|
- // RH_RF69.h
- // Author: Mike McCauley (mikem@airspayce.com)
- // Copyright (C) 2014 Mike McCauley
- // $Id: RH_RF69.h,v 1.32 2016/07/07 00:02:53 mikem Exp mikem $
- //
- ///
-
-
- #ifndef RH_RF69_h
- #define RH_RF69_h
-
- #include <RHGenericSPI.h>
- #include <RHSPIDriver.h>
-
- // The crystal oscillator frequency of the RF69 module
- #define RH_RF69_FXOSC 32000000.0
-
- // The Frequency Synthesizer step = RH_RF69_FXOSC / 2^^19
- #define RH_RF69_FSTEP (RH_RF69_FXOSC / 524288)
-
- // This is the maximum number of interrupts the driver can support
- // Most Arduinos can handle 2, Megas can handle more
- #define RH_RF69_NUM_INTERRUPTS 3
-
- // This is the bit in the SPI address that marks it as a write
- #define RH_RF69_SPI_WRITE_MASK 0x80
-
- // Max number of octets the RH_RF69 Rx and Tx FIFOs can hold
- #define RH_RF69_FIFO_SIZE 66
-
- // Maximum encryptable payload length the RF69 can support
- #define RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN 64
-
- // The length of the headers we add.
- // The headers are inside the RF69's payload and are therefore encrypted if encryption is enabled
- #define RH_RF69_HEADER_LEN 4
-
- // This is the maximum message length that can be supported by this driver. Limited by
- // the size of the FIFO, since we are unable to support on-the-fly filling and emptying
- // of the FIFO.
- // Can be pre-defined to a smaller size (to save SRAM) prior to including this header
- // Here we allow for 4 bytes of address and header and payload to be included in the 64 byte encryption limit.
- // the one byte payload length is not encrpyted
- #ifndef RH_RF69_MAX_MESSAGE_LEN
- #define RH_RF69_MAX_MESSAGE_LEN (RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN - RH_RF69_HEADER_LEN)
- #endif
-
- // Keep track of the mode the RF69 is in
- #define RH_RF69_MODE_IDLE 0
- #define RH_RF69_MODE_RX 1
- #define RH_RF69_MODE_TX 2
-
- // This is the default node address,
- #define RH_RF69_DEFAULT_NODE_ADDRESS 0
-
- // Register names
- #define RH_RF69_REG_00_FIFO 0x00
- #define RH_RF69_REG_01_OPMODE 0x01
- #define RH_RF69_REG_02_DATAMODUL 0x02
- #define RH_RF69_REG_03_BITRATEMSB 0x03
- #define RH_RF69_REG_04_BITRATELSB 0x04
- #define RH_RF69_REG_05_FDEVMSB 0x05
- #define RH_RF69_REG_06_FDEVLSB 0x06
- #define RH_RF69_REG_07_FRFMSB 0x07
- #define RH_RF69_REG_08_FRFMID 0x08
- #define RH_RF69_REG_09_FRFLSB 0x09
- #define RH_RF69_REG_0A_OSC1 0x0a
- #define RH_RF69_REG_0B_AFCCTRL 0x0b
- #define RH_RF69_REG_0C_RESERVED 0x0c
- #define RH_RF69_REG_0D_LISTEN1 0x0d
- #define RH_RF69_REG_0E_LISTEN2 0x0e
- #define RH_RF69_REG_0F_LISTEN3 0x0f
- #define RH_RF69_REG_10_VERSION 0x10
- #define RH_RF69_REG_11_PALEVEL 0x11
- #define RH_RF69_REG_12_PARAMP 0x12
- #define RH_RF69_REG_13_OCP 0x13
- #define RH_RF69_REG_14_RESERVED 0x14
- #define RH_RF69_REG_15_RESERVED 0x15
- #define RH_RF69_REG_16_RESERVED 0x16
- #define RH_RF69_REG_17_RESERVED 0x17
- #define RH_RF69_REG_18_LNA 0x18
- #define RH_RF69_REG_19_RXBW 0x19
- #define RH_RF69_REG_1A_AFCBW 0x1a
- #define RH_RF69_REG_1B_OOKPEAK 0x1b
- #define RH_RF69_REG_1C_OOKAVG 0x1c
- #define RH_RF69_REG_1D_OOKFIX 0x1d
- #define RH_RF69_REG_1E_AFCFEI 0x1e
- #define RH_RF69_REG_1F_AFCMSB 0x1f
- #define RH_RF69_REG_20_AFCLSB 0x20
- #define RH_RF69_REG_21_FEIMSB 0x21
- #define RH_RF69_REG_22_FEILSB 0x22
- #define RH_RF69_REG_23_RSSICONFIG 0x23
- #define RH_RF69_REG_24_RSSIVALUE 0x24
- #define RH_RF69_REG_25_DIOMAPPING1 0x25
- #define RH_RF69_REG_26_DIOMAPPING2 0x26
- #define RH_RF69_REG_27_IRQFLAGS1 0x27
- #define RH_RF69_REG_28_IRQFLAGS2 0x28
- #define RH_RF69_REG_29_RSSITHRESH 0x29
- #define RH_RF69_REG_2A_RXTIMEOUT1 0x2a
- #define RH_RF69_REG_2B_RXTIMEOUT2 0x2b
- #define RH_RF69_REG_2C_PREAMBLEMSB 0x2c
- #define RH_RF69_REG_2D_PREAMBLELSB 0x2d
- #define RH_RF69_REG_2E_SYNCCONFIG 0x2e
- #define RH_RF69_REG_2F_SYNCVALUE1 0x2f
- // another 7 sync word bytes follow, 30 through 36 inclusive
- #define RH_RF69_REG_37_PACKETCONFIG1 0x37
- #define RH_RF69_REG_38_PAYLOADLENGTH 0x38
- #define RH_RF69_REG_39_NODEADRS 0x39
- #define RH_RF69_REG_3A_BROADCASTADRS 0x3a
- #define RH_RF69_REG_3B_AUTOMODES 0x3b
- #define RH_RF69_REG_3C_FIFOTHRESH 0x3c
- #define RH_RF69_REG_3D_PACKETCONFIG2 0x3d
- #define RH_RF69_REG_3E_AESKEY1 0x3e
- // Another 15 AES key bytes follow
- #define RH_RF69_REG_4E_TEMP1 0x4e
- #define RH_RF69_REG_4F_TEMP2 0x4f
- #define RH_RF69_REG_58_TESTLNA 0x58
- #define RH_RF69_REG_5A_TESTPA1 0x5a
- #define RH_RF69_REG_5C_TESTPA2 0x5c
- #define RH_RF69_REG_6F_TESTDAGC 0x6f
- #define RH_RF69_REG_71_TESTAFC 0x71
-
- // These register masks etc are named wherever possible
- // corresponding to the bit and field names in the RFM69 Manual
-
- // RH_RF69_REG_01_OPMODE
- #define RH_RF69_OPMODE_SEQUENCEROFF 0x80
- #define RH_RF69_OPMODE_LISTENON 0x40
- #define RH_RF69_OPMODE_LISTENABORT 0x20
- #define RH_RF69_OPMODE_MODE 0x1c
- #define RH_RF69_OPMODE_MODE_SLEEP 0x00
- #define RH_RF69_OPMODE_MODE_STDBY 0x04
- #define RH_RF69_OPMODE_MODE_FS 0x08
- #define RH_RF69_OPMODE_MODE_TX 0x0c
- #define RH_RF69_OPMODE_MODE_RX 0x10
-
- // RH_RF69_REG_02_DATAMODUL
- #define RH_RF69_DATAMODUL_DATAMODE 0x60
- #define RH_RF69_DATAMODUL_DATAMODE_PACKET 0x00
- #define RH_RF69_DATAMODUL_DATAMODE_CONT_WITH_SYNC 0x40
- #define RH_RF69_DATAMODUL_DATAMODE_CONT_WITHOUT_SYNC 0x60
- #define RH_RF69_DATAMODUL_MODULATIONTYPE 0x18
- #define RH_RF69_DATAMODUL_MODULATIONTYPE_FSK 0x00
- #define RH_RF69_DATAMODUL_MODULATIONTYPE_OOK 0x08
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING 0x03
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_NONE 0x00
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT1_0 0x01
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_5 0x02
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_3 0x03
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_NONE 0x00
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_BR 0x01
- #define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_2BR 0x02
-
- // RH_RF69_REG_11_PALEVEL
- #define RH_RF69_PALEVEL_PA0ON 0x80
- #define RH_RF69_PALEVEL_PA1ON 0x40
- #define RH_RF69_PALEVEL_PA2ON 0x20
- #define RH_RF69_PALEVEL_OUTPUTPOWER 0x1f
-
- // RH_RF69_REG_23_RSSICONFIG
- #define RH_RF69_RSSICONFIG_RSSIDONE 0x02
- #define RH_RF69_RSSICONFIG_RSSISTART 0x01
-
- // RH_RF69_REG_25_DIOMAPPING1
- #define RH_RF69_DIOMAPPING1_DIO0MAPPING 0xc0
- #define RH_RF69_DIOMAPPING1_DIO0MAPPING_00 0x00
- #define RH_RF69_DIOMAPPING1_DIO0MAPPING_01 0x40
- #define RH_RF69_DIOMAPPING1_DIO0MAPPING_10 0x80
- #define RH_RF69_DIOMAPPING1_DIO0MAPPING_11 0xc0
-
- #define RH_RF69_DIOMAPPING1_DIO1MAPPING 0x30
- #define RH_RF69_DIOMAPPING1_DIO1MAPPING_00 0x00
- #define RH_RF69_DIOMAPPING1_DIO1MAPPING_01 0x10
- #define RH_RF69_DIOMAPPING1_DIO1MAPPING_10 0x20
- #define RH_RF69_DIOMAPPING1_DIO1MAPPING_11 0x30
-
- #define RH_RF69_DIOMAPPING1_DIO2MAPPING 0x0c
- #define RH_RF69_DIOMAPPING1_DIO2MAPPING_00 0x00
- #define RH_RF69_DIOMAPPING1_DIO2MAPPING_01 0x04
- #define RH_RF69_DIOMAPPING1_DIO2MAPPING_10 0x08
- #define RH_RF69_DIOMAPPING1_DIO2MAPPING_11 0x0c
-
- #define RH_RF69_DIOMAPPING1_DIO3MAPPING 0x03
- #define RH_RF69_DIOMAPPING1_DIO3MAPPING_00 0x00
- #define RH_RF69_DIOMAPPING1_DIO3MAPPING_01 0x01
- #define RH_RF69_DIOMAPPING1_DIO3MAPPING_10 0x02
- #define RH_RF69_DIOMAPPING1_DIO3MAPPING_11 0x03
-
- // RH_RF69_REG_26_DIOMAPPING2
- #define RH_RF69_DIOMAPPING2_DIO4MAPPING 0xc0
- #define RH_RF69_DIOMAPPING2_DIO4MAPPING_00 0x00
- #define RH_RF69_DIOMAPPING2_DIO4MAPPING_01 0x40
- #define RH_RF69_DIOMAPPING2_DIO4MAPPING_10 0x80
- #define RH_RF69_DIOMAPPING2_DIO4MAPPING_11 0xc0
-
- #define RH_RF69_DIOMAPPING2_DIO5MAPPING 0x30
- #define RH_RF69_DIOMAPPING2_DIO5MAPPING_00 0x00
- #define RH_RF69_DIOMAPPING2_DIO5MAPPING_01 0x10
- #define RH_RF69_DIOMAPPING2_DIO5MAPPING_10 0x20
- #define RH_RF69_DIOMAPPING2_DIO5MAPPING_11 0x30
-
- #define RH_RF69_DIOMAPPING2_CLKOUT 0x07
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_ 0x00
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_2 0x01
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_4 0x02
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_8 0x03
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_16 0x04
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_32 0x05
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_RC 0x06
- #define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_OFF 0x07
-
- // RH_RF69_REG_27_IRQFLAGS1
- #define RH_RF69_IRQFLAGS1_MODEREADY 0x80
- #define RH_RF69_IRQFLAGS1_RXREADY 0x40
- #define RH_RF69_IRQFLAGS1_TXREADY 0x20
- #define RH_RF69_IRQFLAGS1_PLLLOCK 0x10
- #define RH_RF69_IRQFLAGS1_RSSI 0x08
- #define RH_RF69_IRQFLAGS1_TIMEOUT 0x04
- #define RH_RF69_IRQFLAGS1_AUTOMODE 0x02
- #define RH_RF69_IRQFLAGS1_SYNADDRESSMATCH 0x01
-
- // RH_RF69_REG_28_IRQFLAGS2
- #define RH_RF69_IRQFLAGS2_FIFOFULL 0x80
- #define RH_RF69_IRQFLAGS2_FIFONOTEMPTY 0x40
- #define RH_RF69_IRQFLAGS2_FIFOLEVEL 0x20
- #define RH_RF69_IRQFLAGS2_FIFOOVERRUN 0x10
- #define RH_RF69_IRQFLAGS2_PACKETSENT 0x08
- #define RH_RF69_IRQFLAGS2_PAYLOADREADY 0x04
- #define RH_RF69_IRQFLAGS2_CRCOK 0x02
-
- // RH_RF69_REG_2E_SYNCCONFIG
- #define RH_RF69_SYNCCONFIG_SYNCON 0x80
- #define RH_RF69_SYNCCONFIG_FIFOFILLCONDITION_MANUAL 0x40
- #define RH_RF69_SYNCCONFIG_SYNCSIZE 0x38
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_1 0x00
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_2 0x08
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_3 0x10
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_4 0x18
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_5 0x20
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_6 0x28
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_7 0x30
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_8 0x38
- #define RH_RF69_SYNCCONFIG_SYNCSIZE_SYNCTOL 0x07
-
- // RH_RF69_REG_37_PACKETCONFIG1
- #define RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE 0x80
- #define RH_RF69_PACKETCONFIG1_DCFREE 0x60
- #define RH_RF69_PACKETCONFIG1_DCFREE_NONE 0x00
- #define RH_RF69_PACKETCONFIG1_DCFREE_MANCHESTER 0x20
- #define RH_RF69_PACKETCONFIG1_DCFREE_WHITENING 0x40
- #define RH_RF69_PACKETCONFIG1_DCFREE_RESERVED 0x60
- #define RH_RF69_PACKETCONFIG1_CRC_ON 0x10
- #define RH_RF69_PACKETCONFIG1_CRCAUTOCLEAROFF 0x08
- #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING 0x06
- #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE 0x00
- #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE 0x02
- #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE_BC 0x04
- #define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_RESERVED 0x06
-
- // RH_RF69_REG_3C_FIFOTHRESH
- #define RH_RF69_FIFOTHRESH_TXSTARTCONDITION_NOTEMPTY 0x80
- #define RH_RF69_FIFOTHRESH_FIFOTHRESHOLD 0x7f
-
- // RH_RF69_REG_3D_PACKETCONFIG2
- #define RH_RF69_PACKETCONFIG2_INTERPACKETRXDELAY 0xf0
- #define RH_RF69_PACKETCONFIG2_RESTARTRX 0x04
- #define RH_RF69_PACKETCONFIG2_AUTORXRESTARTON 0x02
- #define RH_RF69_PACKETCONFIG2_AESON 0x01
-
- // RH_RF69_REG_4E_TEMP1
- #define RH_RF69_TEMP1_TEMPMEASSTART 0x08
- #define RH_RF69_TEMP1_TEMPMEASRUNNING 0x04
-
- // RH_RF69_REG_5A_TESTPA1
- #define RH_RF69_TESTPA1_NORMAL 0x55
- #define RH_RF69_TESTPA1_BOOST 0x5d
-
- // RH_RF69_REG_5C_TESTPA2
- #define RH_RF69_TESTPA2_NORMAL 0x70
- #define RH_RF69_TESTPA2_BOOST 0x7c
-
- // RH_RF69_REG_6F_TESTDAGC
- #define RH_RF69_TESTDAGC_CONTINUOUSDAGC_NORMAL 0x00
- #define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAON 0x20
- #define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAOFF 0x30
-
- // Define this to include Serial printing in diagnostic routines
- #define RH_RF69_HAVE_SERIAL
-
-
- /////////////////////////////////////////////////////////////////////
- /// \class RH_RF69 RH_RF69.h <RH_RF69.h>
- /// \brief Driver to send and receive unaddressed, unreliable datagrams via an RF69 and compatible radio transceiver.
- ///
- /// Works with
- /// - the excellent Moteino and Moteino-USB
- /// boards from LowPowerLab http://lowpowerlab.com/moteino/
- /// - compatible chips and modules such as RFM69W, RFM69HW, RFM69CW, RFM69HCW (Semtech SX1231, SX1231H),
- /// - RFM69 modules from http://www.hoperfusa.com such as http://www.hoperfusa.com/details.jsp?pid=145
- /// - Anarduino MiniWireless -CW and -HW boards http://www.anarduino.com/miniwireless/ including
- /// the marvellous high powered MinWireless-HW (with 20dBm output for excellent range)
- /// - the excellent Rocket Scream Mini Ultra Pro with the RFM69HCW
- /// http://www.rocketscream.com/blog/product/mini-ultra-pro-with-radio/
- /// - The excellent talk2 Whisper Node boards
- /// (https://talk2.wisen.com.au/ and https://bitbucket.org/talk2/),
- /// an Arduino Nano compatible board, which include an on-board RF69 radio, external antenna,
- /// run on 2xAA batteries and support low power operations. RF69 examples work without modification.
- ///
- /// \par Overview
- ///
- /// This class provides basic functions for sending and receiving unaddressed,
- /// unreliable datagrams of arbitrary length to 64 octets per packet.
- ///
- /// Manager classes may use this class to implement reliable, addressed datagrams and streams,
- /// mesh routers, repeaters, translators etc.
- ///
- /// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
- /// modulation scheme.
- ///
- /// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
- /// RF69B and compatible radio modules, such as the RFM69 module.
- ///
- /// The Hope-RF (http://www.hoperf.com) RF69 is a low-cost ISM transceiver
- /// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and
- /// programmable data rates. It also suports AES encryption of up to 64 octets
- /// of payload It is available prepackaged on modules such as the RFM69W. And
- /// such modules can be prepacked on processor boards such as the Moteino from
- /// LowPowerLabs (which is what we used to develop the RH_RF69 driver)
- ///
- /// This Driver provides functions for sending and receiving messages of up
- /// to 60 octets on any frequency supported by the RF69, in a range of
- /// predefined data rates and frequency deviations. Frequency can be set with
- /// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited
- /// range of frequencies due to antenna tuning.
- ///
- /// Up to 2 RF69B modules can be connected to an Arduino (3 on a Mega),
- /// permitting the construction of translators and frequency changers, etc.
- ///
- /// The following modulation types are suppported with a range of modem configurations for
- /// common data rates and frequency deviations:
- /// - GFSK Gaussian Frequency Shift Keying
- /// - FSK Frequency Shift Keying
- ///
- /// Support for other RF69 features such as on-chip temperature measurement,
- /// transmitter power control etc is also provided.
- ///
- /// Tested on USB-Moteino with arduino-1.0.5
- /// on OpenSuSE 13.1
- ///
- /// \par Packet Format
- ///
- /// All messages sent and received by this RH_RF69 Driver conform to this packet format:
- ///
- /// - 4 octets PREAMBLE
- /// - 2 octets SYNC 0x2d, 0xd4 (configurable, so you can use this as a network filter)
- /// - 1 octet RH_RF69 payload length
- /// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
- /// - 0 to 60 octets DATA
- /// - 2 octets CRC computed with CRC16(IBM), computed on HEADER and DATA
- ///
- /// For technical reasons, the message format is not protocol compatible with the
- /// 'HopeRF Radio Transceiver Message Library for Arduino'
- /// http://www.airspayce.com/mikem/arduino/HopeRF from the same author. Nor is
- /// it compatible with messages sent by 'Virtual Wire'
- /// http://www.airspayce.com/mikem/arduino/VirtualWire.pdf also from the same
- /// author. Nor is it compatible with messages sent by 'RF22'
- /// http://www.airspayce.com/mikem/arduino/RF22 also from the same author.
- ///
- /// \par Connecting RFM-69 to Arduino
- ///
- /// We tested with Moteino, which is an Arduino Uno compatible with the RFM69W
- /// module on-board. Therefore it needs no connections other than the USB
- /// programming connection and an antenna to make it work.
- ///
- /// If you have a bare RFM69W that you want to connect to an Arduino, you
- /// might use these connections: CAUTION: you must use a 3.3V type
- /// Arduino, otherwise you will also need voltage level shifters between the
- /// Arduino and the RFM69. CAUTION, you must also ensure you connect an
- /// antenna
- ///
- /// \code
- /// Arduino RFM69W
- /// GND----------GND (ground in)
- /// 3V3----------3.3V (3.3V in)
- /// interrupt 0 pin D2-----------DIO0 (interrupt request out)
- /// SS pin D10----------NSS (chip select in)
- /// SCK pin D13----------SCK (SPI clock in)
- /// MOSI pin D11----------MOSI (SPI Data in)
- /// MISO pin D12----------MISO (SPI Data out)
- /// \endcode
- ///
- /// For Arduino Due, use these connections:
- /// \code
- /// Arduino RFM69W
- /// GND----------GND (ground in)
- /// 3V3----------3.3V (3.3V in)
- /// interrupt 0 pin D2-----------DIO0 (interrupt request out)
- /// SS pin D10----------NSS (chip select in)
- /// SCK SPI pin 3----------SCK (SPI clock in)
- /// MOSI SPI pin 4----------MOSI (SPI Data in)
- /// MISO SPI pin 1----------MISO (SPI Data out)
- /// \endcode
- ///
- /// With these connections, you can then use the default constructor RH_RF69().
- /// You can override the default settings for the SS pin and the interrupt in
- /// the RH_RF69 constructor if you wish to connect the slave select SS to other
- /// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53
- /// for Mega) or the interrupt request to other than pin D2 (Caution,
- /// different processors have different constraints as to the pins available
- /// for interrupts).
- ///
- /// If you have a Teensy 3.1 and a compatible RFM69 breakout board, you will need to
- /// construct the RH_RF69 instance like this:
- /// \code
- /// RH_RF69 driver(15, 16);
- /// \endcode
- ///
- /// If you have a MoteinoMEGA https://lowpowerlab.com/shop/moteinomega
- /// with RFM69 on board, you dont need to make any wiring connections
- /// (the RFM69 module is soldered onto the MotienoMEGA), but you must initialise the RH_RF69
- /// constructor like this:
- /// \code
- /// RH_RF69 driver(4, 2);
- /// \endcode
- /// Make sure you have the MoteinoMEGA core installed in your Arduino hardware folder as described in the
- /// documentation for the MoteinoMEGA.
- ///
- /// If you have an Arduino M0 Pro from arduino.org,
- /// you should note that you cannot use Pin 2 for the interrupt line
- /// (Pin 2 is for the NMI only). The same comments apply to Pin 4 on Arduino Zero from arduino.cc.
- /// Instead you can use any other pin (we use Pin 3) and initialise RH_RF69 like this:
- /// \code
- /// // Slave Select is pin 10, interrupt is Pin 3
- /// RH_RF69 driver(10, 3);
- /// \endcode
- ///
- /// If you have a Rocket Scream Mini Ultra Pro with the RFM69HCW
- /// - Ensure you have Arduino SAMD board support 1.6.5 or later in Arduino IDE 1.6.8 or later.
- /// - The radio SS is hardwired to pin D5 and the DIO0 interrupt to pin D2,
- /// so you need to initialise the radio like this:
- /// \code
- /// RH_RF69 driver(5, 2);
- /// \endcode
- /// - The name of the serial port on that board is 'SerialUSB', not 'Serial', so this may be helpful at the top of our
- /// sample sketches:
- /// \code
- /// #define Serial SerialUSB
- /// \endcode
- /// - You also need this in setup before radio initialisation
- /// \code
- /// // Ensure serial flash is not interfering with radio communication on SPI bus
- /// pinMode(4, OUTPUT);
- /// digitalWrite(4, HIGH);
- /// \endcode
- /// - and if you have a 915MHz part, you need this after driver/manager intitalisation:
- /// \code
- /// rf69.setFrequency(915.0);
- /// rf69.setTxPower(20);
- /// \endcode
- /// which adds up to modifying sample sketches something like:
- /// \code
- /// #include <SPI.h>
- /// #include <RH_RF69.h>
- /// RH_RF69 rf69(5, 2); // Rocket Scream Mini Ultra Pro with the RFM69HCW
- /// #define Serial SerialUSB
- ///
- /// void setup()
- /// {
- /// // Ensure serial flash is not interfering with radio communication on SPI bus
- /// pinMode(4, OUTPUT);
- /// digitalWrite(4, HIGH);
- ///
- /// Serial.begin(9600);
- /// while (!Serial) ; // Wait for serial port to be available
- /// if (!rf69.init())
- /// Serial.println("init failed");
- /// rf69.setFrequency(915.0);
- /// rf69.setTxPower(20);
- /// }
- /// ...
- /// \endcode
- ///
- /// If you have a talk2 Whisper Node board with on-board RF69 radio,
- /// the example rf69_* sketches work without modifications. Initialise the radio like
- /// with the default constructor:
- /// \code
- /// RH_RF69 driver;
- /// \endcode
- ///
- /// It is possible to have 2 or more radios connected to one Arduino, provided
- /// each radio has its own SS and interrupt line (SCK, SDI and SDO are common
- /// to all radios)
- ///
- /// Caution: on some Arduinos such as the Mega 2560, if you set the slave
- /// select pin to be other than the usual SS pin (D53 on Mega 2560), you may
- /// need to set the usual SS pin to be an output to force the Arduino into SPI
- /// master mode.
- ///
- /// Caution: Power supply requirements of the RF69 module may be relevant in some circumstances:
- /// RF69 modules are capable of pulling 45mA+ at full power, where Arduino's 3.3V line can
- /// give 50mA. You may need to make provision for alternate power supply for
- /// the RF69, especially if you wish to use full transmit power, and/or you have
- /// other shields demanding power. Inadequate power for the RF69 is likely to cause symptoms such as:
- /// -reset's/bootups terminate with "init failed" messages
- /// -random termination of communication after 5-30 packets sent/received
- /// -"fake ok" state, where initialization passes fluently, but communication doesn't happen
- /// -shields hang Arduino boards, especially during the flashing
- /// \par Interrupts
- ///
- /// The RH_RF69 driver uses interrupts to react to events in the RF69 module,
- /// such as the reception of a new packet, or the completion of transmission
- /// of a packet. The RH_RF69 driver interrupt service routine reads status from
- /// and writes data to the the RF69 module via the SPI interface. It is very
- /// important therefore, that if you are using the RH_RF69 driver with another
- /// SPI based deviced, that you disable interrupts while you transfer data to
- /// and from that other device. Use cli() to disable interrupts and sei() to
- /// reenable them.
- ///
- /// \par Memory
- ///
- /// The RH_RF69 driver requires non-trivial amounts of memory. The sample
- /// programs above all compile to about 8kbytes each, which will fit in the
- /// flash proram memory of most Arduinos. However, the RAM requirements are
- /// more critical. Therefore, you should be vary sparing with RAM use in
- /// programs that use the RH_RF69 driver.
- ///
- /// It is often hard to accurately identify when you are hitting RAM limits on Arduino.
- /// The symptoms can include:
- /// - Mysterious crashes and restarts
- /// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
- /// - Hanging
- /// - Output from Serial.print() not appearing
- ///
- /// \par Automatic Frequency Control (AFC)
- ///
- /// The RF69 module is configured by the RH_RF69 driver to always use AFC.
- ///
- /// \par Transmitter Power
- ///
- /// You can control the transmitter power on the RF69 transceiver
- /// with the RH_RF69::setTxPower() function. The argument can be any of
- /// -18 to +13 (for RF69W) or -14 to 20 (for RF69HW)
- /// The default is 13. Eg:
- /// \code
- /// driver.setTxPower(-5);
- /// \endcode
- ///
- /// We have made some actual power measurements against
- /// programmed power for Moteino (with RF69W)
- /// - Moteino (with RF69W), USB power
- /// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND
- /// - bnc connecteor
- /// - 12dB attenuator
- /// - BNC-SMA adapter
- /// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
- /// - Tektronix TDS220 scope to measure the Vout from power head
- /// \code
- /// Program power Measured Power
- /// dBm dBm
- /// -18 -17
- /// -16 -16
- /// -14 -14
- /// -12 -12
- /// -10 -9
- /// -8 -7
- /// -6 -4
- /// -4 -3
- /// -2 -2
- /// 0 0.2
- /// 2 3
- /// 4 5
- /// 6 7
- /// 8 10
- /// 10 13
- /// 12 14
- /// 13 15
- /// 14 -51
- /// 20 -51
- /// \endcode
- /// We have also made some actual power measurements against
- /// programmed power for Anarduino MiniWireless with RFM69-HW
- /// Anarduino MiniWireless (with RFM69-HW), USB power
- /// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND
- /// - bnc connecteor
- /// - 2x12dB attenuators
- /// - BNC-SMA adapter
- /// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
- /// - Tektronix TDS220 scope to measure the Vout from power head
- /// \code
- /// Program power Measured Power
- /// dBm dBm
- /// -18 no measurable output
- /// 0 no measurable output
- /// 13 no measurable output
- /// 14 11
- /// 15 12
- /// 16 12.4
- /// 17 14
- /// 18 15
- /// 19 15.8
- /// 20 17
- /// \endcode
- /// (Caution: we dont claim laboratory accuracy for these measurements)
- /// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
- /// Caution: although the RFM69 appears to have a PC antenna on board, you will get much better power and range even
- /// with just a 1/4 wave wire antenna.
- ///
- /// \par Performance
- ///
- /// Some simple speed performance tests have been conducted.
- /// In general packet transmission rate will be limited by the modulation scheme.
- /// Also, if your code does any slow operations like Serial printing it will also limit performance.
- /// We disabled any printing in the tests below.
- /// We tested with RH_RF69::GFSK_Rb250Fd250, which is probably the fastest scheme available.
- /// We tested with a 13 octet message length, over a very short distance of 10cm.
- ///
- /// Transmission (no reply) tests with modulation RH_RF69::GFSK_Rb250Fd250 and a
- /// 13 octet message show about 152 messages per second transmitted and received.
- ///
- /// Transmit-and-wait-for-a-reply tests with modulation RH_RF69::GFSK_Rb250Fd250 and a
- /// 13 octet message (send and receive) show about 68 round trips per second.
- ///
- class RH_RF69 : public RHSPIDriver
- {
- public:
-
- /// \brief Defines register values for a set of modem configuration registers
- ///
- /// Defines register values for a set of modem configuration registers
- /// that can be passed to setModemRegisters() if none of the choices in
- /// ModemConfigChoice suit your need setModemRegisters() writes the
- /// register values from this structure to the appropriate RF69 registers
- /// to set the desired modulation type, data rate and deviation/bandwidth.
- typedef struct
- {
- uint8_t reg_02; ///< Value for register RH_RF69_REG_02_DATAMODUL
- uint8_t reg_03; ///< Value for register RH_RF69_REG_03_BITRATEMSB
- uint8_t reg_04; ///< Value for register RH_RF69_REG_04_BITRATELSB
- uint8_t reg_05; ///< Value for register RH_RF69_REG_05_FDEVMSB
- uint8_t reg_06; ///< Value for register RH_RF69_REG_06_FDEVLSB
- uint8_t reg_19; ///< Value for register RH_RF69_REG_19_RXBW
- uint8_t reg_1a; ///< Value for register RH_RF69_REG_1A_AFCBW
- uint8_t reg_37; ///< Value for register RH_RF69_REG_37_PACKETCONFIG1
- } ModemConfig;
-
- /// Choices for setModemConfig() for a selected subset of common
- /// modulation types, and data rates. If you need another configuration,
- /// use the register calculator. and call setModemRegisters() with your
- /// desired settings.
- /// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
- /// definitions and not their integer equivalents: its possible that new values will be
- /// introduced in later versions (though we will try to avoid it).
- /// CAUTION: some of these configurations do not work corectly and are marked as such.
- typedef enum
- {
- FSK_Rb2Fd5 = 0, ///< FSK, Whitening, Rb = 2kbs, Fd = 5kHz
- FSK_Rb2_4Fd4_8, ///< FSK, Whitening, Rb = 2.4kbs, Fd = 4.8kHz
- FSK_Rb4_8Fd9_6, ///< FSK, Whitening, Rb = 4.8kbs, Fd = 9.6kHz
- FSK_Rb9_6Fd19_2, ///< FSK, Whitening, Rb = 9.6kbs, Fd = 19.2kHz
- FSK_Rb19_2Fd38_4, ///< FSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz
- FSK_Rb38_4Fd76_8, ///< FSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz
- FSK_Rb57_6Fd120, ///< FSK, Whitening, Rb = 57.6kbs, Fd = 120kHz
- FSK_Rb125Fd125, ///< FSK, Whitening, Rb = 125kbs, Fd = 125kHz
- FSK_Rb250Fd250, ///< FSK, Whitening, Rb = 250kbs, Fd = 250kHz
- FSK_Rb55555Fd50, ///< FSK, Whitening, Rb = 55555kbs,Fd = 50kHz for RFM69 lib compatibility
-
- GFSK_Rb2Fd5, ///< GFSK, Whitening, Rb = 2kbs, Fd = 5kHz
- GFSK_Rb2_4Fd4_8, ///< GFSK, Whitening, Rb = 2.4kbs, Fd = 4.8kHz
- GFSK_Rb4_8Fd9_6, ///< GFSK, Whitening, Rb = 4.8kbs, Fd = 9.6kHz
- GFSK_Rb9_6Fd19_2, ///< GFSK, Whitening, Rb = 9.6kbs, Fd = 19.2kHz
- GFSK_Rb19_2Fd38_4, ///< GFSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz
- GFSK_Rb38_4Fd76_8, ///< GFSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz
- GFSK_Rb57_6Fd120, ///< GFSK, Whitening, Rb = 57.6kbs, Fd = 120kHz
- GFSK_Rb125Fd125, ///< GFSK, Whitening, Rb = 125kbs, Fd = 125kHz
- GFSK_Rb250Fd250, ///< GFSK, Whitening, Rb = 250kbs, Fd = 250kHz
- GFSK_Rb55555Fd50, ///< GFSK, Whitening, Rb = 55555kbs,Fd = 50kHz
-
- OOK_Rb1Bw1, ///< OOK, Whitening, Rb = 1kbs, Rx Bandwidth = 1kHz.
- OOK_Rb1_2Bw75, ///< OOK, Whitening, Rb = 1.2kbs, Rx Bandwidth = 75kHz.
- OOK_Rb2_4Bw4_8, ///< OOK, Whitening, Rb = 2.4kbs, Rx Bandwidth = 4.8kHz.
- OOK_Rb4_8Bw9_6, ///< OOK, Whitening, Rb = 4.8kbs, Rx Bandwidth = 9.6kHz.
- OOK_Rb9_6Bw19_2, ///< OOK, Whitening, Rb = 9.6kbs, Rx Bandwidth = 19.2kHz.
- OOK_Rb19_2Bw38_4, ///< OOK, Whitening, Rb = 19.2kbs, Rx Bandwidth = 38.4kHz.
- OOK_Rb32Bw64, ///< OOK, Whitening, Rb = 32kbs, Rx Bandwidth = 64kHz.
-
- // Test,
- } ModemConfigChoice;
-
- /// Constructor. You can have multiple instances, but each instance must have its own
- /// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
- /// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
- /// distinct interrupt lines, one for each instance.
- /// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RF69 before
- /// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
- /// \param[in] interruptPin The interrupt Pin number that is connected to the RF69 DIO0 interrupt line.
- /// Defaults to pin 2.
- /// Caution: You must specify an interrupt capable pin.
- /// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
- /// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
- /// On Arduino Zero from arduino.cc, any digital pin other than 4.
- /// On Arduino M0 Pro from arduino.org, any digital pin other than 2.
- /// On other Arduinos pins 2 or 3.
- /// See http://arduino.cc/en/Reference/attachInterrupt for more details.
- /// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
- /// On other boards, any digital pin may be used.
- /// \param[in] spi Pointer to the SPI interface object to use.
- /// Defaults to the standard Arduino hardware SPI interface
- RH_RF69(uint8_t slaveSelectPin = SS, uint8_t interruptPin = 2, RHGenericSPI& spi = hardware_spi);
-
- /// Initialises this instance and the radio module connected to it.
- /// The following steps are taken:
- /// - Initialise the slave select pin and the SPI interface library
- /// - Checks the connected RF69 module can be communicated
- /// - Attaches an interrupt handler
- /// - Configures the RF69 module
- /// - Sets the frequency to 434.0 MHz
- /// - Sets the modem data rate to FSK_Rb2Fd5
- /// \return true if everything was successful
- bool init();
-
- /// Reads the on-chip temperature sensor.
- /// The RF69 must be in Idle mode (= RF69 Standby) to measure temperature.
- /// The measurement is uncalibrated and without calibration, you can expect it to be far from
- /// correct.
- /// \return The measured temperature, in degrees C from -40 to 85 (uncalibrated)
- int8_t temperatureRead();
-
- /// Sets the transmitter and receiver
- /// centre frequency
- /// \param[in] centre Frequency in MHz. 240.0 to 960.0. Caution, RF69 comes in several
- /// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
- /// \param[in] afcPullInRange Not used
- /// \return true if the selected frquency centre is within range
- bool setFrequency(float centre, float afcPullInRange = 0.05);
-
- /// Reads and returns the current RSSI value.
- /// Causes the current signal strength to be measured and returned
- /// If you want to find the RSSI
- /// of the last received message, use lastRssi() instead.
- /// \return The current RSSI value on units of 0.5dB.
- int8_t rssiRead();
-
- /// Sets the parameters for the RF69 OPMODE.
- /// This is a low level device access function, and should not normally ned to be used by user code.
- /// Instead can use stModeRx(), setModeTx(), setModeIdle()
- /// \param[in] mode RF69 OPMODE to set, one of RH_RF69_OPMODE_MODE_*.
- void setOpMode(uint8_t mode);
-
- /// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
- /// disables them.
- void setModeIdle();
-
- /// If current mode is Tx or Idle, changes it to Rx.
- /// Starts the receiver in the RF69.
- void setModeRx();
-
- /// If current mode is Rx or Idle, changes it to Rx. F
- /// Starts the transmitter in the RF69.
- void setModeTx();
-
- /// Sets the transmitter power output level.
- /// Be a good neighbour and set the lowest power level you need.
- /// Caution: legal power limits may apply in certain countries.
- /// After init(), the power will be set to 13dBm.
- /// \param[in] power Transmitter power level in dBm. For RF69W, valid values are from -18 to +13
- /// (higher power settings disable the transmitter).
- /// For RF69HW, valid values are from +14 to +20. Caution: at +20dBm, duty cycle is limited to 1% and a
- /// maximum VSWR of 3:1 at the antenna port.
- void setTxPower(int8_t power);
-
- /// Sets all the registers required to configure the data modem in the RF69, including the data rate,
- /// bandwidths etc. You can use this to configure the modem with custom configurations if none of the
- /// canned configurations in ModemConfigChoice suit you.
- /// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
- void setModemRegisters(const ModemConfig* config);
-
- /// Select one of the predefined modem configurations. If you need a modem configuration not provided
- /// here, use setModemRegisters() with your own ModemConfig. The default after init() is RH_RF69::GFSK_Rb250Fd250.
- /// \param[in] index The configuration choice.
- /// \return true if index is a valid choice.
- bool setModemConfig(ModemConfigChoice index);
-
- /// Starts the receiver and checks whether a received message is available.
- /// This can be called multiple times in a timeout loop
- /// \return true if a complete, valid message has been received and is able to be retrieved by
- /// recv()
- bool available();
-
- /// Turns the receiver on if it not already on.
- /// If there is a valid message available, copy it to buf and return true
- /// else return false.
- /// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
- /// You should be sure to call this function frequently enough to not miss any messages
- /// It is recommended that you call it in your main loop.
- /// \param[in] buf Location to copy the received message
- /// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
- /// \return true if a valid message was copied to buf
- bool recv(uint8_t* buf, uint8_t* len);
-
- /// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
- /// Then loads a message into the transmitter and starts the transmitter. Note that a message length
- /// of 0 is NOT permitted.
- /// \param[in] data Array of data to be sent
- /// \param[in] len Number of bytes of data to send (> 0)
- /// \return true if the message length was valid and it was correctly queued for transmit
- bool send(const uint8_t* data, uint8_t len);
-
- /// Sets the length of the preamble
- /// in bytes.
- /// Caution: this should be set to the same
- /// value on all nodes in your network. Default is 4.
- /// Sets the message preamble length in REG_0?_PREAMBLE?SB
- /// \param[in] bytes Preamble length in bytes.
- void setPreambleLength(uint16_t bytes);
-
- /// Sets the sync words for transmit and receive
- /// Caution: SyncWords should be set to the same
- /// value on all nodes in your network. Nodes with different SyncWords set will never receive
- /// each others messages, so different SyncWords can be used to isolate different
- /// networks from each other. Default is { 0x2d, 0xd4 }.
- /// \param[in] syncWords Array of sync words, 1 to 4 octets long. NULL if no sync words to be used.
- /// \param[in] len Number of sync words to set, 1 to 4. 0 if no sync words to be used.
- void setSyncWords(const uint8_t* syncWords = NULL, uint8_t len = 0);
-
- /// Enables AES encryption and sets the AES encryption key, used
- /// to encrypt and decrypt all messages. The default is disabled.
- /// \param[in] key The key to use. Must be 16 bytes long. The same key must be installed
- /// in other instances of RF69, otherwise communications will not work correctly. If key is NULL,
- /// encryption is disabled.
- void setEncryptionKey(uint8_t* key = NULL);
-
- /// Returns the time in millis since the most recent preamble was received, and when the most recent
- /// RSSI measurement was made.
- uint32_t getLastPreambleTime();
-
- /// The maximum message length supported by this driver
- /// \return The maximum message length supported by this driver
- uint8_t maxMessageLength();
-
- /// Prints the value of a single register
- /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
- /// For debugging/testing only
- /// \return true if successful
- bool printRegister(uint8_t reg);
-
- /// Prints the value of all the RF69 registers
- /// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
- /// For debugging/testing only
- /// \return true if successful
- bool printRegisters();
-
- /// Sets the radio operating mode for the case when the driver is idle (ie not
- /// transmitting or receiving), allowing you to control the idle mode power requirements
- /// at the expense of slower transitions to transmit and receive modes.
- /// By default, the idle mode is RH_RF69_OPMODE_MODE_STDBY,
- /// but eg setIdleMode(RH_RF69_OPMODE_MODE_SLEEP) will provide a much lower
- /// idle current but slower transitions. Call this function after init().
- /// \param[in] idleMode The chip operating mode to use when the driver is idle. One of RH_RF69_OPMODE_*
- void setIdleMode(uint8_t idleMode);
-
- /// Sets the radio into low-power sleep mode.
- /// If successful, the transport will stay in sleep mode until woken by
- /// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
- /// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
- /// \return true if sleep mode was successfully entered.
- virtual bool sleep();
-
- protected:
- /// This is a low level function to handle the interrupts for one instance of RF69.
- /// Called automatically by isr*()
- /// Should not need to be called by user code.
- void handleInterrupt();
-
- /// Low level function to read the FIFO and put the received data into the receive buffer
- /// Should not need to be called by user code.
- void readFifo();
-
- protected:
- /// Low level interrupt service routine for RF69 connected to interrupt 0
- static void isr0();
-
- /// Low level interrupt service routine for RF69 connected to interrupt 1
- static void isr1();
-
- /// Low level interrupt service routine for RF69 connected to interrupt 1
- static void isr2();
-
- /// Array of instances connected to interrupts 0 and 1
- static RH_RF69* _deviceForInterrupt[];
-
- /// Index of next interrupt number to use in _deviceForInterrupt
- static uint8_t _interruptCount;
-
- /// The configured interrupt pin connected to this instance
- uint8_t _interruptPin;
-
- /// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
- /// else 0xff
- uint8_t _myInterruptIndex;
-
- /// The radio OP mode to use when mode is RHModeIdle
- uint8_t _idleMode;
-
- /// The reported device type
- uint8_t _deviceType;
-
- /// The selected output power in dBm
- int8_t _power;
-
- /// The message length in _buf
- volatile uint8_t _bufLen;
-
- /// Array of octets of teh last received message or the next to transmit message
- uint8_t _buf[RH_RF69_MAX_MESSAGE_LEN];
-
- /// True when there is a valid message in the Rx buffer
- volatile bool _rxBufValid;
-
- /// Time in millis since the last preamble was received (and the last time the RSSI was measured)
- uint32_t _lastPreambleTime;
- };
-
- /// @example rf69_client.pde
- /// @example rf69_server.pde
- /// @example rf69_reliable_datagram_client.pde
- /// @example rf69_reliable_datagram_server.pde
-
-
- #endif
|