PlatformIO package of the Teensy core framework compatible with GCC 10 & C++20
Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

1407 lines
47KB

  1. /*
  2. * Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
  3. * Copyright (c) 2014 by Paul Stoffregen <paul@pjrc.com> (Transaction API)
  4. * Copyright (c) 2014 by Matthijs Kooijman <matthijs@stdin.nl> (SPISettings AVR)
  5. * SPI Master library for arduino.
  6. *
  7. * This file is free software; you can redistribute it and/or modify
  8. * it under the terms of either the GNU General Public License version 2
  9. * or the GNU Lesser General Public License version 2.1, both as
  10. * published by the Free Software Foundation.
  11. */
  12. #ifndef _SPI_H_INCLUDED
  13. #define _SPI_H_INCLUDED
  14. #include <Arduino.h>
  15. #if defined(__arm__) && defined(TEENSYDUINO)
  16. #if defined(__has_include) && __has_include(<EventResponder.h>)
  17. // SPI_HAS_TRANSFER_ASYNC - Defined to say that the SPI supports an ASYNC version
  18. // of the SPI_HAS_TRANSFER_BUF
  19. #define SPI_HAS_TRANSFER_ASYNC 1
  20. #include <DMAChannel.h>
  21. #include <EventResponder.h>
  22. #endif
  23. #endif
  24. // SPI_HAS_TRANSACTION means SPI has beginTransaction(), endTransaction(),
  25. // usingInterrupt(), and SPISetting(clock, bitOrder, dataMode)
  26. #define SPI_HAS_TRANSACTION 1
  27. // Uncomment this line to add detection of mismatched begin/end transactions.
  28. // A mismatch occurs if other libraries fail to use SPI.endTransaction() for
  29. // each SPI.beginTransaction(). Connect a LED to this pin. The LED will turn
  30. // on if any mismatch is ever detected.
  31. //#define SPI_TRANSACTION_MISMATCH_LED 5
  32. // SPI_HAS_TRANSFER_BUF - is defined to signify that this library supports
  33. // a version of transfer which allows you to pass in both TX and RX buffer
  34. // pointers, either of which could be NULL
  35. #define SPI_HAS_TRANSFER_BUF 1
  36. #ifndef LSBFIRST
  37. #define LSBFIRST 0
  38. #endif
  39. #ifndef MSBFIRST
  40. #define MSBFIRST 1
  41. #endif
  42. #define SPI_MODE0 0x00
  43. #define SPI_MODE1 0x04
  44. #define SPI_MODE2 0x08
  45. #define SPI_MODE3 0x0C
  46. #define SPI_CLOCK_DIV4 0x00
  47. #define SPI_CLOCK_DIV16 0x01
  48. #define SPI_CLOCK_DIV64 0x02
  49. #define SPI_CLOCK_DIV128 0x03
  50. #define SPI_CLOCK_DIV2 0x04
  51. #define SPI_CLOCK_DIV8 0x05
  52. #define SPI_CLOCK_DIV32 0x06
  53. #define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
  54. #define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
  55. #define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
  56. /**********************************************************/
  57. /* 8 bit AVR-based boards */
  58. /**********************************************************/
  59. #if defined(__AVR__)
  60. #define SPI_ATOMIC_VERSION 1
  61. // define SPI_AVR_EIMSK for AVR boards with external interrupt pins
  62. #if defined(EIMSK)
  63. #define SPI_AVR_EIMSK EIMSK
  64. #elif defined(GICR)
  65. #define SPI_AVR_EIMSK GICR
  66. #elif defined(GIMSK)
  67. #define SPI_AVR_EIMSK GIMSK
  68. #endif
  69. class SPISettings {
  70. public:
  71. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  72. if (__builtin_constant_p(clock)) {
  73. init_AlwaysInline(clock, bitOrder, dataMode);
  74. } else {
  75. init_MightInline(clock, bitOrder, dataMode);
  76. }
  77. }
  78. SPISettings() {
  79. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  80. }
  81. private:
  82. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  83. init_AlwaysInline(clock, bitOrder, dataMode);
  84. }
  85. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  86. __attribute__((__always_inline__)) {
  87. // Clock settings are defined as follows. Note that this shows SPI2X
  88. // inverted, so the bits form increasing numbers. Also note that
  89. // fosc/64 appears twice
  90. // SPR1 SPR0 ~SPI2X Freq
  91. // 0 0 0 fosc/2
  92. // 0 0 1 fosc/4
  93. // 0 1 0 fosc/8
  94. // 0 1 1 fosc/16
  95. // 1 0 0 fosc/32
  96. // 1 0 1 fosc/64
  97. // 1 1 0 fosc/64
  98. // 1 1 1 fosc/128
  99. // We find the fastest clock that is less than or equal to the
  100. // given clock rate. The clock divider that results in clock_setting
  101. // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
  102. // slowest (128 == 2 ^^ 7, so clock_div = 6).
  103. uint8_t clockDiv;
  104. // When the clock is known at compiletime, use this if-then-else
  105. // cascade, which the compiler knows how to completely optimize
  106. // away. When clock is not known, use a loop instead, which generates
  107. // shorter code.
  108. if (__builtin_constant_p(clock)) {
  109. if (clock >= F_CPU / 2) {
  110. clockDiv = 0;
  111. } else if (clock >= F_CPU / 4) {
  112. clockDiv = 1;
  113. } else if (clock >= F_CPU / 8) {
  114. clockDiv = 2;
  115. } else if (clock >= F_CPU / 16) {
  116. clockDiv = 3;
  117. } else if (clock >= F_CPU / 32) {
  118. clockDiv = 4;
  119. } else if (clock >= F_CPU / 64) {
  120. clockDiv = 5;
  121. } else {
  122. clockDiv = 6;
  123. }
  124. } else {
  125. uint32_t clockSetting = F_CPU / 2;
  126. clockDiv = 0;
  127. while (clockDiv < 6 && clock < clockSetting) {
  128. clockSetting /= 2;
  129. clockDiv++;
  130. }
  131. }
  132. // Compensate for the duplicate fosc/64
  133. if (clockDiv == 6)
  134. clockDiv = 7;
  135. // Invert the SPI2X bit
  136. clockDiv ^= 0x1;
  137. // Pack into the SPISettings class
  138. spcr = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
  139. (dataMode & SPI_MODE_MASK) | ((clockDiv >> 1) & SPI_CLOCK_MASK);
  140. spsr = clockDiv & SPI_2XCLOCK_MASK;
  141. }
  142. uint8_t spcr;
  143. uint8_t spsr;
  144. friend class SPIClass;
  145. };
  146. class SPIClass { // AVR
  147. public:
  148. // Initialize the SPI library
  149. static void begin();
  150. // If SPI is used from within an interrupt, this function registers
  151. // that interrupt with the SPI library, so beginTransaction() can
  152. // prevent conflicts. The input interruptNumber is the number used
  153. // with attachInterrupt. If SPI is used from a different interrupt
  154. // (eg, a timer), interruptNumber should be 255.
  155. static void usingInterrupt(uint8_t interruptNumber);
  156. // Before using SPI.transfer() or asserting chip select pins,
  157. // this function is used to gain exclusive access to the SPI bus
  158. // and configure the correct settings.
  159. inline static void beginTransaction(SPISettings settings) {
  160. if (interruptMode > 0) {
  161. #ifdef SPI_AVR_EIMSK
  162. if (interruptMode == 1) {
  163. interruptSave = SPI_AVR_EIMSK;
  164. SPI_AVR_EIMSK &= ~interruptMask;
  165. } else
  166. #endif
  167. {
  168. uint8_t tmp = SREG;
  169. cli();
  170. interruptSave = tmp;
  171. }
  172. }
  173. #ifdef SPI_TRANSACTION_MISMATCH_LED
  174. if (inTransactionFlag) {
  175. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  176. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  177. }
  178. inTransactionFlag = 1;
  179. #endif
  180. SPCR = settings.spcr;
  181. SPSR = settings.spsr;
  182. }
  183. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  184. inline static uint8_t transfer(uint8_t data) {
  185. SPDR = data;
  186. asm volatile("nop");
  187. while (!(SPSR & _BV(SPIF))) ; // wait
  188. return SPDR;
  189. }
  190. inline static uint16_t transfer16(uint16_t data) {
  191. union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } in, out;
  192. in.val = data;
  193. if ((SPCR & _BV(DORD))) {
  194. SPDR = in.lsb;
  195. asm volatile("nop");
  196. while (!(SPSR & _BV(SPIF))) ;
  197. out.lsb = SPDR;
  198. SPDR = in.msb;
  199. asm volatile("nop");
  200. while (!(SPSR & _BV(SPIF))) ;
  201. out.msb = SPDR;
  202. } else {
  203. SPDR = in.msb;
  204. asm volatile("nop");
  205. while (!(SPSR & _BV(SPIF))) ;
  206. out.msb = SPDR;
  207. SPDR = in.lsb;
  208. asm volatile("nop");
  209. while (!(SPSR & _BV(SPIF))) ;
  210. out.lsb = SPDR;
  211. }
  212. return out.val;
  213. }
  214. inline static void transfer(void *buf, size_t count) {
  215. if (count == 0) return;
  216. uint8_t *p = (uint8_t *)buf;
  217. SPDR = *p;
  218. while (--count > 0) {
  219. uint8_t out = *(p + 1);
  220. while (!(SPSR & _BV(SPIF))) ;
  221. uint8_t in = SPDR;
  222. SPDR = out;
  223. *p++ = in;
  224. }
  225. while (!(SPSR & _BV(SPIF))) ;
  226. *p = SPDR;
  227. }
  228. static void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  229. static void transfer(const void * buf, void * retbuf, uint32_t count);
  230. // After performing a group of transfers and releasing the chip select
  231. // signal, this function allows others to access the SPI bus
  232. inline static void endTransaction(void) {
  233. #ifdef SPI_TRANSACTION_MISMATCH_LED
  234. if (!inTransactionFlag) {
  235. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  236. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  237. }
  238. inTransactionFlag = 0;
  239. #endif
  240. if (interruptMode > 0) {
  241. #ifdef SPI_AVR_EIMSK
  242. if (interruptMode == 1) {
  243. SPI_AVR_EIMSK = interruptSave;
  244. } else
  245. #endif
  246. {
  247. SREG = interruptSave;
  248. }
  249. }
  250. }
  251. // Disable the SPI bus
  252. static void end();
  253. // This function is deprecated. New applications should use
  254. // beginTransaction() to configure SPI settings.
  255. inline static void setBitOrder(uint8_t bitOrder) {
  256. if (bitOrder == LSBFIRST) SPCR |= _BV(DORD);
  257. else SPCR &= ~(_BV(DORD));
  258. }
  259. // This function is deprecated. New applications should use
  260. // beginTransaction() to configure SPI settings.
  261. inline static void setDataMode(uint8_t dataMode) {
  262. SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
  263. }
  264. // This function is deprecated. New applications should use
  265. // beginTransaction() to configure SPI settings.
  266. inline static void setClockDivider(uint8_t clockDiv) {
  267. SPCR = (SPCR & ~SPI_CLOCK_MASK) | (clockDiv & SPI_CLOCK_MASK);
  268. SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((clockDiv >> 2) & SPI_2XCLOCK_MASK);
  269. }
  270. // These undocumented functions should not be used. SPI.transfer()
  271. // polls the hardware flag which is automatically cleared as the
  272. // AVR responds to SPI's interrupt
  273. inline static void attachInterrupt() { SPCR |= _BV(SPIE); }
  274. inline static void detachInterrupt() { SPCR &= ~_BV(SPIE); }
  275. private:
  276. static uint8_t interruptMode; // 0=none, 1=mask, 2=global
  277. static uint8_t interruptMask; // which interrupts to mask
  278. static uint8_t interruptSave; // temp storage, to restore state
  279. #ifdef SPI_TRANSACTION_MISMATCH_LED
  280. static uint8_t inTransactionFlag;
  281. #endif
  282. static uint8_t _transferWriteFill;
  283. };
  284. /**********************************************************/
  285. /* 32 bit Teensy 3.x */
  286. /**********************************************************/
  287. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
  288. #define SPI_HAS_NOTUSINGINTERRUPT 1
  289. #define SPI_ATOMIC_VERSION 1
  290. class SPISettings {
  291. public:
  292. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  293. if (__builtin_constant_p(clock)) {
  294. init_AlwaysInline(clock, bitOrder, dataMode);
  295. } else {
  296. init_MightInline(clock, bitOrder, dataMode);
  297. }
  298. }
  299. SPISettings() {
  300. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  301. }
  302. private:
  303. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  304. init_AlwaysInline(clock, bitOrder, dataMode);
  305. }
  306. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  307. __attribute__((__always_inline__)) {
  308. uint32_t t, c = SPI_CTAR_FMSZ(7);
  309. if (bitOrder == LSBFIRST) c |= SPI_CTAR_LSBFE;
  310. if (__builtin_constant_p(clock)) {
  311. if (clock >= F_BUS / 2) {
  312. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  313. | SPI_CTAR_CSSCK(0);
  314. } else if (clock >= F_BUS / 3) {
  315. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  316. | SPI_CTAR_CSSCK(0);
  317. } else if (clock >= F_BUS / 4) {
  318. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  319. } else if (clock >= F_BUS / 5) {
  320. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR
  321. | SPI_CTAR_CSSCK(0);
  322. } else if (clock >= F_BUS / 6) {
  323. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  324. } else if (clock >= F_BUS / 8) {
  325. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  326. } else if (clock >= F_BUS / 10) {
  327. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
  328. } else if (clock >= F_BUS / 12) {
  329. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
  330. } else if (clock >= F_BUS / 16) {
  331. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  332. } else if (clock >= F_BUS / 20) {
  333. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
  334. } else if (clock >= F_BUS / 24) {
  335. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  336. } else if (clock >= F_BUS / 32) {
  337. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
  338. } else if (clock >= F_BUS / 40) {
  339. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  340. } else if (clock >= F_BUS / 56) {
  341. t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
  342. } else if (clock >= F_BUS / 64) {
  343. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  344. } else if (clock >= F_BUS / 96) {
  345. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
  346. } else if (clock >= F_BUS / 128) {
  347. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  348. } else if (clock >= F_BUS / 192) {
  349. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
  350. } else if (clock >= F_BUS / 256) {
  351. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  352. } else if (clock >= F_BUS / 384) {
  353. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  354. } else if (clock >= F_BUS / 512) {
  355. t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  356. } else if (clock >= F_BUS / 640) {
  357. t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
  358. } else { /* F_BUS / 768 */
  359. t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
  360. }
  361. } else {
  362. for (uint32_t i=0; i<23; i++) {
  363. t = ctar_clock_table[i];
  364. if (clock >= F_BUS / ctar_div_table[i]) break;
  365. }
  366. }
  367. if (dataMode & 0x08) {
  368. c |= SPI_CTAR_CPOL;
  369. }
  370. if (dataMode & 0x04) {
  371. c |= SPI_CTAR_CPHA;
  372. t = (t & 0xFFFF0FFF) | ((t & 0xF000) >> 4);
  373. }
  374. ctar = c | t;
  375. }
  376. static const uint16_t ctar_div_table[23];
  377. static const uint32_t ctar_clock_table[23];
  378. uint32_t ctar;
  379. friend class SPIClass;
  380. };
  381. class SPIClass { // Teensy 3.x
  382. public:
  383. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  384. static const uint8_t CNT_MISO_PINS = 2;
  385. static const uint8_t CNT_MOSI_PINS = 2;
  386. static const uint8_t CNT_SCK_PINS = 2;
  387. static const uint8_t CNT_CS_PINS = 9;
  388. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  389. static const uint8_t CNT_MISO_PINS = 4;
  390. static const uint8_t CNT_MOSI_PINS = 4;
  391. static const uint8_t CNT_SCK_PINS = 3;
  392. static const uint8_t CNT_CS_PINS = 11;
  393. #endif
  394. typedef struct {
  395. volatile uint32_t &clock_gate_register;
  396. uint32_t clock_gate_mask;
  397. uint8_t queue_size;
  398. uint8_t spi_irq;
  399. uint32_t max_dma_count;
  400. uint8_t tx_dma_channel;
  401. uint8_t rx_dma_channel;
  402. void (*dma_rxisr)();
  403. uint8_t miso_pin[CNT_MISO_PINS];
  404. uint32_t miso_mux[CNT_MISO_PINS];
  405. uint8_t mosi_pin[CNT_MOSI_PINS];
  406. uint32_t mosi_mux[CNT_MOSI_PINS];
  407. uint8_t sck_pin[CNT_SCK_PINS];
  408. uint32_t sck_mux[CNT_SCK_PINS];
  409. uint8_t cs_pin[CNT_CS_PINS];
  410. uint32_t cs_mux[CNT_CS_PINS];
  411. uint8_t cs_mask[CNT_CS_PINS];
  412. } SPI_Hardware_t;
  413. static const SPI_Hardware_t spi0_hardware;
  414. static const SPI_Hardware_t spi1_hardware;
  415. static const SPI_Hardware_t spi2_hardware;
  416. enum DMAState { notAllocated, idle, active, completed};
  417. public:
  418. constexpr SPIClass(uintptr_t myport, uintptr_t myhardware)
  419. : port_addr(myport), hardware_addr(myhardware) {
  420. }
  421. // Initialize the SPI library
  422. void begin();
  423. // If SPI is to used from within an interrupt, this function registers
  424. // that interrupt with the SPI library, so beginTransaction() can
  425. // prevent conflicts. The input interruptNumber is the number used
  426. // with attachInterrupt. If SPI is used from a different interrupt
  427. // (eg, a timer), interruptNumber should be 255.
  428. void usingInterrupt(uint8_t n) {
  429. if (n == 3 || n == 4 || n == 24 || n == 33) {
  430. usingInterrupt(IRQ_PORTA);
  431. } else if (n == 0 || n == 1 || (n >= 16 && n <= 19) || n == 25 || n == 32) {
  432. usingInterrupt(IRQ_PORTB);
  433. } else if ((n >= 9 && n <= 13) || n == 15 || n == 22 || n == 23
  434. || (n >= 27 && n <= 30)) {
  435. usingInterrupt(IRQ_PORTC);
  436. } else if (n == 2 || (n >= 5 && n <= 8) || n == 14 || n == 20 || n == 21) {
  437. usingInterrupt(IRQ_PORTD);
  438. } else if (n == 26 || n == 31) {
  439. usingInterrupt(IRQ_PORTE);
  440. }
  441. }
  442. void usingInterrupt(IRQ_NUMBER_t interruptName);
  443. void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  444. // Before using SPI.transfer() or asserting chip select pins,
  445. // this function is used to gain exclusive access to the SPI bus
  446. // and configure the correct settings.
  447. void beginTransaction(SPISettings settings) {
  448. if (interruptMasksUsed) {
  449. __disable_irq();
  450. if (interruptMasksUsed & 0x01) {
  451. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  452. NVIC_ICER0 = interruptSave[0];
  453. }
  454. #if NVIC_NUM_INTERRUPTS > 32
  455. if (interruptMasksUsed & 0x02) {
  456. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  457. NVIC_ICER1 = interruptSave[1];
  458. }
  459. #endif
  460. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  461. if (interruptMasksUsed & 0x04) {
  462. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  463. NVIC_ICER2 = interruptSave[2];
  464. }
  465. #endif
  466. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  467. if (interruptMasksUsed & 0x08) {
  468. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  469. NVIC_ICER3 = interruptSave[3];
  470. }
  471. #endif
  472. __enable_irq();
  473. }
  474. #ifdef SPI_TRANSACTION_MISMATCH_LED
  475. if (inTransactionFlag) {
  476. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  477. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  478. }
  479. inTransactionFlag = 1;
  480. #endif
  481. if (port().CTAR0 != settings.ctar) {
  482. port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x3F);
  483. port().CTAR0 = settings.ctar;
  484. port().CTAR1 = settings.ctar| SPI_CTAR_FMSZ(8);
  485. port().MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x3F);
  486. }
  487. }
  488. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  489. uint8_t transfer(uint8_t data) {
  490. port().SR = SPI_SR_TCF;
  491. port().PUSHR = data;
  492. while (!(port().SR & SPI_SR_TCF)) ; // wait
  493. return port().POPR;
  494. }
  495. uint16_t transfer16(uint16_t data) {
  496. port().SR = SPI_SR_TCF;
  497. port().PUSHR = data | SPI_PUSHR_CTAS(1);
  498. while (!(port().SR & SPI_SR_TCF)) ; // wait
  499. return port().POPR;
  500. }
  501. void inline transfer(void *buf, size_t count) {transfer(buf, buf, count);}
  502. void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  503. void transfer(const void * buf, void * retbuf, size_t count);
  504. // Asynch support (DMA )
  505. #ifdef SPI_HAS_TRANSFER_ASYNC
  506. bool transfer(const void *txBuffer, void *rxBuffer, size_t count, EventResponderRef event_responder);
  507. friend void _spi_dma_rxISR0(void);
  508. friend void _spi_dma_rxISR1(void);
  509. friend void _spi_dma_rxISR2(void);
  510. inline void dma_rxisr(void);
  511. #endif
  512. // After performing a group of transfers and releasing the chip select
  513. // signal, this function allows others to access the SPI bus
  514. void endTransaction(void) {
  515. #ifdef SPI_TRANSACTION_MISMATCH_LED
  516. if (!inTransactionFlag) {
  517. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  518. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  519. }
  520. inTransactionFlag = 0;
  521. #endif
  522. if (interruptMasksUsed) {
  523. if (interruptMasksUsed & 0x01) {
  524. NVIC_ISER0 = interruptSave[0];
  525. }
  526. #if NVIC_NUM_INTERRUPTS > 32
  527. if (interruptMasksUsed & 0x02) {
  528. NVIC_ISER1 = interruptSave[1];
  529. }
  530. #endif
  531. #if NVIC_NUM_INTERRUPTS > 64 && defined(NVIC_ISER2)
  532. if (interruptMasksUsed & 0x04) {
  533. NVIC_ISER2 = interruptSave[2];
  534. }
  535. #endif
  536. #if NVIC_NUM_INTERRUPTS > 96 && defined(NVIC_ISER3)
  537. if (interruptMasksUsed & 0x08) {
  538. NVIC_ISER3 = interruptSave[3];
  539. }
  540. #endif
  541. }
  542. }
  543. // Disable the SPI bus
  544. void end();
  545. // This function is deprecated. New applications should use
  546. // beginTransaction() to configure SPI settings.
  547. void setBitOrder(uint8_t bitOrder);
  548. // This function is deprecated. New applications should use
  549. // beginTransaction() to configure SPI settings.
  550. void setDataMode(uint8_t dataMode);
  551. // This function is deprecated. New applications should use
  552. // beginTransaction() to configure SPI settings.
  553. void setClockDivider(uint8_t clockDiv) {
  554. if (clockDiv == SPI_CLOCK_DIV2) {
  555. setClockDivider_noInline(SPISettings(12000000, MSBFIRST, SPI_MODE0).ctar);
  556. } else if (clockDiv == SPI_CLOCK_DIV4) {
  557. setClockDivider_noInline(SPISettings(4000000, MSBFIRST, SPI_MODE0).ctar);
  558. } else if (clockDiv == SPI_CLOCK_DIV8) {
  559. setClockDivider_noInline(SPISettings(2000000, MSBFIRST, SPI_MODE0).ctar);
  560. } else if (clockDiv == SPI_CLOCK_DIV16) {
  561. setClockDivider_noInline(SPISettings(1000000, MSBFIRST, SPI_MODE0).ctar);
  562. } else if (clockDiv == SPI_CLOCK_DIV32) {
  563. setClockDivider_noInline(SPISettings(500000, MSBFIRST, SPI_MODE0).ctar);
  564. } else if (clockDiv == SPI_CLOCK_DIV64) {
  565. setClockDivider_noInline(SPISettings(250000, MSBFIRST, SPI_MODE0).ctar);
  566. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  567. setClockDivider_noInline(SPISettings(125000, MSBFIRST, SPI_MODE0).ctar);
  568. }
  569. }
  570. void setClockDivider_noInline(uint32_t clk);
  571. // These undocumented functions should not be used. SPI.transfer()
  572. // polls the hardware flag which is automatically cleared as the
  573. // AVR responds to SPI's interrupt
  574. void attachInterrupt() { }
  575. void detachInterrupt() { }
  576. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  577. void setMOSI(uint8_t pin);
  578. void setMISO(uint8_t pin);
  579. void setSCK(uint8_t pin);
  580. // return true if "pin" has special chip select capability
  581. uint8_t pinIsChipSelect(uint8_t pin);
  582. bool pinIsMOSI(uint8_t pin);
  583. bool pinIsMISO(uint8_t pin);
  584. bool pinIsSCK(uint8_t pin);
  585. // return true if both pin1 and pin2 have independent chip select capability
  586. bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  587. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  588. // setCS() is a special function, not intended for use from normal Arduino
  589. // programs/sketches. See the ILI3941_t3 library for an example.
  590. uint8_t setCS(uint8_t pin);
  591. private:
  592. KINETISK_SPI_t & port() { return *(KINETISK_SPI_t *)port_addr; }
  593. const SPI_Hardware_t & hardware() { return *(const SPI_Hardware_t *)hardware_addr; }
  594. void updateCTAR(uint32_t ctar);
  595. uintptr_t port_addr;
  596. uintptr_t hardware_addr;
  597. uint8_t miso_pin_index = 0;
  598. uint8_t mosi_pin_index = 0;
  599. uint8_t sck_pin_index = 0;
  600. uint8_t interruptMasksUsed = 0;
  601. uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  602. uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  603. #ifdef SPI_TRANSACTION_MISMATCH_LED
  604. uint8_t inTransactionFlag = 0;
  605. #endif
  606. uint8_t _transferWriteFill = 0;
  607. // DMA Support
  608. #ifdef SPI_HAS_TRANSFER_ASYNC
  609. bool initDMAChannels();
  610. DMAState _dma_state = DMAState::notAllocated;
  611. uint32_t _dma_count_remaining = 0; // How many bytes left to output after current DMA completes
  612. DMAChannel *_dmaTX = nullptr;
  613. DMAChannel *_dmaRX = nullptr;
  614. EventResponder *_dma_event_responder = nullptr;
  615. #endif
  616. };
  617. /**********************************************************/
  618. /* 32 bit Teensy-LC */
  619. /**********************************************************/
  620. #elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISL)
  621. #define SPI_ATOMIC_VERSION 1
  622. class SPISettings {
  623. public:
  624. SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  625. if (__builtin_constant_p(clock)) {
  626. init_AlwaysInline(clock, bitOrder, dataMode);
  627. } else {
  628. init_MightInline(clock, bitOrder, dataMode);
  629. }
  630. }
  631. SPISettings() {
  632. init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0);
  633. }
  634. private:
  635. void init_MightInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) {
  636. init_AlwaysInline(clock, bitOrder, dataMode);
  637. }
  638. void init_AlwaysInline(uint32_t clock, uint8_t bitOrder, uint8_t dataMode)
  639. __attribute__((__always_inline__)) {
  640. uint8_t c = SPI_C1_MSTR | SPI_C1_SPE;
  641. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  642. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  643. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  644. c1 = c;
  645. if (__builtin_constant_p(clock)) {
  646. if (clock >= F_BUS / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  647. } else if (clock >= F_BUS / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  648. } else if (clock >= F_BUS / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  649. } else if (clock >= F_BUS / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  650. } else if (clock >= F_BUS / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  651. } else if (clock >= F_BUS / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  652. } else if (clock >= F_BUS / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  653. } else if (clock >= F_BUS / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  654. } else if (clock >= F_BUS / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  655. } else if (clock >= F_BUS / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  656. } else if (clock >= F_BUS / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  657. } else if (clock >= F_BUS / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  658. } else if (clock >= F_BUS / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  659. } else if (clock >= F_BUS / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  660. } else if (clock >= F_BUS / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  661. } else if (clock >= F_BUS / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  662. } else if (clock >= F_BUS / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  663. } else if (clock >= F_BUS / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  664. } else if (clock >= F_BUS / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  665. } else if (clock >= F_BUS / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  666. } else if (clock >= F_BUS / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  667. } else if (clock >= F_BUS / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  668. } else if (clock >= F_BUS / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  669. } else if (clock >= F_BUS / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  670. } else if (clock >= F_BUS / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  671. } else if (clock >= F_BUS / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  672. } else if (clock >= F_BUS / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  673. } else if (clock >= F_BUS / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  674. } else if (clock >= F_BUS / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  675. } else /* F_BUS / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  676. }
  677. } else {
  678. for (uint32_t i=0; i<30; i++) {
  679. c = br_clock_table[i];
  680. if (clock >= F_BUS / br_div_table[i]) break;
  681. }
  682. }
  683. br[0] = c;
  684. if (__builtin_constant_p(clock)) {
  685. if (clock >= (F_PLL/2) / 2) { c = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
  686. } else if (clock >= (F_PLL/2) / 4) { c = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
  687. } else if (clock >= (F_PLL/2) / 6) { c = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
  688. } else if (clock >= (F_PLL/2) / 8) { c = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
  689. } else if (clock >= (F_PLL/2) / 10) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
  690. } else if (clock >= (F_PLL/2) / 12) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
  691. } else if (clock >= (F_PLL/2) / 14) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
  692. } else if (clock >= (F_PLL/2) / 16) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
  693. } else if (clock >= (F_PLL/2) / 20) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
  694. } else if (clock >= (F_PLL/2) / 24) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
  695. } else if (clock >= (F_PLL/2) / 28) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
  696. } else if (clock >= (F_PLL/2) / 32) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
  697. } else if (clock >= (F_PLL/2) / 40) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
  698. } else if (clock >= (F_PLL/2) / 48) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
  699. } else if (clock >= (F_PLL/2) / 56) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
  700. } else if (clock >= (F_PLL/2) / 64) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
  701. } else if (clock >= (F_PLL/2) / 80) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
  702. } else if (clock >= (F_PLL/2) / 96) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
  703. } else if (clock >= (F_PLL/2) / 112) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
  704. } else if (clock >= (F_PLL/2) / 128) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
  705. } else if (clock >= (F_PLL/2) / 160) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
  706. } else if (clock >= (F_PLL/2) / 192) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
  707. } else if (clock >= (F_PLL/2) / 224) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
  708. } else if (clock >= (F_PLL/2) / 256) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
  709. } else if (clock >= (F_PLL/2) / 320) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
  710. } else if (clock >= (F_PLL/2) / 384) { c = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
  711. } else if (clock >= (F_PLL/2) / 448) { c = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
  712. } else if (clock >= (F_PLL/2) / 512) { c = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
  713. } else if (clock >= (F_PLL/2) / 640) { c = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
  714. } else /* (F_PLL/2) / 768 */ { c = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
  715. }
  716. } else {
  717. for (uint32_t i=0; i<30; i++) {
  718. c = br_clock_table[i];
  719. if (clock >= (F_PLL/2) / br_div_table[i]) break;
  720. }
  721. }
  722. br[1] = c;
  723. }
  724. static const uint8_t br_clock_table[30];
  725. static const uint16_t br_div_table[30];
  726. uint8_t c1, br[2];
  727. friend class SPIClass;
  728. };
  729. class SPIClass { // Teensy-LC
  730. public:
  731. static const uint8_t CNT_MISO_PINS = 2;
  732. static const uint8_t CNT_MMOSI_PINS = 2;
  733. static const uint8_t CNT_SCK_PINS = 2;
  734. static const uint8_t CNT_CS_PINS = 2;
  735. typedef struct {
  736. volatile uint32_t &clock_gate_register;
  737. uint32_t clock_gate_mask;
  738. uint8_t br_index;
  739. uint8_t tx_dma_channel;
  740. uint8_t rx_dma_channel;
  741. void (*dma_isr)();
  742. uint8_t miso_pin[CNT_MISO_PINS];
  743. uint32_t miso_mux[CNT_MISO_PINS];
  744. uint8_t mosi_pin[CNT_MMOSI_PINS];
  745. uint32_t mosi_mux[CNT_MMOSI_PINS];
  746. uint8_t sck_pin[CNT_SCK_PINS];
  747. uint32_t sck_mux[CNT_SCK_PINS];
  748. uint8_t cs_pin[CNT_CS_PINS];
  749. uint32_t cs_mux[CNT_CS_PINS];
  750. uint8_t cs_mask[CNT_CS_PINS];
  751. } SPI_Hardware_t;
  752. static const SPI_Hardware_t spi0_hardware;
  753. static const SPI_Hardware_t spi1_hardware;
  754. enum DMAState { notAllocated, idle, active, completed};
  755. public:
  756. constexpr SPIClass(uintptr_t myport, uintptr_t myhardware)
  757. : port_addr(myport), hardware_addr(myhardware) {
  758. }
  759. // Initialize the SPI library
  760. void begin();
  761. // If SPI is to used from within an interrupt, this function registers
  762. // that interrupt with the SPI library, so beginTransaction() can
  763. // prevent conflicts. The input interruptNumber is the number used
  764. // with attachInterrupt. If SPI is used from a different interrupt
  765. // (eg, a timer), interruptNumber should be 255.
  766. void usingInterrupt(uint8_t n) {
  767. if (n == 3 || n == 4) {
  768. usingInterrupt(IRQ_PORTA);
  769. } else if ((n >= 2 && n <= 15) || (n >= 20 && n <= 23)) {
  770. usingInterrupt(IRQ_PORTCD);
  771. }
  772. }
  773. void usingInterrupt(IRQ_NUMBER_t interruptName) {
  774. uint32_t n = (uint32_t)interruptName;
  775. if (n < NVIC_NUM_INTERRUPTS) interruptMask |= (1 << n);
  776. }
  777. void notUsingInterrupt(IRQ_NUMBER_t interruptName) {
  778. uint32_t n = (uint32_t)interruptName;
  779. if (n < NVIC_NUM_INTERRUPTS) interruptMask &= ~(1 << n);
  780. }
  781. // Before using SPI.transfer() or asserting chip select pins,
  782. // this function is used to gain exclusive access to the SPI bus
  783. // and configure the correct settings.
  784. void beginTransaction(SPISettings settings) {
  785. if (interruptMask) {
  786. __disable_irq();
  787. interruptSave = NVIC_ICER0 & interruptMask;
  788. NVIC_ICER0 = interruptSave;
  789. __enable_irq();
  790. }
  791. #ifdef SPI_TRANSACTION_MISMATCH_LED
  792. if (inTransactionFlag) {
  793. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  794. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  795. }
  796. inTransactionFlag = 1;
  797. #endif
  798. port().C1 = settings.c1;
  799. port().BR = settings.br[hardware().br_index];
  800. }
  801. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  802. uint8_t transfer(uint8_t data) {
  803. port().DL = data;
  804. while (!(port().S & SPI_S_SPRF)) ; // wait
  805. return port().DL;
  806. }
  807. uint16_t transfer16(uint16_t data) {
  808. port().C2 = SPI_C2_SPIMODE;
  809. port().S;
  810. port().DL = data;
  811. port().DH = data >> 8;
  812. while (!(port().S & SPI_S_SPRF)) ; // wait
  813. uint16_t r = port().DL | (port().DH << 8);
  814. port().C2 = 0;
  815. port().S;
  816. return r;
  817. }
  818. void transfer(void *buf, size_t count) {
  819. if (count == 0) return;
  820. uint8_t *p = (uint8_t *)buf;
  821. while (!(port().S & SPI_S_SPTEF)) ; // wait
  822. port().DL = *p;
  823. while (--count > 0) {
  824. uint8_t out = *(p + 1);
  825. while (!(port().S & SPI_S_SPTEF)) ; // wait
  826. __disable_irq();
  827. port().DL = out;
  828. while (!(port().S & SPI_S_SPRF)) ; // wait
  829. uint8_t in = port().DL;
  830. __enable_irq();
  831. *p++ = in;
  832. }
  833. while (!(port().S & SPI_S_SPRF)) ; // wait
  834. *p = port().DL;
  835. }
  836. void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  837. void transfer(const void * buf, void * retbuf, size_t count);
  838. // Asynch support (DMA )
  839. #ifdef SPI_HAS_TRANSFER_ASYNC
  840. bool transfer(const void *txBuffer, void *rxBuffer, size_t count, EventResponderRef event_responder);
  841. friend void _spi_dma_rxISR0(void);
  842. friend void _spi_dma_rxISR1(void);
  843. inline void dma_isr(void);
  844. #endif
  845. // After performing a group of transfers and releasing the chip select
  846. // signal, this function allows others to access the SPI bus
  847. void endTransaction(void) {
  848. #ifdef SPI_TRANSACTION_MISMATCH_LED
  849. if (!inTransactionFlag) {
  850. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  851. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  852. }
  853. inTransactionFlag = 0;
  854. #endif
  855. if (interruptMask) {
  856. NVIC_ISER0 = interruptSave;
  857. }
  858. }
  859. // Disable the SPI bus
  860. void end();
  861. // This function is deprecated. New applications should use
  862. // beginTransaction() to configure SPI settings.
  863. void setBitOrder(uint8_t bitOrder) {
  864. uint8_t c = port().C1 | SPI_C1_SPE;
  865. if (bitOrder == LSBFIRST) c |= SPI_C1_LSBFE;
  866. else c &= ~SPI_C1_LSBFE;
  867. port().C1 = c;
  868. }
  869. // This function is deprecated. New applications should use
  870. // beginTransaction() to configure SPI settings.
  871. void setDataMode(uint8_t dataMode) {
  872. uint8_t c = port().C1 | SPI_C1_SPE;
  873. if (dataMode & 0x04) c |= SPI_C1_CPHA;
  874. else c &= ~SPI_C1_CPHA;
  875. if (dataMode & 0x08) c |= SPI_C1_CPOL;
  876. else c &= ~SPI_C1_CPOL;
  877. port().C1 = c;
  878. }
  879. // This function is deprecated. New applications should use
  880. // beginTransaction() to configure SPI settings.
  881. void setClockDivider(uint8_t clockDiv) {
  882. unsigned int i = hardware().br_index;
  883. if (clockDiv == SPI_CLOCK_DIV2) {
  884. port().BR = (SPISettings(12000000, MSBFIRST, SPI_MODE0).br[i]);
  885. } else if (clockDiv == SPI_CLOCK_DIV4) {
  886. port().BR = (SPISettings(4000000, MSBFIRST, SPI_MODE0).br[i]);
  887. } else if (clockDiv == SPI_CLOCK_DIV8) {
  888. port().BR = (SPISettings(2000000, MSBFIRST, SPI_MODE0).br[i]);
  889. } else if (clockDiv == SPI_CLOCK_DIV16) {
  890. port().BR = (SPISettings(1000000, MSBFIRST, SPI_MODE0).br[i]);
  891. } else if (clockDiv == SPI_CLOCK_DIV32) {
  892. port().BR = (SPISettings(500000, MSBFIRST, SPI_MODE0).br[i]);
  893. } else if (clockDiv == SPI_CLOCK_DIV64) {
  894. port().BR = (SPISettings(250000, MSBFIRST, SPI_MODE0).br[i]);
  895. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  896. port().BR = (SPISettings(125000, MSBFIRST, SPI_MODE0).br[i]);
  897. }
  898. }
  899. // These undocumented functions should not be used. SPI.transfer()
  900. // polls the hardware flag which is automatically cleared as the
  901. // AVR responds to SPI's interrupt
  902. void attachInterrupt() { }
  903. void detachInterrupt() { }
  904. // Teensy LC can use alternate pins for these 3 SPI signals.
  905. void setMOSI(uint8_t pin);
  906. void setMISO(uint8_t pin);
  907. void setSCK(uint8_t pin);
  908. // return true if "pin" has special chip select capability
  909. bool pinIsChipSelect(uint8_t pin);
  910. bool pinIsMOSI(uint8_t pin);
  911. bool pinIsMISO(uint8_t pin);
  912. bool pinIsSCK(uint8_t pin);
  913. // return true if both pin1 and pin2 have independent chip select capability
  914. bool pinIsChipSelect(uint8_t pin1, uint8_t pin2) { return false; }
  915. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  916. // setCS() is a special function, not intended for use from normal Arduino
  917. // programs/sketches. See the ILI3941_t3 library for an example.
  918. uint8_t setCS(uint8_t pin);
  919. private:
  920. KINETISL_SPI_t & port() { return *(KINETISL_SPI_t *)port_addr; }
  921. const SPI_Hardware_t & hardware() { return *(const SPI_Hardware_t *)hardware_addr; }
  922. uintptr_t port_addr;
  923. uintptr_t hardware_addr;
  924. uint32_t interruptMask = 0;
  925. uint32_t interruptSave = 0;
  926. uint8_t mosi_pin_index = 0;
  927. uint8_t miso_pin_index = 0;
  928. uint8_t sck_pin_index = 0;
  929. #ifdef SPI_TRANSACTION_MISMATCH_LED
  930. uint8_t inTransactionFlag = 0;
  931. #endif
  932. uint8_t _transferWriteFill = 0;
  933. #ifdef SPI_HAS_TRANSFER_ASYNC
  934. // DMA Support
  935. bool initDMAChannels();
  936. DMAState _dma_state = DMAState::notAllocated;
  937. uint32_t _dma_count_remaining = 0; // How many bytes left to output after current DMA completes
  938. DMAChannel *_dmaTX = nullptr;
  939. DMAChannel *_dmaRX = nullptr;
  940. EventResponder *_dma_event_responder = nullptr;
  941. #endif
  942. };
  943. /**********************************************************/
  944. /* 32 bit Teensy 4.x */
  945. /**********************************************************/
  946. #elif defined(__arm__) && defined(TEENSYDUINO) && (defined(__IMXRT1052__) || defined(__IMXRT1062__))
  947. #define SPI_ATOMIC_VERSION 1
  948. //#include "debug/printf.h"
  949. class SPISettings {
  950. public:
  951. SPISettings(uint32_t clockIn, uint8_t bitOrderIn, uint8_t dataModeIn) : _clock(clockIn) {
  952. init_AlwaysInline(bitOrderIn, dataModeIn);
  953. }
  954. SPISettings() : _clock(4000000) {
  955. init_AlwaysInline(MSBFIRST, SPI_MODE0);
  956. }
  957. private:
  958. void init_AlwaysInline(uint8_t bitOrder, uint8_t dataMode)
  959. __attribute__((__always_inline__)) {
  960. tcr = LPSPI_TCR_FRAMESZ(7); // TCR has polarity and bit order too
  961. // handle LSB setup
  962. if (bitOrder == LSBFIRST) tcr |= LPSPI_TCR_LSBF;
  963. // Handle Data Mode
  964. if (dataMode & 0x08) tcr |= LPSPI_TCR_CPOL;
  965. // Note: On T3.2 when we set CPHA it also updated the timing. It moved the
  966. // PCS to SCK Delay Prescaler into the After SCK Delay Prescaler
  967. if (dataMode & 0x04) tcr |= LPSPI_TCR_CPHA;
  968. }
  969. inline uint32_t clock() {return _clock;}
  970. uint32_t _clock;
  971. uint32_t tcr; // transmit command, pg 2664 (RT1050 ref, rev 2)
  972. friend class SPIClass;
  973. };
  974. class SPIClass { // Teensy 4
  975. public:
  976. #if defined(ARDUINO_TEENSY41)
  977. // T4.1 has SPI2 pins on memory connectors as well as SDCard
  978. static const uint8_t CNT_MISO_PINS = 2;
  979. static const uint8_t CNT_MOSI_PINS = 2;
  980. static const uint8_t CNT_SCK_PINS = 2;
  981. static const uint8_t CNT_CS_PINS = 3;
  982. #else
  983. static const uint8_t CNT_MISO_PINS = 1;
  984. static const uint8_t CNT_MOSI_PINS = 1;
  985. static const uint8_t CNT_SCK_PINS = 1;
  986. static const uint8_t CNT_CS_PINS = 1;
  987. #endif
  988. typedef struct {
  989. volatile uint32_t &clock_gate_register;
  990. const uint32_t clock_gate_mask;
  991. uint8_t tx_dma_channel;
  992. uint8_t rx_dma_channel;
  993. void (*dma_rxisr)();
  994. // MISO pins
  995. const uint8_t miso_pin[CNT_MISO_PINS];
  996. const uint32_t miso_mux[CNT_MISO_PINS];
  997. const uint8_t miso_select_val[CNT_MISO_PINS];
  998. volatile uint32_t &miso_select_input_register;
  999. // MOSI pins
  1000. const uint8_t mosi_pin[CNT_MOSI_PINS];
  1001. const uint32_t mosi_mux[CNT_MOSI_PINS];
  1002. const uint8_t mosi_select_val[CNT_MOSI_PINS];
  1003. volatile uint32_t &mosi_select_input_register;
  1004. // SCK pins
  1005. const uint8_t sck_pin[CNT_SCK_PINS];
  1006. const uint32_t sck_mux[CNT_SCK_PINS];
  1007. const uint8_t sck_select_val[CNT_SCK_PINS];
  1008. volatile uint32_t &sck_select_input_register;
  1009. // CS Pins
  1010. const uint8_t cs_pin[CNT_CS_PINS];
  1011. const uint32_t cs_mux[CNT_CS_PINS];
  1012. const uint8_t cs_mask[CNT_CS_PINS];
  1013. const uint8_t pcs_select_val[CNT_CS_PINS];
  1014. volatile uint32_t *pcs_select_input_register[CNT_CS_PINS];
  1015. } SPI_Hardware_t;
  1016. static const SPI_Hardware_t spiclass_lpspi4_hardware;
  1017. #if defined(__IMXRT1062__)
  1018. static const SPI_Hardware_t spiclass_lpspi3_hardware;
  1019. static const SPI_Hardware_t spiclass_lpspi1_hardware;
  1020. #endif
  1021. public:
  1022. constexpr SPIClass(uintptr_t myport, uintptr_t myhardware)
  1023. : port_addr(myport), hardware_addr(myhardware) {
  1024. }
  1025. // constexpr SPIClass(IMXRT_LPSPI_t *myport, const SPI_Hardware_t *myhardware)
  1026. // : port(myport), hardware(myhardware) {
  1027. // }
  1028. // Initialize the SPI library
  1029. void begin();
  1030. // If SPI is to used from within an interrupt, this function registers
  1031. // that interrupt with the SPI library, so beginTransaction() can
  1032. // prevent conflicts. The input interruptNumber is the number used
  1033. // with attachInterrupt. If SPI is used from a different interrupt
  1034. // (eg, a timer), interruptNumber should be 255.
  1035. void usingInterrupt(uint8_t n) {
  1036. if (n >= CORE_NUM_DIGITAL) return;
  1037. #if defined(__IMXRT1062__)
  1038. usingInterrupt(IRQ_GPIO6789);
  1039. #elif defined(__IMXRT1052__)
  1040. volatile uint32_t *gpio = portOutputRegister(n);
  1041. switch((uint32_t)gpio) {
  1042. case (uint32_t)&GPIO1_DR:
  1043. usingInterrupt(IRQ_GPIO1_0_15);
  1044. usingInterrupt(IRQ_GPIO1_16_31);
  1045. break;
  1046. case (uint32_t)&GPIO2_DR:
  1047. usingInterrupt(IRQ_GPIO2_0_15);
  1048. usingInterrupt(IRQ_GPIO2_16_31);
  1049. break;
  1050. case (uint32_t)&GPIO3_DR:
  1051. usingInterrupt(IRQ_GPIO3_0_15);
  1052. usingInterrupt(IRQ_GPIO3_16_31);
  1053. break;
  1054. case (uint32_t)&GPIO4_DR:
  1055. usingInterrupt(IRQ_GPIO4_0_15);
  1056. usingInterrupt(IRQ_GPIO4_16_31);
  1057. break;
  1058. }
  1059. #endif
  1060. }
  1061. void usingInterrupt(IRQ_NUMBER_t interruptName);
  1062. void notUsingInterrupt(IRQ_NUMBER_t interruptName);
  1063. // Before using SPI.transfer() or asserting chip select pins,
  1064. // this function is used to gain exclusive access to the SPI bus
  1065. // and configure the correct settings.
  1066. void beginTransaction(SPISettings settings) {
  1067. if (interruptMasksUsed) {
  1068. __disable_irq();
  1069. if (interruptMasksUsed & 0x01) {
  1070. interruptSave[0] = NVIC_ICER0 & interruptMask[0];
  1071. NVIC_ICER0 = interruptSave[0];
  1072. }
  1073. if (interruptMasksUsed & 0x02) {
  1074. interruptSave[1] = NVIC_ICER1 & interruptMask[1];
  1075. NVIC_ICER1 = interruptSave[1];
  1076. }
  1077. if (interruptMasksUsed & 0x04) {
  1078. interruptSave[2] = NVIC_ICER2 & interruptMask[2];
  1079. NVIC_ICER2 = interruptSave[2];
  1080. }
  1081. if (interruptMasksUsed & 0x08) {
  1082. interruptSave[3] = NVIC_ICER3 & interruptMask[3];
  1083. NVIC_ICER3 = interruptSave[3];
  1084. }
  1085. if (interruptMasksUsed & 0x10) {
  1086. interruptSave[4] = NVIC_ICER4 & interruptMask[4];
  1087. NVIC_ICER4 = interruptSave[4];
  1088. }
  1089. __enable_irq();
  1090. }
  1091. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1092. if (inTransactionFlag) {
  1093. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1094. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1095. }
  1096. inTransactionFlag = 1;
  1097. #endif
  1098. //printf("trans\n");
  1099. if (settings.clock() != _clock) {
  1100. static const uint32_t clk_sel[4] = {664615384, // PLL3 PFD1
  1101. 720000000, // PLL3 PFD0
  1102. 528000000, // PLL2
  1103. 396000000}; // PLL2 PFD2
  1104. // First save away the new settings..
  1105. _clock = settings.clock();
  1106. uint32_t cbcmr = CCM_CBCMR;
  1107. uint32_t clkhz = clk_sel[(cbcmr >> 4) & 0x03] / (((cbcmr >> 26 ) & 0x07 ) + 1); // LPSPI peripheral clock
  1108. uint32_t d, div;
  1109. d = _clock ? clkhz/_clock : clkhz;
  1110. if (d && clkhz/d > _clock) d++;
  1111. if (d > 257) d= 257; // max div
  1112. if (d > 2) {
  1113. div = d-2;
  1114. } else {
  1115. div =0;
  1116. }
  1117. _ccr = LPSPI_CCR_SCKDIV(div) | LPSPI_CCR_DBT(div/2) | LPSPI_CCR_PCSSCK(div/2);
  1118. }
  1119. //Serial.printf("SPI.beginTransaction CCR:%x TCR:%x\n", _ccr, settings.tcr);
  1120. port().CR = 0;
  1121. port().CFGR1 = LPSPI_CFGR1_MASTER | LPSPI_CFGR1_SAMPLE;
  1122. port().CCR = _ccr;
  1123. port().TCR = settings.tcr;
  1124. port().CR = LPSPI_CR_MEN;
  1125. }
  1126. // Write to the SPI bus (MOSI pin) and also receive (MISO pin)
  1127. uint8_t transfer(uint8_t data) {
  1128. // TODO: check for space in fifo?
  1129. port().TDR = data;
  1130. while (1) {
  1131. uint32_t fifo = (port().FSR >> 16) & 0x1F;
  1132. if (fifo > 0) return port().RDR;
  1133. }
  1134. //port().SR = SPI_SR_TCF;
  1135. //port().PUSHR = data;
  1136. //while (!(port().SR & SPI_SR_TCF)) ; // wait
  1137. //return port().POPR;
  1138. }
  1139. uint16_t transfer16(uint16_t data) {
  1140. uint32_t tcr = port().TCR;
  1141. port().TCR = (tcr & 0xfffff000) | LPSPI_TCR_FRAMESZ(15); // turn on 16 bit mode
  1142. port().TDR = data; // output 16 bit data.
  1143. while ((port().RSR & LPSPI_RSR_RXEMPTY)) ; // wait while the RSR fifo is empty...
  1144. port().TCR = tcr; // restore back
  1145. return port().RDR;
  1146. }
  1147. void inline transfer(void *buf, size_t count) {transfer(buf, buf, count);}
  1148. void setTransferWriteFill(uint8_t ch ) {_transferWriteFill = ch;}
  1149. void transfer(const void * buf, void * retbuf, size_t count);
  1150. // Asynch support (DMA )
  1151. #ifdef SPI_HAS_TRANSFER_ASYNC
  1152. bool transfer(const void *txBuffer, void *rxBuffer, size_t count, EventResponderRef event_responder);
  1153. friend void _spi_dma_rxISR0(void);
  1154. inline void dma_rxisr(void);
  1155. #endif
  1156. // After performing a group of transfers and releasing the chip select
  1157. // signal, this function allows others to access the SPI bus
  1158. void endTransaction(void) {
  1159. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1160. if (!inTransactionFlag) {
  1161. pinMode(SPI_TRANSACTION_MISMATCH_LED, OUTPUT);
  1162. digitalWrite(SPI_TRANSACTION_MISMATCH_LED, HIGH);
  1163. }
  1164. inTransactionFlag = 0;
  1165. #endif
  1166. if (interruptMasksUsed) {
  1167. if (interruptMasksUsed & 0x01) NVIC_ISER0 = interruptSave[0];
  1168. if (interruptMasksUsed & 0x02) NVIC_ISER1 = interruptSave[1];
  1169. if (interruptMasksUsed & 0x04) NVIC_ISER2 = interruptSave[2];
  1170. if (interruptMasksUsed & 0x08) NVIC_ISER3 = interruptSave[3];
  1171. if (interruptMasksUsed & 0x10) NVIC_ISER4 = interruptSave[4];
  1172. }
  1173. //Serial.printf("SPI.endTransaction CCR:%x TCR:%x\n", port().CCR, port().TCR);
  1174. }
  1175. // Disable the SPI bus
  1176. void end();
  1177. // This function is deprecated. New applications should use
  1178. // beginTransaction() to configure SPI settings.
  1179. void setBitOrder(uint8_t bitOrder);
  1180. // This function is deprecated. New applications should use
  1181. // beginTransaction() to configure SPI settings.
  1182. void setDataMode(uint8_t dataMode);
  1183. // This function is deprecated. New applications should use
  1184. // beginTransaction() to configure SPI settings.
  1185. void setClockDivider(uint8_t clockDiv) {
  1186. if (clockDiv == SPI_CLOCK_DIV2) {
  1187. setClockDivider_noInline(12000000);
  1188. } else if (clockDiv == SPI_CLOCK_DIV4) {
  1189. setClockDivider_noInline(4000000);
  1190. } else if (clockDiv == SPI_CLOCK_DIV8) {
  1191. setClockDivider_noInline(2000000);
  1192. } else if (clockDiv == SPI_CLOCK_DIV16) {
  1193. setClockDivider_noInline(1000000);
  1194. } else if (clockDiv == SPI_CLOCK_DIV32) {
  1195. setClockDivider_noInline(500000);
  1196. } else if (clockDiv == SPI_CLOCK_DIV64) {
  1197. setClockDivider_noInline(250000);
  1198. } else { /* clockDiv == SPI_CLOCK_DIV128 */
  1199. setClockDivider_noInline(125000);
  1200. }
  1201. }
  1202. void setClockDivider_noInline(uint32_t clk);
  1203. // These undocumented functions should not be used. SPI.transfer()
  1204. // polls the hardware flag which is automatically cleared as the
  1205. // AVR responds to SPI's interrupt
  1206. void attachInterrupt() { }
  1207. void detachInterrupt() { }
  1208. // Teensy 3.x can use alternate pins for these 3 SPI signals.
  1209. void setMOSI(uint8_t pin);
  1210. void setMISO(uint8_t pin);
  1211. void setSCK(uint8_t pin);
  1212. // return true if "pin" has special chip select capability
  1213. uint8_t pinIsChipSelect(uint8_t pin);
  1214. bool pinIsMOSI(uint8_t pin);
  1215. bool pinIsMISO(uint8_t pin);
  1216. bool pinIsSCK(uint8_t pin);
  1217. // return true if both pin1 and pin2 have independent chip select capability
  1218. bool pinIsChipSelect(uint8_t pin1, uint8_t pin2);
  1219. // configure a pin for chip select and return its SPI_MCR_PCSIS bitmask
  1220. // setCS() is a special function, not intended for use from normal Arduino
  1221. // programs/sketches. See the ILI3941_t3 library for an example.
  1222. uint8_t setCS(uint8_t pin);
  1223. private:
  1224. private:
  1225. IMXRT_LPSPI_t & port() { return *(IMXRT_LPSPI_t *)port_addr; }
  1226. const SPI_Hardware_t & hardware() { return *(const SPI_Hardware_t *)hardware_addr; }
  1227. uintptr_t port_addr;
  1228. uintptr_t hardware_addr;
  1229. uint32_t _clock = 0;
  1230. uint32_t _ccr = 0;
  1231. //KINETISK_SPI_t & port() { return *(KINETISK_SPI_t *)port_addr; }
  1232. // IMXRT_LPSPI_t * const port;
  1233. // const SPI_Hardware_t * const hardware;
  1234. void updateCTAR(uint32_t ctar);
  1235. uint8_t miso_pin_index = 0;
  1236. uint8_t mosi_pin_index = 0;
  1237. uint8_t sck_pin_index = 0;
  1238. uint8_t interruptMasksUsed = 0;
  1239. uint32_t interruptMask[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  1240. uint32_t interruptSave[(NVIC_NUM_INTERRUPTS+31)/32] = {};
  1241. #ifdef SPI_TRANSACTION_MISMATCH_LED
  1242. uint8_t inTransactionFlag = 0;
  1243. #endif
  1244. uint8_t _transferWriteFill = 0;
  1245. // DMA Support
  1246. #ifdef SPI_HAS_TRANSFER_ASYNC
  1247. bool initDMAChannels();
  1248. enum DMAState { notAllocated, idle, active, completed};
  1249. enum {MAX_DMA_COUNT=32767};
  1250. DMAState _dma_state = DMAState::notAllocated;
  1251. uint32_t _dma_count_remaining = 0; // How many bytes left to output after current DMA completes
  1252. DMAChannel *_dmaTX = nullptr;
  1253. DMAChannel *_dmaRX = nullptr;
  1254. EventResponder *_dma_event_responder = nullptr;
  1255. #endif
  1256. };
  1257. #endif
  1258. extern SPIClass SPI;
  1259. #if defined(__MKL26Z64__)
  1260. extern SPIClass SPI1;
  1261. #endif
  1262. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__IMXRT1062__)
  1263. extern SPIClass SPI1;
  1264. extern SPIClass SPI2;
  1265. #endif
  1266. #endif