Browse Source

Catch updated to v2.1.1.

main
offa 6 years ago
parent
commit
cf2aff737d
1 changed files with 87 additions and 72 deletions
  1. +87
    -72
      test/catch/catch.hpp

+ 87
- 72
test/catch/catch.hpp View File

/* /*
* Catch v2.1.0
* Generated: 2018-01-10 13:51:15.378034
* Catch v2.1.1
* Generated: 2018-01-26 16:04:07.190063
* ---------------------------------------------------------- * ----------------------------------------------------------
* This file has been merged from multiple headers. Please don't edit it directly * This file has been merged from multiple headers. Please don't edit it directly
* Copyright (c) 2018 Two Blue Cubes Ltd. All rights reserved. * Copyright (c) 2018 Two Blue Cubes Ltd. All rights reserved.
static std::string convert(wchar_t * str); static std::string convert(wchar_t * str);
}; };


template<typename T>
struct is_string_array : std::false_type {};

template<std::size_t N>
struct is_string_array<char[N]> : std::true_type {};

template<std::size_t N>
struct is_string_array<signed char[N]> : std::true_type {};

template<std::size_t N>
struct is_string_array<unsigned char[N]> : std::true_type {};

template<int SZ> template<int SZ>
struct StringMaker<char[SZ]> { struct StringMaker<char[SZ]> {
static std::string convert(const char* str) { static std::string convert(const char* str) {
} }


template<typename R> template<typename R>
struct StringMaker<R, typename std::enable_if<is_range<R>::value && !is_string_array<R>::value>::type> {
struct StringMaker<R, typename std::enable_if<is_range<R>::value && !std::is_array<R>::value>::type> {
static std::string convert( R const& range ) { static std::string convert( R const& range ) {
return rangeToString( range ); return rangeToString( range );
} }
}; };


template <typename T, int SZ>
struct StringMaker<T[SZ]> {
static std::string convert(T const(&arr)[SZ]) {
return rangeToString(arr);
}
};

} // namespace Catch } // namespace Catch


// Separate std::chrono::duration specialization // Separate std::chrono::duration specialization


// Specialised comparison functions to handle equality comparisons between ints and pointers (NULL deduces as an int) // Specialised comparison functions to handle equality comparisons between ints and pointers (NULL deduces as an int)
template<typename LhsT, typename RhsT> template<typename LhsT, typename RhsT>
auto compareEqual( LhsT const& lhs, RhsT const& rhs ) -> bool { return lhs == rhs; };
auto compareEqual( LhsT const& lhs, RhsT const& rhs ) -> bool { return static_cast<bool>(lhs == rhs); };
template<typename T> template<typename T>
auto compareEqual( T* const& lhs, int rhs ) -> bool { return lhs == reinterpret_cast<void const*>( rhs ); } auto compareEqual( T* const& lhs, int rhs ) -> bool { return lhs == reinterpret_cast<void const*>( rhs ); }
template<typename T> template<typename T>
auto compareEqual( long lhs, T* const& rhs ) -> bool { return reinterpret_cast<void const*>( lhs ) == rhs; } auto compareEqual( long lhs, T* const& rhs ) -> bool { return reinterpret_cast<void const*>( lhs ) == rhs; }


template<typename LhsT, typename RhsT> template<typename LhsT, typename RhsT>
auto compareNotEqual( LhsT const& lhs, RhsT&& rhs ) -> bool { return lhs != rhs; };
auto compareNotEqual( LhsT const& lhs, RhsT&& rhs ) -> bool { return static_cast<bool>(lhs != rhs); };
template<typename T> template<typename T>
auto compareNotEqual( T* const& lhs, int rhs ) -> bool { return lhs != reinterpret_cast<void const*>( rhs ); } auto compareNotEqual( T* const& lhs, int rhs ) -> bool { return lhs != reinterpret_cast<void const*>( rhs ); }
template<typename T> template<typename T>


template<typename RhsT> template<typename RhsT>
auto operator > ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const { auto operator > ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const {
return { m_lhs > rhs, m_lhs, ">", rhs };
return { static_cast<bool>(m_lhs > rhs), m_lhs, ">", rhs };
} }
template<typename RhsT> template<typename RhsT>
auto operator < ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const { auto operator < ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const {
return { m_lhs < rhs, m_lhs, "<", rhs };
return { static_cast<bool>(m_lhs < rhs), m_lhs, "<", rhs };
} }
template<typename RhsT> template<typename RhsT>
auto operator >= ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const { auto operator >= ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const {
return { m_lhs >= rhs, m_lhs, ">=", rhs };
return { static_cast<bool>(m_lhs >= rhs), m_lhs, ">=", rhs };
} }
template<typename RhsT> template<typename RhsT>
auto operator <= ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const { auto operator <= ( RhsT const& rhs ) -> BinaryExpr<LhsT, RhsT const&> const {
return { m_lhs <= rhs, m_lhs, "<=", rhs };
return { static_cast<bool>(m_lhs <= rhs), m_lhs, "<=", rhs };
} }


auto makeUnaryExpr() const -> UnaryExpr<LhsT> { auto makeUnaryExpr() const -> UnaryExpr<LhsT> {
#endif #endif


// start clara.hpp // start clara.hpp
// v1.0-develop.2
// See https://github.com/philsquared/Clara
// Copyright 2017 Two Blue Cubes Ltd. All rights reserved.
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See https://github.com/philsquared/Clara for more details

// Clara v1.1.1




#ifndef CATCH_CLARA_CONFIG_CONSOLE_WIDTH #ifndef CATCH_CLARA_CONFIG_CONSOLE_WIDTH
template<typename ClassT, typename ReturnT, typename ArgT> template<typename ClassT, typename ReturnT, typename ArgT>
struct UnaryLambdaTraits<ReturnT( ClassT::* )( ArgT ) const> { struct UnaryLambdaTraits<ReturnT( ClassT::* )( ArgT ) const> {
static const bool isValid = true; static const bool isValid = true;
using ArgType = typename std::remove_const<typename std::remove_reference<ArgT>::type>::type;;
using ArgType = typename std::remove_const<typename std::remove_reference<ArgT>::type>::type;
using ReturnType = ReturnT; using ReturnType = ReturnT;
}; };


return *this; return *this;
} }


~ResultValueBase() {
~ResultValueBase() override {
if( m_type == Ok ) if( m_type == Ok )
m_value.~T(); m_value.~T();
} }
auto errorMessage() const -> std::string { return m_errorMessage; } auto errorMessage() const -> std::string { return m_errorMessage; }


protected: protected:
virtual void enforceOk() const {
void enforceOk() const override {
// !TBD: If no exceptions, std::terminate here or something // !TBD: If no exceptions, std::terminate here or something
switch( m_type ) { switch( m_type ) {
case ResultBase::LogicError: case ResultBase::LogicError:
return ParserResult::ok( ParseResultType::Matched ); return ParserResult::ok( ParseResultType::Matched );
} }


struct BoundRefBase {
BoundRefBase() = default;
BoundRefBase( BoundRefBase const & ) = delete;
BoundRefBase( BoundRefBase && ) = delete;
BoundRefBase &operator=( BoundRefBase const & ) = delete;
BoundRefBase &operator=( BoundRefBase && ) = delete;

virtual ~BoundRefBase() = default;
struct NonCopyable {
NonCopyable() = default;
NonCopyable( NonCopyable const & ) = delete;
NonCopyable( NonCopyable && ) = delete;
NonCopyable &operator=( NonCopyable const & ) = delete;
NonCopyable &operator=( NonCopyable && ) = delete;
};


virtual auto isFlag() const -> bool = 0;
struct BoundRef : NonCopyable {
virtual ~BoundRef() = default;
virtual auto isContainer() const -> bool { return false; } virtual auto isContainer() const -> bool { return false; }
virtual auto setValue( std::string const &arg ) -> ParserResult = 0;
virtual auto setFlag( bool flag ) -> ParserResult = 0;
}; };

struct BoundValueRefBase : BoundRefBase {
auto isFlag() const -> bool override { return false; }

auto setFlag( bool ) -> ParserResult override {
return ParserResult::logicError( "Flags can only be set on boolean fields" );
}
struct BoundValueRefBase : BoundRef {
virtual auto setValue( std::string const &arg ) -> ParserResult = 0;
}; };

struct BoundFlagRefBase : BoundRefBase {
auto isFlag() const -> bool override { return true; }

auto setValue( std::string const &arg ) -> ParserResult override {
bool flag;
auto result = convertInto( arg, flag );
if( result )
setFlag( flag );
return result;
}
struct BoundFlagRefBase : BoundRef {
virtual auto setFlag( bool flag ) -> ParserResult = 0;
}; };


template<typename T> template<typename T>
struct BoundRef : BoundValueRefBase {
struct BoundValueRef : BoundValueRefBase {
T &m_ref; T &m_ref;


explicit BoundRef( T &ref ) : m_ref( ref ) {}
explicit BoundValueRef( T &ref ) : m_ref( ref ) {}


auto setValue( std::string const &arg ) -> ParserResult override { auto setValue( std::string const &arg ) -> ParserResult override {
return convertInto( arg, m_ref ); return convertInto( arg, m_ref );
}; };


template<typename T> template<typename T>
struct BoundRef<std::vector<T>> : BoundValueRefBase {
struct BoundValueRef<std::vector<T>> : BoundValueRefBase {
std::vector<T> &m_ref; std::vector<T> &m_ref;


explicit BoundRef( std::vector<T> &ref ) : m_ref( ref ) {}
explicit BoundValueRef( std::vector<T> &ref ) : m_ref( ref ) {}


auto isContainer() const -> bool override { return true; } auto isContainer() const -> bool override { return true; }




template<typename ArgType, typename L> template<typename ArgType, typename L>
inline auto invokeLambda( L const &lambda, std::string const &arg ) -> ParserResult { inline auto invokeLambda( L const &lambda, std::string const &arg ) -> ParserResult {
ArgType temp;
ArgType temp{};
auto result = convertInto( arg, temp ); auto result = convertInto( arg, temp );
return !result return !result
? result ? result
: LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke( lambda, temp ); : LambdaInvoker<typename UnaryLambdaTraits<L>::ReturnType>::invoke( lambda, temp );
};
}


template<typename L> template<typename L>
struct BoundLambda : BoundValueRefBase { struct BoundLambda : BoundValueRefBase {
public: public:
template<typename T> template<typename T>
auto operator|( T const &other ) const -> Parser; auto operator|( T const &other ) const -> Parser;

template<typename T>
auto operator+( T const &other ) const -> Parser;
}; };


// Common code and state for Args and Opts // Common code and state for Args and Opts
class ParserRefImpl : public ComposableParserImpl<DerivedT> { class ParserRefImpl : public ComposableParserImpl<DerivedT> {
protected: protected:
Optionality m_optionality = Optionality::Optional; Optionality m_optionality = Optionality::Optional;
std::shared_ptr<BoundRefBase> m_ref;
std::shared_ptr<BoundRef> m_ref;
std::string m_hint; std::string m_hint;
std::string m_description; std::string m_description;


explicit ParserRefImpl( std::shared_ptr<BoundRefBase> const &ref ) : m_ref( ref ) {}
explicit ParserRefImpl( std::shared_ptr<BoundRef> const &ref ) : m_ref( ref ) {}


public: public:
template<typename T> template<typename T>
ParserRefImpl( T &ref, std::string const &hint ) ParserRefImpl( T &ref, std::string const &hint )
: m_ref( std::make_shared<BoundRef<T>>( ref ) ),
: m_ref( std::make_shared<BoundValueRef<T>>( ref ) ),
m_hint( hint ) m_hint( hint )
{} {}




class ExeName : public ComposableParserImpl<ExeName> { class ExeName : public ComposableParserImpl<ExeName> {
std::shared_ptr<std::string> m_name; std::shared_ptr<std::string> m_name;
std::shared_ptr<BoundRefBase> m_ref;
std::shared_ptr<BoundValueRefBase> m_ref;


template<typename LambdaT> template<typename LambdaT>
static auto makeRef(LambdaT const &lambda) -> std::shared_ptr<BoundRefBase> {
static auto makeRef(LambdaT const &lambda) -> std::shared_ptr<BoundValueRefBase> {
return std::make_shared<BoundLambda<LambdaT>>( lambda) ; return std::make_shared<BoundLambda<LambdaT>>( lambda) ;
} }


ExeName() : m_name( std::make_shared<std::string>( "<executable>" ) ) {} ExeName() : m_name( std::make_shared<std::string>( "<executable>" ) ) {}


explicit ExeName( std::string &ref ) : ExeName() { explicit ExeName( std::string &ref ) : ExeName() {
m_ref = std::make_shared<BoundRef<std::string>>( ref );
m_ref = std::make_shared<BoundValueRef<std::string>>( ref );
} }


template<typename LambdaT> template<typename LambdaT>
if( token.type != TokenType::Argument ) if( token.type != TokenType::Argument )
return InternalParseResult::ok( ParseState( ParseResultType::NoMatch, remainingTokens ) ); return InternalParseResult::ok( ParseState( ParseResultType::NoMatch, remainingTokens ) );


auto result = m_ref->setValue( remainingTokens->token );
assert( dynamic_cast<detail::BoundValueRefBase*>( m_ref.get() ) );
auto valueRef = static_cast<detail::BoundValueRefBase*>( m_ref.get() );

auto result = valueRef->setValue( remainingTokens->token );
if( !result ) if( !result )
return InternalParseResult( result ); return InternalParseResult( result );
else else
if( remainingTokens && remainingTokens->type == TokenType::Option ) { if( remainingTokens && remainingTokens->type == TokenType::Option ) {
auto const &token = *remainingTokens; auto const &token = *remainingTokens;
if( isMatch(token.token ) ) { if( isMatch(token.token ) ) {
if( m_ref->isFlag() ) {
auto result = m_ref->setFlag( true );
if( auto flagRef = dynamic_cast<detail::BoundFlagRefBase*>( m_ref.get() ) ) {
auto result = flagRef->setFlag( true );
if( !result ) if( !result )
return InternalParseResult( result ); return InternalParseResult( result );
if( result.value() == ParseResultType::ShortCircuitAll ) if( result.value() == ParseResultType::ShortCircuitAll )
return InternalParseResult::ok( ParseState( result.value(), remainingTokens ) ); return InternalParseResult::ok( ParseState( result.value(), remainingTokens ) );
} else { } else {
assert( dynamic_cast<detail::BoundValueRefBase*>( m_ref.get() ) );
auto valueRef = static_cast<detail::BoundValueRefBase*>( m_ref.get() );
++remainingTokens; ++remainingTokens;
if( !remainingTokens ) if( !remainingTokens )
return InternalParseResult::runtimeError( "Expected argument following " + token.token ); return InternalParseResult::runtimeError( "Expected argument following " + token.token );
auto const &argToken = *remainingTokens; auto const &argToken = *remainingTokens;
if( argToken.type != TokenType::Argument ) if( argToken.type != TokenType::Argument )
return InternalParseResult::runtimeError( "Expected argument following " + token.token ); return InternalParseResult::runtimeError( "Expected argument following " + token.token );
auto result = m_ref->setValue( argToken.token );
auto result = valueRef->setValue( argToken.token );
if( !result ) if( !result )
return InternalParseResult( result ); return InternalParseResult( result );
if( result.value() == ParseResultType::ShortCircuitAll ) if( result.value() == ParseResultType::ShortCircuitAll )
return Parser( *this ) |= other; return Parser( *this ) |= other;
} }


// Forward deprecated interface with '+' instead of '|'
template<typename T>
auto operator+=( T const &other ) -> Parser & { return operator|=( other ); }
template<typename T>
auto operator+( T const &other ) const -> Parser { return operator|( other ); }

auto getHelpColumns() const -> std::vector<HelpColumns> { auto getHelpColumns() const -> std::vector<HelpColumns> {
std::vector<HelpColumns> cols; std::vector<HelpColumns> cols;
for (auto const &o : m_options) { for (auto const &o : m_options) {
for( auto const &cols : rows ) for( auto const &cols : rows )
optWidth = (std::max)(optWidth, cols.left.size() + 2); optWidth = (std::max)(optWidth, cols.left.size() + 2);


optWidth = (std::min)(optWidth, consoleWidth/2);

for( auto const &cols : rows ) { for( auto const &cols : rows ) {
auto row = auto row =
TextFlow::Column( cols.left ).width( optWidth ).indent( 2 ) + TextFlow::Column( cols.left ).width( optWidth ).indent( 2 ) +
return Catch::Detail::stringify( [exception description] ); return Catch::Detail::stringify( [exception description] );
} }
#else #else
// Compiling a mixed mode project with MSVC means that CLR
// exceptions will be caught in (...) as well. However, these
// do not fill-in std::current_exception and thus lead to crash
// when attempting rethrow.
// /EHa switch also causes structured exceptions to be caught
// here, but they fill-in current_exception properly, so
// at worst the output should be a little weird, instead of
// causing a crash.
if (std::current_exception() == nullptr) {
return "Non C++ exception. Possibly a CLR exception.";
}
return tryTranslators(); return tryTranslators();
#endif #endif
} }
if( Option<std::size_t> listed = list( config() ) ) if( Option<std::size_t> listed = list( config() ) )
return static_cast<int>( *listed ); return static_cast<int>( *listed );


// Note that on unices only the lower 8 bits are usually used, clamping
// the return value to 255 prevents false negative when some multiple
// of 256 tests has failed
return (std::min)( MaxExitCode, static_cast<int>( runTests( m_config ).assertions.failed ) ); return (std::min)( MaxExitCode, static_cast<int>( runTests( m_config ).assertions.failed ) );
} }
catch( std::exception& ex ) { catch( std::exception& ex ) {
} }


Version const& libraryVersion() { Version const& libraryVersion() {
static Version version( 2, 1, 0, "", 0 );
static Version version( 2, 1, 1, "", 0 );
return version; return version;
} }



Loading…
Cancel
Save