*/ | */ | ||||
#include "AudioTuner.h" | #include "AudioTuner.h" | ||||
#include "utility/dspinst.h" | |||||
#define HALF_BUFFER NUM_SAMPLES / 2 | |||||
#define QUARTER_BUFFER NUM_SAMPLES / 4 | |||||
#define EIGTH_BUFFER NUM_SAMPLES / 8 | |||||
#define SIXTEENTH_BUFFER NUM_SAMPLES / 16 | |||||
#define SAMPLE_RATE AUDIO_SAMPLE_RATE_EXACT / SAMPLE_SKIP | |||||
#if SAMPLE_RATE == SAMPLE_RATE_44100 | |||||
#define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 1 | |||||
#elif SAMPLE_RATE == SAMPLE_RATE_22050 | |||||
#define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 2 | |||||
#elif SAMPLE_RATE == SAMPLE_RATE_11025 | |||||
#define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 4 | |||||
#endif | |||||
#define HALF_BUFFER NUM_SAMPLES / 2 | |||||
#define LOOP1(a) a | #define LOOP1(a) a | ||||
#define LOOP2(a) a LOOP1(a) | #define LOOP2(a) a LOOP1(a) | ||||
#define LOOP8(a) a LOOP3(a) a LOOP3(a) | #define LOOP8(a) a LOOP3(a) a LOOP3(a) | ||||
#define UNROLL(n,a) LOOP##n(a) | #define UNROLL(n,a) LOOP##n(a) | ||||
#define WINDOW SAMPLE_SKIP - 1 | |||||
/** | /** | ||||
* audio update function. | |||||
* Audio update function. | |||||
*/ | */ | ||||
void AudioTuner::update( void ) { | void AudioTuner::update( void ) { | ||||
audio_block_t *block; | audio_block_t *block; | ||||
const int16_t *p, *end; | const int16_t *p, *end; | ||||
block = receiveReadOnly( ); | block = receiveReadOnly( ); | ||||
if ( !block ) return; | if ( !block ) return; | ||||
if ( !enabled ) { | if ( !enabled ) { | ||||
p = block->data; | p = block->data; | ||||
end = p + AUDIO_BLOCK_SAMPLES; | end = p + AUDIO_BLOCK_SAMPLES; | ||||
/* | |||||
* Set the number of cycles to processed per receiving block. | |||||
* | |||||
*/ | |||||
uint16_t cycles; | |||||
const uint16_t usage_max = cpu_usage_max; | |||||
if ( AudioProcessorUsage( ) > usage_max ) { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 2; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 4; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 16; | |||||
#endif | |||||
} | |||||
else { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 16; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 32; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 64; | |||||
#endif | |||||
} | |||||
uint16_t count = count_global; | |||||
/* | |||||
* Double buffering, one fill while the other is processed | |||||
* 2x the throughput. | |||||
*/ | |||||
uint16_t *dst; | uint16_t *dst; | ||||
if ( next_buffer ) dst = ( uint16_t * )buffer; | if ( next_buffer ) dst = ( uint16_t * )buffer; | ||||
else dst = ( uint16_t * )buffer + NUM_SAMPLES; | else dst = ( uint16_t * )buffer + NUM_SAMPLES; | ||||
uint8_t get_sample = 0; | |||||
uint16_t count = block_count; | |||||
// gather data | |||||
do { | do { | ||||
if ( get_sample++ >= WINDOW ) { | |||||
*( dst+count++ ) = *( uint16_t * )p; | |||||
get_sample = 0; | |||||
} | |||||
} while ( p++ < end ); | |||||
*( dst+count++ ) = *( uint16_t * )p; | |||||
p += SAMPLE_RATE; | |||||
} while ( p < end ); | |||||
release( block ); | release( block ); | ||||
/* | |||||
* If buffer full switch to start filling next | |||||
* buffer and process the just filled buffer. | |||||
*/ | |||||
if ( count >= NUM_SAMPLES ) { | if ( count >= NUM_SAMPLES ) { | ||||
//digitalWriteFast(2, !digitalReadFast(2)); | //digitalWriteFast(2, !digitalReadFast(2)); | ||||
next_buffer = !next_buffer; | next_buffer = !next_buffer; | ||||
process_buffer = true; | |||||
tau_global = 1; | |||||
yin_idx = 1; | |||||
running_sum = 0; | |||||
count = 0; | |||||
process_buffer = true; | |||||
count_global = 0; | |||||
tau_global = 1; | |||||
yin_idx = 1; | |||||
running_sum = 0; | |||||
count = 0; | |||||
} | } | ||||
block_count = count; | |||||
count_global = count;// update global count | |||||
if ( process_buffer ) { | if ( process_buffer ) { | ||||
digitalWriteFast(0, HIGH); | |||||
//digitalWriteFast(0, HIGH); | |||||
uint16_t tau; | uint16_t tau; | ||||
uint16_t next; | uint16_t next; | ||||
next = next_buffer; | next = next_buffer; | ||||
lag = *( buf + tau ); | lag = *( buf + tau ); | ||||
current = *buf++; | current = *buf++; | ||||
delta = current - lag; | delta = current - lag; | ||||
//sum = multiply_accumulate_32x32_rshift32_rounded(sum, delta, delta); | |||||
sum += delta*delta; | sum += delta*delta; | ||||
); | ); | ||||
} while ( buf < end ); | } while ( buf < end ); | ||||
tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | ||||
if ( tau == 0 ) { | if ( tau == 0 ) { | ||||
process_buffer = false; | |||||
new_output = true; | |||||
process_buffer = false; | |||||
new_output = true; | |||||
//digitalWriteFast(0, LOW); | //digitalWriteFast(0, LOW); | ||||
return; | return; | ||||
} | } | ||||
else if ( tau >= HALF_BUFFER ) { | else if ( tau >= HALF_BUFFER ) { | ||||
process_buffer = false; | |||||
new_output = false; | |||||
process_buffer = false; | |||||
new_output = false; | |||||
//digitalWriteFast(0, LOW); | //digitalWriteFast(0, LOW); | ||||
return; | return; | ||||
} | } | ||||
} while ( tau <= ( tau_global + 31 ) ); | |||||
} while ( tau <= cycles ); | |||||
tau_global = tau; | tau_global = tau; | ||||
//digitalWriteFast(0, LOW); | //digitalWriteFast(0, LOW); | ||||
} | } | ||||
_head = head; | _head = head; | ||||
if ( _tau > 4 ) { | if ( _tau > 4 ) { | ||||
uint16_t idx0, idx1, idx2; | uint16_t idx0, idx1, idx2; | ||||
idx0 = _head; | idx0 = _head; | ||||
idx1 = _head + 1; | idx1 = _head + 1; | ||||
s1 = ( ( float )*( p+idx1 ) / r[idx1] ); | s1 = ( ( float )*( p+idx1 ) / r[idx1] ); | ||||
s2 = ( ( float )*( p+idx2 ) / r[idx2] ); | s2 = ( ( float )*( p+idx2 ) / r[idx2] ); | ||||
if ( s1 < threshold && s1 < s2 ) { | |||||
if ( s1 < yin_threshold && s1 < s2 ) { | |||||
uint16_t period = _tau - 3; | uint16_t period = _tau - 3; | ||||
periodicity = 1 - s1; | periodicity = 1 - s1; | ||||
data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 ); | data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 ); | ||||
return 0; | return 0; | ||||
} | } | ||||
if ( s1 > 2.2 ) return _tau + 2; | |||||
if ( s1 > 2.4 ) return _tau + 2; | |||||
else return _tau + 1; | else return _tau + 1; | ||||
} | } | ||||
return _tau + 1; | return _tau + 1; | ||||
} | } | ||||
/** | |||||
* Initialise | |||||
* | |||||
* @param threshold Allowed uncertainty | |||||
* @param cpu_max How much cpu usage before throttling | |||||
*/ | |||||
void AudioTuner::initialize( float threshold, uint8_t cpu_max ) { | |||||
__disable_irq( ); | |||||
cpu_usage_max = cpu_max; | |||||
yin_threshold = threshold; | |||||
process_buffer = false; | |||||
periodicity = 0.0f; | |||||
next_buffer = 1; | |||||
running_sum = 0; | |||||
count_global = 0; | |||||
yin_idx = 1; | |||||
data = 0; | |||||
enabled = true; | |||||
__enable_irq( ); | |||||
} | |||||
/** | /** | ||||
* available | * available | ||||
* | * | ||||
* @return true if data is ready else false | * @return true if data is ready else false | ||||
*/ | */ | ||||
bool AudioTuner::available( void ) { | bool AudioTuner::available( void ) { | ||||
__disable_irq(); | |||||
__disable_irq( ); | |||||
bool flag = new_output; | bool flag = new_output; | ||||
if (flag) new_output = false; | |||||
__enable_irq(); | |||||
if ( flag ) new_output = false; | |||||
__enable_irq( ); | |||||
return flag; | return flag; | ||||
} | } | ||||
* @return frequency in hertz | * @return frequency in hertz | ||||
*/ | */ | ||||
float AudioTuner::read( void ) { | float AudioTuner::read( void ) { | ||||
return SAMPLE_RATE / data; | |||||
__disable_irq( ); | |||||
float d = data; | |||||
__enable_irq( ); | |||||
d = SAMPLE_RATE_EXACT / d; | |||||
return d; | |||||
} | } | ||||
/** | /** | ||||
* @return periodicity | * @return periodicity | ||||
*/ | */ | ||||
float AudioTuner::probability( void ) { | float AudioTuner::probability( void ) { | ||||
return periodicity; | |||||
__disable_irq( ); | |||||
float p = periodicity; | |||||
__enable_irq( ); | |||||
return p; | |||||
} | } | ||||
/** | /** | ||||
* | * | ||||
* @param thresh Allowed uncertainty | * @param thresh Allowed uncertainty | ||||
*/ | */ | ||||
void AudioTuner::set_threshold( float thresh ) { | |||||
void AudioTuner::threshold( float p ) { | |||||
__disable_irq( ); | __disable_irq( ); | ||||
threshold = thresh; | |||||
process_buffer = false; | |||||
periodicity = 0.0f; | |||||
next_buffer = 1; | |||||
running_sum = 0; | |||||
block_count = 0; | |||||
block_count = 0; | |||||
enabled = true; | |||||
yin_idx = 1; | |||||
data = 0; | |||||
__enable_irq( ); | |||||
yin_threshold = p; | |||||
__enable_irq( ); | |||||
} | } |
#include "AudioStream.h" | #include "AudioStream.h" | ||||
/****************************************************************/ | /****************************************************************/ | ||||
#define SAMPLE_RATE_DIVIDE_BY_1 1 // 44100 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_2 2 // 22050 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_4 4 // 11025 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_8 8 // 5512.5 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_16 16 // 2756.25 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_32 32 // 1378.125 sample rate | |||||
#define SAMPLE_RATE_44100 1 // 44100 sample rate | |||||
#define SAMPLE_RATE_22050 2 // 22050 sample rate | |||||
#define SAMPLE_RATE_11025 4 // 11025 sample rate | |||||
/****************************************************************/ | |||||
/**************************************************************** | /**************************************************************** | ||||
* Safe to adjust these values below * | * Safe to adjust these values below * | ||||
* * | |||||
* These two parameters define how this object works. * | |||||
* * | |||||
* 1. NUM_SAMPLES - Size of the buffer. Since object uses * | |||||
* double buffering this value will be 4x in bytes of * | |||||
* memory. !!! Must be power of 2 !!!! * | |||||
* * | |||||
* 2. SAMPLE_RATE - Just what it says. * | |||||
* * | |||||
* These two parameters work hand in hand. For example if you * | |||||
* want a high sample rate but do not allocate enough buffer * | |||||
* space, you will be limit how low of a frequency you can * | |||||
* measure. If you then increase the buffer you use up * | |||||
* precious ram and slow down the system since it takes longer * | |||||
* to processes the buffer. * | |||||
* * | |||||
* Play around with these values to find what best suits your * | |||||
* needs. The max number of buffers you can have is 8192 bins. * | |||||
****************************************************************/ | ****************************************************************/ | ||||
// Adjust number of samples to collect in buffer here, also effects | |||||
// convergence speed and resolution. | |||||
// !!! Must be power of 2 !!!! | |||||
#define NUM_SAMPLES 2048 // make a power of two | #define NUM_SAMPLES 2048 // make a power of two | ||||
// larger the divide-by, less resolution and lower the frequency for | |||||
// a given number of samples that can be detected. Also effects | |||||
// convergence speed. | |||||
#define SAMPLE_SKIP SAMPLE_RATE_DIVIDE_BY_2 | |||||
// Use defined sample rates above^ | |||||
#define SAMPLE_RATE SAMPLE_RATE_22050 | |||||
/****************************************************************/ | /****************************************************************/ | ||||
class AudioTuner : public AudioStream | class AudioTuner : public AudioStream | ||||
* | * | ||||
* @return none | * @return none | ||||
*/ | */ | ||||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false){ } | |||||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) { | |||||
digitalWriteFast(2, LOW); | |||||
} | |||||
/** | |||||
* initialize variables and start conversion | |||||
* | |||||
* @param threshold Allowed uncertainty | |||||
* @param cpu_max How much cpu usage before throttling | |||||
*/ | |||||
void initialize( float threshold, uint8_t cpu_max); | |||||
/** | /** | ||||
* sets threshold value | * sets threshold value | ||||
* | * | ||||
* @param thresh | * @param thresh | ||||
*/ | */ | ||||
void set_threshold( float thresh ); | |||||
void threshold( float p ); | |||||
/** | /** | ||||
* triggers true when valid frequency is found | * triggers true when valid frequency is found | ||||
/** | /** | ||||
* get predicitity | * get predicitity | ||||
* | * | ||||
* @return probability of correct freq found | |||||
* @return probability of frequency found | |||||
*/ | */ | ||||
float probability( void ); | float probability( void ); | ||||
private: | private: | ||||
/** | /** | ||||
* check the sampled data for fundmental frequency | |||||
* check the sampled data for fundamental frequency | |||||
* | * | ||||
* @param yin buffer to hold sum*tau value | * @param yin buffer to hold sum*tau value | ||||
* @param rs buffer to hold running sum for sampled window | * @param rs buffer to hold running sum for sampled window | ||||
uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | ||||
int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | ||||
float periodicity, threshold, data; | |||||
float periodicity, yin_threshold, data; | |||||
int64_t rs_buffer[5], yin_buffer[5]; | int64_t rs_buffer[5], yin_buffer[5]; | ||||
uint64_t running_sum; | uint64_t running_sum; | ||||
uint16_t block_count, tau_global; | |||||
uint16_t tau_global, count_global, tau_cycles, cpu_usage_max; | |||||
uint8_t next_buffer, yin_idx; | uint8_t next_buffer, yin_idx; | ||||
bool enabled, process_buffer; | bool enabled, process_buffer; | ||||
volatile bool new_output; | volatile bool new_output; |
<p align="center"> | <p align="center"> | ||||
<b>Guitar and Bass Tuner Library</b><br> | <b>Guitar and Bass Tuner Library</b><br> | ||||
<b>Teensy 3.1 v2.0</b><br> | |||||
<b>Teensy 3.1/2 v2.1</b><br> | |||||
</p> | </p> | ||||
>Software algorithm ([YIN]) for guitar and bass tuning using a Teensy Audio Library. This audio object's algorithm can be some what memory and processor hungry but will allow you to detect with fairly good accuracy the fundamental frequencies f<sub>o</sub> from electric guitars and basses. | >Software algorithm ([YIN]) for guitar and bass tuning using a Teensy Audio Library. This audio object's algorithm can be some what memory and processor hungry but will allow you to detect with fairly good accuracy the fundamental frequencies f<sub>o</sub> from electric guitars and basses. | ||||
>Many optimizations have been done to the [YIN] algorithm for frequencies between 29-360Hz. | >Many optimizations have been done to the [YIN] algorithm for frequencies between 29-360Hz. | ||||
>>While its still using a brute force method ( n<sup>2</sup> ) for finding the fundamental frequency f<sub>o</sub>, it is tuned to skip certain <b>tau</b> (<img src="http://latex.numberempire.com/render?%5Cinline%20%5Chuge%20%5Cmathbf%7B%5Ctau%7D&sig=845639da85c0dd8e2de679817b06639c"/></img>) values and focus mostly on frequencies found in the bass and guitar. | >>While its still using a brute force method ( n<sup>2</sup> ) for finding the fundamental frequency f<sub>o</sub>, it is tuned to skip certain <b>tau</b> (<img src="http://latex.numberempire.com/render?%5Cinline%20%5Chuge%20%5Cmathbf%7B%5Ctau%7D&sig=845639da85c0dd8e2de679817b06639c"/></img>) values and focus mostly on frequencies found in the bass and guitar. | ||||
>>>The input is double buffered so while you are processing one buffer it is filling the other to double throughput. | >>>The input is double buffered so while you are processing one buffer it is filling the other to double throughput. | ||||
>>>>There are a few parameters that can be adjusted to "dial in" the algorithm for better estimations. The defaults are what I found that have the best trade off for speed and accuracy. | |||||
>>>>There are a few parameters that can be adjusted to "dial in" the algorithm for better estimations located in AudioTuner.h. The defaults below are what I found that have the best trade off for speed and accuracy. | |||||
<h4>AudioTuner.h</h4> | <h4>AudioTuner.h</h4> | ||||
``` | ``` | ||||
/****************************************************************/ | /****************************************************************/ | ||||
#define SAMPLE_RATE_DIVIDE_BY_1 1 // 44100 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_2 2 // 22050 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_4 4 // 11025 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_8 8 // 5512.5 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_16 16 // 2756.25 sample rate | |||||
#define SAMPLE_RATE_DIVIDE_BY_32 32 // 1378.125 sample rate | |||||
#define SAMPLE_RATE_44100 1 // 44100 sample rate | |||||
#define SAMPLE_RATE_22050 2 // 22050 sample rate | |||||
#define SAMPLE_RATE_11025 4 // 11025 sample rate | |||||
/****************************************************************/ | |||||
/**************************************************************** | /**************************************************************** | ||||
* Safe to adjust these values below * | * Safe to adjust these values below * | ||||
* * | |||||
* These two parameters define how this object works. * | |||||
* * | |||||
* 1. NUM_SAMPLES - Size of the buffer. Since object uses * | |||||
* double buffering this value will be 4x in bytes of * | |||||
* memory. !!! Must be power of 2 !!!! * | |||||
* * | |||||
* 2. SAMPLE_RATE - Just what it says. * | |||||
* * | |||||
* These two parameters work hand in hand. For example if you * | |||||
* want a high sample rate but do not allocate enough buffer * | |||||
* space, you will be limit how low of a frequency you can * | |||||
* measure. If you then increase the buffer you use up * | |||||
* precious ram and slow down the system since it takes longer * | |||||
* to processes the buffer. * | |||||
* * | |||||
* Play around with these values to find what best suits your * | |||||
* needs. The max number of buffers you can have is 8192 bins. * | |||||
****************************************************************/ | ****************************************************************/ | ||||
// Adjust number of samples to collect in buffer here, also effects | |||||
// convergence speed and resolution. | |||||
// !!! Must be power of 2 !!!! | |||||
#define NUM_SAMPLES 2048 // make a power of two | #define NUM_SAMPLES 2048 // make a power of two | ||||
// larger the divide-by, less resolution and lower the frequency for | |||||
// a given number of samples that can be detected. Also effects | |||||
// convergence speed. | |||||
#define SAMPLE_SKIP SAMPLE_RATE_DIVIDE_BY_2 | |||||
// Use defined sample rates above^ | |||||
#define SAMPLE_RATE SAMPLE_RATE_22050 | |||||
/****************************************************************/ | /****************************************************************/ | ||||
``` | ``` | ||||
``` | |||||
SAMPLE_RATE_DIVIDE_BY_x --> This sets 'SAMPLE_SKIP' to pass on every (x) data point from | |||||
the Audio Block being saved to the buffer, it determines the | |||||
sample rate. | |||||
``` | |||||
``` | |||||
NUM_SAMPLES --> This the size of each buffer, there two for double buffering. | |||||
``` | |||||
``` | |||||
SAMPLE_SKIP --> This sets your sample window length and sampling rate. Sample Window Size | |||||
is (NUM_SAMPLES * SAMPLE_SKIP) of the ~44100 samples every second. Sample | |||||
Rate is (AUDIO_SAMPLE_RATE_EXACT / SAMPLE_SKIP). | |||||
``` | |||||
<div> | <div> | ||||
<b>YIN Algorithm</b> | <b>YIN Algorithm</b> | ||||
<ol> | <ol> |
the teensy can store in flash these notes are truncated to ~120,000B or about 1/2 of the whole | the teensy can store in flash these notes are truncated to ~120,000B or about 1/2 of the whole | ||||
signal. | signal. | ||||
*/ | */ | ||||
#include <SerialFlash.h> | |||||
#include <AudioTuner.h> | #include <AudioTuner.h> | ||||
#include <Audio.h> | #include <Audio.h> | ||||
#include <Wire.h> | #include <Wire.h> | ||||
} | } | ||||
//--------------------------------------------------------------------------------------- | //--------------------------------------------------------------------------------------- | ||||
void setup() { | void setup() { | ||||
// put your setup code here, to run once: | |||||
AudioMemory(4); | AudioMemory(4); | ||||
tuner.set_threshold( .05f ); | |||||
/* | |||||
* Intialize the yin algorithm's threshold | |||||
* and percent of current cpu usage used | |||||
* before slowing the algorithm down. | |||||
*/ | |||||
tuner.initialize(.15f, 90); | |||||
pinMode(LED_BUILTIN, OUTPUT); | pinMode(LED_BUILTIN, OUTPUT); | ||||
playNoteTimer.begin(playNote, 1000); | playNoteTimer.begin(playNote, 1000); | ||||
} | } | ||||
void loop() { | void loop() { | ||||
// put your main code here, to run repeatedly: | |||||
// read back fundmental frequency | |||||
if (tuner.available()) { | if (tuner.available()) { | ||||
float note = tuner.read(); | float note = tuner.read(); | ||||
float prob = tuner.probability(); | float prob = tuner.probability(); | ||||
Serial.printf("Note: %3.2f | Probility: %.2f\n", note, prob); | Serial.printf("Note: %3.2f | Probility: %.2f\n", note, prob); | ||||
} | } | ||||
} | } |
You can change the amplitude by typing "a " + amplitude in the serial monitor. (0,1) | You can change the amplitude by typing "a " + amplitude in the serial monitor. (0,1) | ||||
EX. "a .5" | EX. "a .5" | ||||
*/ | */ | ||||
#include <SerialFlash.h> | |||||
#include <AudioTuner.h> | #include <AudioTuner.h> | ||||
#include <Audio.h> | #include <Audio.h> | ||||
#include <Wire.h> | #include <Wire.h> | ||||
char buffer[10]; | char buffer[10]; | ||||
void setup() { | void setup() { | ||||
// put your setup code here, to run once: | |||||
AudioMemory(4); | AudioMemory(4); | ||||
tuner.set_threshold( .05f ); | |||||
/* | |||||
* Intialize the yin algorithm's threshold | |||||
* and percent of current cpu usage used | |||||
* before slowing the algorithm down. | |||||
*/ | |||||
tuner.initialize(.15f, 90); | |||||
sine.frequency(30.87); | sine.frequency(30.87); | ||||
sine.amplitude(1); | sine.amplitude(1); | ||||
} | } | ||||
void loop() { | void loop() { | ||||
// put your main code here, to run repeatedly: | |||||
// read back fundmental frequency | |||||
if (tuner.available()) { | if (tuner.available()) { | ||||
float note = tuner.read(); | float note = tuner.read(); | ||||
float prob = tuner.probability(); | float prob = tuner.probability(); |
name=AudioTuner | name=AudioTuner | ||||
version=2.0 | |||||
version=2.1 | |||||
author=Colin Duffy | author=Colin Duffy | ||||
maintainer=Colin Duffy | maintainer=Colin Duffy | ||||
sentence=Yin algorithm | sentence=Yin algorithm |
><b>Updated (10/11/15 v2.1)</b><br> | |||||
* Made yin implementation faster and more reliable.<br> | |||||
* Improved user interface.<br> | |||||
><b>Updated (7/10/15 v2.0)</b><br> | ><b>Updated (7/10/15 v2.0)</b><br> | ||||
* First commit | * First commit |