM23BP require
- /// significant power supply current. For example at +30dBm, the typical chip
- /// supply current is 550mA. This will overwhelm some small CPU board power
- /// regulators and USB supplies. If you use this chip at high power make sure
- /// you have an adequate supply current providing full 5V to the RFM23BP (and
- /// the CPU if required), otherwise you can expect strange behaviour like
- /// hanging, stopping, incorrect power levels, RF power amp overheating etc.
- /// You must also ensure that the RFM23BP GPIO pins are connected to the
- /// antenna switch control pins like so:
- ////
- /// \code
- /// GPIO0 <-> RXON
- /// GPIO1 <-> TXON
- /// \endcode
- ///
- /// The RF output impedance of the RFM22BP module is 50 ohms. In our
- /// experiments we found that the most critical issue (besides a suitable
- /// power supply) is to ensure that the antenna impedance is also near 50
- /// ohms. Connecting a simple 1/4 wavelength (ie a 17.3cm single wire)
- /// directly to the antenna output <b>will not work at full 30dBm power</b>,
- /// and will result in the transmitter hanging and/or the power amp
- /// overheating. Connect a proper 50 ohm impedance transmission line or
- /// antenna, and prevent RF radiation into the radio and arduino modules,
- /// in order to get full, reliable power. Our tests show that a 433MHz
- /// RFM23BP feeding a 50 ohm transmission line with a VHF discone antenna at
- /// the end results in full power output and the power amp transistor on the
- /// RFM22BP module runnning slightly warm but not hot. We recommend you use
- /// the services of a competent RF engineer when trying to use this high power
- /// module.
- ///
- /// Note: with RFM23BP, the reported maximum possible power when operating on 3.3V is 27dBm.
- ///
- /// We have made some actual power measurements against
- /// programmed power for Sparkfun RFM22 wireless module under the following conditions:
- /// - Sparkfun RFM22 wireless module, Duemilanove, USB power
- /// - 10cm RG58C/U soldered direct to RFM22 module ANT and GND
- /// - bnc connecteor
- /// - 12dB attenuator
- /// - BNC-SMA adapter
- /// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
- /// - Tektronix TDS220 scope to measure the Vout from power head
- /// \code
- /// Program power Measured Power
- /// dBm dBm
- /// 1 -5.6
- /// 2 -3.8
- /// 5 -2.2
- /// 8 -0.6
- /// 11 1.2
- /// 14 11.6
- /// 17 14.4
- /// 20 18.0
- /// \endcode
- /// (Caution: we dont claim laboratory accuracy for these measurements)
- /// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
- ///
- /// \par Performance
- ///
- /// Some simple speed performance tests have been conducted.
- /// In general packet transmission rate will be limited by the modulation scheme.
- /// Also, if your code does any slow operations like Serial printing it will also limit performance.
- /// We disabled any printing in the tests below.
- /// We tested with RH_RF22::GFSK_Rb125Fd125, which is probably the fastest scheme available.
- /// We tested with a 13 octet message length, over a very short distance of 10cm.
- ///
- /// Transmission (no reply) tests with modulation RH_RF22::GFSK_Rb125Fd125 and a
- /// 13 octet message show about 330 messages per second transmitted.
- ///
- /// Transmit-and-wait-for-a-reply tests with modulation RH_RF22::GFSK_Rb125Fd125 and a
- /// 13 octet message (send and receive) show about 160 round trips per second.
- ///
- /// \par Compatibility with RF22 library
- /// The RH_RF22 driver is based on our earlier RF22 library http://www.airspayce.com/mikem/arduino/RF22
- /// We have tried hard to be as compatible as possible with the earlier RF22 library, but there are some differences:
- /// - Different constructor.
- /// - Indexes for some modem configurations have changed (we recommend you use the symbolic names, not integer indexes).
- ///
- /// The major difference is that under RadioHead, you are
- /// required to create 2 objects (ie RH_RF22 and a manager) instead of just one object under RF22
- /// (ie RHMesh, RHRouter, RHReliableDatagram or RHDatagram).
- /// It may be sufficient or you to change for example:
- /// \code
- /// RF22ReliableDatagram rf22(CLIENT_ADDRESS);
- /// \endcode
- /// to:
- /// \code
- /// RH_RF22 driver;
- /// RHReliableDatagram rf22(driver, CLIENT_ADDRESS);
- /// \endcode
- /// and any instance of RF22_MAX_MESSAGE_LEN to RH_RF22_MAX_MESSAGE_LEN
- ///
- /// RadioHead version 1.6 changed the way the interrupt pin number is
- /// specified on Arduino and Uno32 platforms. If your code previously
- /// specifed a non-default interrupt pin number in the RH_RF22 constructor,
- /// you may need to review your code to specify the correct interrrupt pin
- /// (and not the interrupt number as before).
- class RH_RF22 : public RHSPIDriver
- {
- public:
-
- /// \brief Defines register values for a set of modem configuration registers
- ///
- /// Defines register values for a set of modem configuration registers
- /// that can be passed to setModemConfig()
- /// if none of the choices in ModemConfigChoice suit your need
- /// setModemConfig() writes the register values to the appropriate RH_RF22 registers
- /// to set the desired modulation type, data rate and deviation/bandwidth.
- /// Suitable values for these registers can be computed using the register calculator at
- /// http://www.hoperf.com/upload/rf/RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
- typedef struct
- {
- uint8_t reg_1c; ///< Value for register RH_RF22_REG_1C_IF_FILTER_BANDWIDTH
- uint8_t reg_1f; ///< Value for register RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE
- uint8_t reg_20; ///< Value for register RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE
- uint8_t reg_21; ///< Value for register RH_RF22_REG_21_CLOCK_RECOVERY_OFFSET2
- uint8_t reg_22; ///< Value for register RH_RF22_REG_22_CLOCK_RECOVERY_OFFSET1
- uint8_t reg_23; ///< Value for register RH_RF22_REG_23_CLOCK_RECOVERY_OFFSET0
- uint8_t reg_24; ///< Value for register RH_RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1
- uint8_t reg_25; ///< Value for register RH_RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0
- uint8_t reg_2c; ///< Value for register RH_RF22_REG_2C_OOK_COUNTER_VALUE_1
- uint8_t reg_2d; ///< Value for register RH_RF22_REG_2D_OOK_COUNTER_VALUE_2
- uint8_t reg_2e; ///< Value for register RH_RF22_REG_2E_SLICER_PEAK_HOLD
- uint8_t reg_58; ///< Value for register RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING
- uint8_t reg_69; ///< Value for register RH_RF22_REG_69_AGC_OVERRIDE1
- uint8_t reg_6e; ///< Value for register RH_RF22_REG_6E_TX_DATA_RATE1
- uint8_t reg_6f; ///< Value for register RH_RF22_REG_6F_TX_DATA_RATE0
- uint8_t reg_70; ///< Value for register RH_RF22_REG_70_MODULATION_CONTROL1
- uint8_t reg_71; ///< Value for register RH_RF22_REG_71_MODULATION_CONTROL2
- uint8_t reg_72; ///< Value for register RH_RF22_REG_72_FREQUENCY_DEVIATION
- } ModemConfig;
-
- /// Choices for setModemConfig() for a selected subset of common modulation types,
- /// and data rates. If you need another configuration, use the register calculator.
- /// and call setModemRegisters() with your desired settings.
- /// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
- /// definitions and not their integer equivalents: its possible that new values will be
- /// introduced in later versions (though we will try to avoid it).
- typedef enum
- {
- UnmodulatedCarrier = 0, ///< Unmodulated carrier for testing
- FSK_PN9_Rb2Fd5, ///< FSK, No Manchester, Rb = 2kbs, Fd = 5kHz, PN9 random modulation for testing
-
- FSK_Rb2Fd5, ///< FSK, No Manchester, Rb = 2kbs, Fd = 5kHz
- FSK_Rb2_4Fd36, ///< FSK, No Manchester, Rb = 2.4kbs, Fd = 36kHz
- FSK_Rb4_8Fd45, ///< FSK, No Manchester, Rb = 4.8kbs, Fd = 45kHz
- FSK_Rb9_6Fd45, ///< FSK, No Manchester, Rb = 9.6kbs, Fd = 45kHz
- FSK_Rb19_2Fd9_6, ///< FSK, No Manchester, Rb = 19.2kbs, Fd = 9.6kHz
- FSK_Rb38_4Fd19_6, ///< FSK, No Manchester, Rb = 38.4kbs, Fd = 19.6kHz
- FSK_Rb57_6Fd28_8, ///< FSK, No Manchester, Rb = 57.6kbs, Fd = 28.8kHz
- FSK_Rb125Fd125, ///< FSK, No Manchester, Rb = 125kbs, Fd = 125kHz
- FSK_Rb_512Fd2_5, ///< FSK, No Manchester, Rb = 512bs, Fd = 2.5kHz, for POCSAG compatibility
- FSK_Rb_512Fd4_5, ///< FSK, No Manchester, Rb = 512bs, Fd = 4.5kHz, for POCSAG compatibility
-
- GFSK_Rb2Fd5, ///< GFSK, No Manchester, Rb = 2kbs, Fd = 5kHz
- GFSK_Rb2_4Fd36, ///< GFSK, No Manchester, Rb = 2.4kbs, Fd = 36kHz
- GFSK_Rb4_8Fd45, ///< GFSK, No Manchester, Rb = 4.8kbs, Fd = 45kHz
- GFSK_Rb9_6Fd45, ///< GFSK, No Manchester, Rb = 9.6kbs, Fd = 45kHz
- GFSK_Rb19_2Fd9_6, ///< GFSK, No Manchester, Rb = 19.2kbs, Fd = 9.6kHz
- GFSK_Rb38_4Fd19_6, ///< GFSK, No Manchester, Rb = 38.4kbs, Fd = 19.6kHz
- GFSK_Rb57_6Fd28_8, ///< GFSK, No Manchester, Rb = 57.6kbs, Fd = 28.8kHz
- GFSK_Rb125Fd125, ///< GFSK, No Manchester, Rb = 125kbs, Fd = 125kHz
-
- OOK_Rb1_2Bw75, ///< OOK, No Manchester, Rb = 1.2kbs, Rx Bandwidth = 75kHz
- OOK_Rb2_4Bw335, ///< OOK, No Manchester, Rb = 2.4kbs, Rx Bandwidth = 335kHz
- OOK_Rb4_8Bw335, ///< OOK, No Manchester, Rb = 4.8kbs, Rx Bandwidth = 335kHz
- OOK_Rb9_6Bw335, ///< OOK, No Manchester, Rb = 9.6kbs, Rx Bandwidth = 335kHz
- OOK_Rb19_2Bw335, ///< OOK, No Manchester, Rb = 19.2kbs, Rx Bandwidth = 335kHz
- OOK_Rb38_4Bw335, ///< OOK, No Manchester, Rb = 38.4kbs, Rx Bandwidth = 335kHz
- OOK_Rb40Bw335 ///< OOK, No Manchester, Rb = 40kbs, Rx Bandwidth = 335kHz
-
- } ModemConfigChoice;
-
- /// \brief Defines the available choices for CRC
- /// Types of permitted CRC polynomials, to be passed to setCRCPolynomial()
- /// They deliberately have the same numeric values as the crc[1:0] field of Register
- /// RH_RF22_REG_30_DATA_ACCESS_CONTROL
- typedef enum
- {
- CRC_CCITT = 0, ///< CCITT
- CRC_16_IBM = 1, ///< CRC-16 (IBM) The default used by RH_RF22 driver
- CRC_IEC_16 = 2, ///< IEC-16
- CRC_Biacheva = 3 ///< Biacheva
- } CRCPolynomial;
-
- /// Constructor. You can have multiple instances, but each instance must have its own
- /// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
- /// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
- /// distinct interrupt lines, one for each instance.
- /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RH_RF22 before
- /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
- /// \param[in] interruptPin The interrupt Pin number that is connected to the RF22 NIRQ interrupt line.
- /// Defaults to pin 2, as required by sparkfun RFM22 module shields.
- /// Caution: You must specify an interrupt capable pin.
- /// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
- /// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
- /// On other Arduinos pins 2 or 3.
- /// See http://arduino.cc/en/Reference/attachInterrupt for more details.
- /// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
- /// On other boards, any digital pin may be used.
- /// \param[in] spi Pointer to the SPI interface object to use.
- /// Defaults to the standard Arduino hardware SPI interface
- RH_RF22(uint8_t slaveSelectPin = SS, uint8_t interruptPin = 2, RHGenericSPI& spi = hardware_spi);
-
- /// Initialises this instance and the radio module connected to it.
- /// The following steps are taken:
- /// - Initialise the slave select pin and the SPI interface library
- /// - Software reset the RH_RF22 module
- /// - Checks the connected RH_RF22 module is either a RH_RF22_DEVICE_TYPE_RX_TRX or a RH_RF22_DEVICE_TYPE_TX
- /// - Attaches an interrupt handler
- /// - Configures the RH_RF22 module
- /// - Sets the frequency to 434.0 MHz
- /// - Sets the modem data rate to FSK_Rb2_4Fd36
- /// \return true if everything was successful
- bool init();
-
- /// Issues a software reset to the
- /// RH_RF22 module. Blocks for 1ms to ensure the reset is complete.
- void reset();
-
- /// Reads and returns the device status register RH_RF22_REG_02_DEVICE_STATUS
- /// \return The value of the device status register
- uint8_t statusRead();
-
- /// Reads a value from the on-chip analog-digital converter
- /// \param[in] adcsel Selects the ADC input to measure. One of RH_RF22_ADCSEL_*. Defaults to the
- /// internal temperature sensor
- /// \param[in] adcref Specifies the refernce voltage to use. One of RH_RF22_ADCREF_*.
- /// Defaults to the internal bandgap voltage.
- /// \param[in] adcgain Amplifier gain selection.
- /// \param[in] adcoffs Amplifier offseet (0 to 15).
- /// \return The analog value. 0 to 255.
- uint8_t adcRead(uint8_t adcsel = RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR,
- uint8_t adcref = RH_RF22_ADCREF_BANDGAP_VOLTAGE,
- uint8_t adcgain = 0,
- uint8_t adcoffs = 0);
-
- /// Reads the on-chip temperature sensor
- /// \param[in] tsrange Specifies the temperature range to use. One of RH_RF22_TSRANGE_*
- /// \param[in] tvoffs Specifies the temperature value offset. This is actually signed value
- /// added to the measured temperature value
- /// \return The measured temperature.
- uint8_t temperatureRead(uint8_t tsrange = RH_RF22_TSRANGE_M64_64C, uint8_t tvoffs = 0);
-
- /// Reads the wakeup timer value in registers RH_RF22_REG_17_WAKEUP_TIMER_VALUE1
- /// and RH_RF22_REG_18_WAKEUP_TIMER_VALUE2
- /// \return The wakeup timer value
- uint16_t wutRead();
-
- /// Sets the wakeup timer period registers RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1,
- /// RH_RF22_REG_15_WAKEUP_TIMER_PERIOD2 and RH_RF22_R<EG_16_WAKEUP_TIMER_PERIOD3
- /// \param[in] wtm Wakeup timer mantissa value
- /// \param[in] wtr Wakeup timer exponent R value
- /// \param[in] wtd Wakeup timer exponent D value
- void setWutPeriod(uint16_t wtm, uint8_t wtr = 0, uint8_t wtd = 0);
-
- /// Sets the transmitter and receiver centre frequency
- /// \param[in] centre Frequency in MHz. 240.0 to 960.0. Caution, some versions of RH_RF22 and derivatives
- /// implemented more restricted frequency ranges.
- /// \param[in] afcPullInRange Sets the AF Pull In Range in MHz. Defaults to 0.05MHz (50kHz).
- /// Range is 0.0 to 0.159375
- /// for frequencies 240.0 to 480MHz, and 0.0 to 0.318750MHz for frequencies 480.0 to 960MHz,
- /// \return true if the selected frquency centre + (fhch * fhs) is within range and the afcPullInRange
- /// is within range
- bool setFrequency(float centre, float afcPullInRange = 0.05);
-
- /// Sets the frequency hopping step size.
- /// \param[in] fhs Frequency Hopping step size in 10kHz increments
- /// \return true if centre + (fhch * fhs) is within limits
- bool setFHStepSize(uint8_t fhs);
-
- /// Sets the frequncy hopping channel. Adds fhch * fhs to centre frequency
- /// \param[in] fhch The channel number
- /// \return true if the selected frquency centre + (fhch * fhs) is within range
- bool setFHChannel(uint8_t fhch);
-
- /// Reads and returns the current RSSI value from register RH_RF22_REG_26_RSSI. Caution: this is
- /// in internal units (see figure 31 of RFM22B/23B documentation), not in dBm. If you want to find the RSSI in dBm
- /// of the last received message, use lastRssi() instead.
- /// \return The current RSSI value
- uint8_t rssiRead();
-
- /// Reads and returns the current EZMAC value from register RH_RF22_REG_31_EZMAC_STATUS
- /// \return The current EZMAC value
- uint8_t ezmacStatusRead();
-
- /// Sets the parameters for the RH_RF22 Idle mode in register RH_RF22_REG_07_OPERATING_MODE.
- /// Idle mode is the mode the RH_RF22 will be in when not transmitting or receiving. The default idle mode
- /// is RH_RF22_XTON ie READY mode.
- /// \param[in] mode Mask of mode bits, using RH_RF22_SWRES, RH_RF22_ENLBD, RH_RF22_ENWT,
- /// RH_RF22_X32KSEL, RH_RF22_PLLON, RH_RF22_XTON.
- void setOpMode(uint8_t mode);
-
- /// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
- /// disables them.
- void setModeIdle();
-
- /// If current mode is Tx or Idle, changes it to Rx.
- /// Starts the receiver in the RH_RF22.
- void setModeRx();
-
- /// If current mode is Rx or Idle, changes it to Rx.
- /// Starts the transmitter in the RH_RF22.
- void setModeTx();
-
- /// Sets the transmitter power output level in register RH_RF22_REG_6D_TX_POWER.
- /// Be a good neighbour and set the lowest power level you need.
- /// After init(), the power will be set to RH_RF22::RH_RF22_TXPOW_8DBM on RF22B
- /// or RH_RF22_RF23B_TXPOW_1DBM on an RF23B.
- /// The highest power available on RF22B is RH_RF22::RH_RF22_TXPOW_20DBM (20dBm).
- /// The highest power available on RF23B is RH_RF22::RH_RF22_RF23B_TXPOW_13DBM (13dBm).
- /// Higher powers are available on RF23BP (using RH_RF22_RF23BP_TXPOW_*),
- /// and then only with an adequate power supply. See comments above.
- /// Caution: In some countries you may only select certain higher power levels if you
- /// are also using frequency hopping. Make sure you are aware of the legal
- /// limitations and regulations in your region.
- /// \param[in] power Transmitter power level, one of RH_RF22_*TXPOW_*
- void setTxPower(uint8_t power);
-
- /// Sets all the registered required to configure the data modem in the RH_RF22, including the data rate,
- /// bandwidths etc. You cas use this to configure the modem with custom configuraitons if none of the
- /// canned configurations in ModemConfigChoice suit you.
- /// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
- void setModemRegisters(const ModemConfig* config);
-
- /// Select one of the predefined modem configurations. If you need a modem configuration not provided
- /// here, use setModemRegisters() with your own ModemConfig.
- /// \param[in] index The configuration choice.
- /// \return true if index is a valid choice.
- bool setModemConfig(ModemConfigChoice index);
-
- /// Starts the receiver and checks whether a received message is available.
- /// This can be called multiple times in a timeout loop
- /// \return true if a complete, valid message has been received and is able to be retrieved by
- /// recv()
- bool available();
-
- /// Turns the receiver on if it not already on.
- /// If there is a valid message available, copy it to buf and return true
- /// else return false.
- /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
- /// You should be sure to call this function frequently enough to not miss any messages
- /// It is recommended that you call it in your main loop.
- /// \param[in] buf Location to copy the received message
- /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
- /// \return true if a valid message was copied to buf
- bool recv(uint8_t* buf, uint8_t* len);
-
- /// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
- /// Then loads a message into the transmitter and starts the transmitter. Note that a message length
- /// of 0 is NOT permitted.
- /// \param[in] data Array of data to be sent
- /// \param[in] len Number of bytes of data to send (> 0)
- /// \return true if the message length was valid and it was correctly queued for transmit
- bool send(const uint8_t* data, uint8_t len);
-
- /// Sets the length of the preamble
- /// in 4-bit nibbles.
- /// Caution: this should be set to the same
- /// value on all nodes in your network. Default is 8.
- /// Sets the message preamble length in RH_RF22_REG_34_PREAMBLE_LENGTH
- /// \param[in] nibbles Preamble length in nibbles of 4 bits each.
- void setPreambleLength(uint8_t nibbles);
-
- /// Sets the sync words for transmit and receive in registers RH_RF22_REG_36_SYNC_WORD3
- /// to RH_RF22_REG_39_SYNC_WORD0
- /// Caution: SyncWords should be set to the same
- /// value on all nodes in your network. Nodes with different SyncWords set will never receive
- /// each others messages, so different SyncWords can be used to isolate different
- /// networks from each other. Default is { 0x2d, 0xd4 }.
- /// \param[in] syncWords Array of sync words, 1 to 4 octets long
- /// \param[in] len Number of sync words to set, 1 to 4.
- void setSyncWords(const uint8_t* syncWords, uint8_t len);
-
- /// Tells the receiver to accept messages with any TO address, not just messages
- /// addressed to thisAddress or the broadcast address
- /// \param[in] promiscuous true if you wish to receive messages with any TO address
- virtual void setPromiscuous(bool promiscuous);
-
- /// Sets the CRC polynomial to be used to generate the CRC for both receive and transmit
- /// otherwise the default of CRC_16_IBM will be used.
- /// \param[in] polynomial One of RH_RF22::CRCPolynomial choices CRC_*
- /// \return true if polynomial is a valid option for this radio.
- bool setCRCPolynomial(CRCPolynomial polynomial);
-
- /// Configures GPIO pins for reversed GPIO connections to the antenna switch.
- /// Normally on RF22 modules, GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
- /// and GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive. The RH_RF22 driver
- /// configures the GPIO pins during init() so the antenna switch works as expected.
- /// However, some RF22 modules, such as HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com
- /// have these GPIO pins reversed, so that GPIO0 is connected to RX_ANT.
- /// Call this function with a true argument after init() and before transmitting
- /// in order to configure the module for reversed GPIO pins.
- /// \param[in] gpioReversed Set to true if your RF22 module has reversed GPIO antenna switch connections.
- void setGpioReversed(bool gpioReversed = false);
-
- /// Returns the time in millis since the last preamble was received, and when the last
- /// RSSI measurement was made.
- uint32_t getLastPreambleTime();
-
- /// The maximum message length supported by this driver
- /// \return The maximum message length supported by this driver
- uint8_t maxMessageLength();
-
- /// Sets the radio into low-power sleep mode.
- /// If successful, the transport will stay in sleep mode until woken by
- /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
- /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
- /// \return true if sleep mode was successfully entered.
- virtual bool sleep();
-
- protected:
- /// This is a low level function to handle the interrupts for one instance of RH_RF22.
- /// Called automatically by isr*()
- /// Should not need to be called.
- void handleInterrupt();
-
- /// Clears the receiver buffer.
- /// Internal use only
- void clearRxBuf();
-
- /// Clears the transmitter buffer
- /// Internal use only
- void clearTxBuf();
-
- /// Fills the transmitter buffer with the data of a mesage to be sent
- /// \param[in] data Array of data bytes to be sent (1 to 255)
- /// \param[in] len Number of data bytes in data (> 0)
- /// \return true if the message length is valid
- bool fillTxBuf(const uint8_t* data, uint8_t len);
-
- /// Appends the transmitter buffer with the data of a mesage to be sent
- /// \param[in] data Array of data bytes to be sent (0 to 255)
- /// \param[in] len Number of data bytes in data
- /// \return false if the resulting message would exceed RH_RF22_MAX_MESSAGE_LEN, else true
- bool appendTxBuf(const uint8_t* data, uint8_t len);
-
- /// Internal function to load the next fragment of
- /// the current message into the transmitter FIFO
- /// Internal use only
- void sendNextFragment();
-
- /// function to copy the next fragment from
- /// the receiver FIF) into the receiver buffer
- void readNextFragment();
-
- /// Clears the RF22 Rx and Tx FIFOs
- /// Internal use only
- void resetFifos();
-
- /// Clears the RF22 Rx FIFO
- /// Internal use only
- void resetRxFifo();
-
- /// Clears the RF22 Tx FIFO
- /// Internal use only
- void resetTxFifo();
-
- /// This function will be called by handleInterrupt() if an RF22 external interrupt occurs.
- /// This can only happen if external interrupts are enabled in the RF22
- /// (which they are not by default).
- /// Subclasses may override this function to get control when an RF22 external interrupt occurs.
- virtual void handleExternalInterrupt();
-
- /// This function will be called by handleInterrupt() if an RF22 wakeup timer interrupt occurs.
- /// This can only happen if wakeup timer interrupts are enabled in theRF22
- /// (which they are not by default).
- /// Subclasses may override this function to get control when an RF22 wakeup timer interrupt occurs.
- virtual void handleWakeupTimerInterrupt();
-
- /// Start the transmission of the contents
- /// of the Tx buffer
- void startTransmit();
-
- /// ReStart the transmission of the contents
- /// of the Tx buffer after a atransmission failure
- void restartTransmit();
-
- void setThisAddress(uint8_t thisAddress);
-
- /// Sets the radio operating mode for the case when the driver is idle (ie not
- /// transmitting or receiving), allowing you to control the idle mode power requirements
- /// at the expense of slower transitions to transmit and receive modes.
- /// By default, the idle mode is RH_RF22_XTON,
- /// but eg setIdleMode(RH_RF22_PLL) will provide a much lower
- /// idle current but slower transitions. Call this function after init().
- /// \param[in] idleMode The chip operating mode to use when the driver is idle. One of the valid definitions for RH_RF22_REG_07_OPERATING_MODE
- void setIdleMode(uint8_t idleMode);
-
- protected:
- /// Low level interrupt service routine for RF22 connected to interrupt 0
- static void isr0();
-
- /// Low level interrupt service routine for RF22 connected to interrupt 1
- static void isr1();
-
- /// Low level interrupt service routine for RF22 connected to interrupt 1
- static void isr2();
-
- /// Array of instances connected to interrupts 0 and 1
- static RH_RF22* _deviceForInterrupt[];
-
- /// Index of next interrupt number to use in _deviceForInterrupt
- static uint8_t _interruptCount;
-
- /// The configured interrupt pin connected to this instance
- uint8_t _interruptPin;
-
- /// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
- /// else 0xff
- uint8_t _myInterruptIndex;
-
- /// The radio mode to use when mode is idle
- uint8_t _idleMode;
-
- /// The device type reported by the RF22
- uint8_t _deviceType;
-
- /// The selected CRC polynomial
- CRCPolynomial _polynomial;
-
- // These volatile members may get changed in the interrupt service routine
- /// Number of octets in the receiver buffer
- volatile uint8_t _bufLen;
-
- /// The receiver buffer
- uint8_t _buf[RH_RF22_MAX_MESSAGE_LEN];
-
- /// True when there is a valid message in the Rx buffer
- volatile bool _rxBufValid;
-
- /// Index into TX buffer of the next to send chunk
- volatile uint8_t _txBufSentIndex;
-
- /// Time in millis since the last preamble was received (and the last time the RSSI was measured)
- uint32_t _lastPreambleTime;
- };
-
- /// @example rf22_client.pde
- /// @example rf22_server.pde
-
- #endif
|