#include "AudioTuner.h" | #include "AudioTuner.h" | ||||
#include "utility/dspinst.h" | #include "utility/dspinst.h" | ||||
#include "arm_math.h" | |||||
#if SAMPLE_RATE == SAMPLE_RATE_44100 | |||||
#define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 1 | |||||
#elif SAMPLE_RATE == SAMPLE_RATE_22050 | |||||
#define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 2 | |||||
#elif SAMPLE_RATE == SAMPLE_RATE_11025 | |||||
#define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 4 | |||||
#endif | |||||
#define HALF_BUFFER NUM_SAMPLES / 2 | |||||
#define HALF_BLOCKS AUDIO_BLOCKS * 64 | |||||
#define LOOP1(a) a | #define LOOP1(a) a | ||||
#define LOOP2(a) a LOOP1(a) | #define LOOP2(a) a LOOP1(a) | ||||
#define LOOP3(a) a LOOP2(a) | #define LOOP3(a) a LOOP2(a) | ||||
#define LOOP4(a) a LOOP3(a) | |||||
#define LOOP8(a) a LOOP3(a) a LOOP3(a) | #define LOOP8(a) a LOOP3(a) a LOOP3(a) | ||||
#define LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP3(a) | |||||
#define LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP1(a) a LOOP3(a) | |||||
#define LOOP64(a) a LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP1(a) | |||||
#define UNROLL(n,a) LOOP##n(a) | #define UNROLL(n,a) LOOP##n(a) | ||||
/** | |||||
* Audio update function. | |||||
*/ | |||||
static void copy_buffer(void *destination, const void *source) { | |||||
const uint16_t *src = (const uint16_t *)source; | |||||
uint16_t *dst = (uint16_t *)destination; | |||||
for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) *dst++ = *src++; | |||||
} | |||||
void AudioTuner::update( void ) { | void AudioTuner::update( void ) { | ||||
audio_block_t *block; | audio_block_t *block; | ||||
const int16_t *p, *end; | |||||
block = receiveReadOnly( ); | |||||
if ( !block ) return; | |||||
block = receiveReadOnly(); | |||||
if (!block) return; | |||||
if ( !enabled ) { | if ( !enabled ) { | ||||
release( block ); | release( block ); | ||||
return; | return; | ||||
} | } | ||||
p = block->data; | |||||
end = p + AUDIO_BLOCK_SAMPLES; | |||||
/* | |||||
* Double buffering, one fills while the other is processed | |||||
* 2x the throughput. | |||||
*/ | |||||
uint16_t *dst; | |||||
bool next = next_buffer; | |||||
if ( next ) { | |||||
//digitalWriteFast(6, HIGH); | |||||
dst = ( uint16_t * )buffer; | |||||
digitalWriteFast(2, HIGH); | |||||
if ( next_buffer ) { | |||||
blocklist1[state++] = block; | |||||
if ( !first_run && process_buffer ) process( ); | |||||
} else { | |||||
blocklist2[state++] = block; | |||||
if ( !first_run && process_buffer ) process( ); | |||||
} | } | ||||
else { | |||||
//digitalWriteFast(6, LOW); | |||||
dst = ( uint16_t * )buffer + NUM_SAMPLES; | |||||
if ( state >= AUDIO_BLOCKS ) { | |||||
if ( next_buffer ) { | |||||
if ( !first_run && process_buffer ) process( ); | |||||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist1[i]->data ); | |||||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release(blocklist1[i] ); | |||||
} else { | |||||
if ( !first_run && process_buffer ) process( ); | |||||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist2[i]->data ); | |||||
for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release( blocklist2[i] ); | |||||
} | |||||
process_buffer = true; | |||||
first_run = false; | |||||
state = 0; | |||||
//digitalWriteFast(LED_BUILTIN, !digitalReadFast(LED_BUILTIN)); | |||||
} | } | ||||
} | |||||
FASTRUN void AudioTuner::process( void ) { | |||||
//digitalWriteFast(0, HIGH); | |||||
// gather data/and release block | |||||
uint16_t count = count_global; | |||||
const int16_t *p; | |||||
p = AudioBuffer; | |||||
uint16_t cycles = 64;; | |||||
uint16_t tau = tau_global; | |||||
do { | do { | ||||
*( dst+count++ ) = *( uint16_t * )p; | |||||
p += SAMPLE_RATE; | |||||
} while ( p < end ); | |||||
release( block ); | |||||
uint16_t x = 0; | |||||
int64_t sum = 0; | |||||
//uint32_t res; | |||||
do { | |||||
/*int16_t current1, lag1, current2, lag2; | |||||
int32_t val1, val2; | |||||
lag1 = *( ( uint32_t * )p + ( x + tau ) ); | |||||
current1 = *( ( uint32_t * )p + x ); | |||||
x += 32; | |||||
lag2 = *( ( uint32_t * )p + ( x + tau ) ); | |||||
current2 = *( ( uint32_t * )p + x ); | |||||
val1 = __PKHBT(current1, current2, 0x10); | |||||
val2 = __PKHBT(lag1, lag2, 0x10); | |||||
res = __SSUB16( val1, val2 ); | |||||
sum = __SMLALD(res, res, sum); | |||||
//sum = __SMLSLD(delta1, delta2, sum);*/ | |||||
int16_t current, lag, delta; | |||||
//UNROLL(16, | |||||
lag = *( ( int16_t * )p + ( x+tau ) ); | |||||
current = *( ( int16_t * )p+x ); | |||||
delta = ( current-lag ); | |||||
sum += delta * delta; | |||||
#if F_CPU == 144000000 | |||||
x += 8; | |||||
#elif F_CPU == 120000000 | |||||
x += 12; | |||||
#elif F_CPU == 96000000 | |||||
x += 16; | |||||
#elif F_CPU < 96000000 | |||||
x += 32; | |||||
#endif | |||||
//); | |||||
} while ( x <= HALF_BLOCKS ); | |||||
running_sum += sum; | |||||
yin_buffer[yin_idx] = sum*tau; | |||||
rs_buffer[yin_idx] = running_sum; | |||||
yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx; | |||||
tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | |||||
if ( tau == 0 ) { | |||||
process_buffer = false; | |||||
new_output = true; | |||||
yin_idx = 1; | |||||
running_sum = 0; | |||||
tau_global = 1; | |||||
//digitalWriteFast(2, LOW); | |||||
//digitalWriteFast(0, LOW); | |||||
return; | |||||
} | |||||
} while ( --cycles ); | |||||
/* | |||||
* If buffer full switch to start filling next | |||||
* buffer and process the just filled buffer. | |||||
*/ | |||||
if ( count >= NUM_SAMPLES ) { | |||||
//digitalWriteFast(2, !digitalReadFast(2)); | |||||
__disable_irq(); | |||||
next_buffer = !next_buffer; | |||||
process_buffer = true; | |||||
count_global = 0; | |||||
tau_global = 1; | |||||
if ( tau >= HALF_BLOCKS ) { | |||||
process_buffer = false; | |||||
new_output = false; | |||||
yin_idx = 1; | yin_idx = 1; | ||||
running_sum = 0; | running_sum = 0; | ||||
count = 0; | |||||
__enable_irq(); | |||||
} | |||||
count_global = count;// update global count | |||||
/* | |||||
* Set the number of cycles to be processed per receiving block. | |||||
*/ | |||||
uint16_t cycles; | |||||
const uint16_t usage_max = cpu_usage_max; | |||||
if ( AudioProcessorUsage( ) > usage_max ) { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 2; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 4; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 32; | |||||
#endif | |||||
} | |||||
else { | |||||
#if NUM_SAMPLES >= 8192 | |||||
cycles = tau_global + 8; | |||||
#elif NUM_SAMPLES == 4096 | |||||
cycles = tau_global + 16; | |||||
#elif NUM_SAMPLES == 2048 | |||||
cycles = tau_global + 32; | |||||
#elif NUM_SAMPLES <= 1024 | |||||
cycles = tau_global + 64; | |||||
#endif | |||||
} | |||||
if ( process_buffer ) { | |||||
//digitalWriteFast(0, HIGH); | |||||
uint16_t tau; | |||||
next = next_buffer; | |||||
tau = tau_global; | |||||
do { | |||||
int64_t sum = 0; | |||||
const int16_t *end, *buf; | |||||
if ( next ) { | |||||
//digitalWriteFast(4, LOW); | |||||
buf = buffer + NUM_SAMPLES; | |||||
} | |||||
else { | |||||
//digitalWriteFast(4, HIGH); | |||||
buf = buffer; | |||||
} | |||||
end = buf + HALF_BUFFER; | |||||
// TODO: How to make faster? | |||||
do { | |||||
int16_t current, lag, delta; | |||||
UNROLL( 8, | |||||
lag = *( buf + tau ); | |||||
current = *buf++; | |||||
delta = current - lag; | |||||
//sum = multiply_accumulate_32x32_rshift32_rounded(sum, delta, delta); | |||||
sum += delta*delta; | |||||
); | |||||
} while ( buf < end ); | |||||
running_sum += sum; | |||||
yin_buffer[yin_idx] = sum*tau; | |||||
rs_buffer[yin_idx] = running_sum; | |||||
yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx; | |||||
tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | |||||
if ( tau == 0 ) { | |||||
process_buffer = false; | |||||
new_output = true; | |||||
//digitalWriteFast(0, LOW); | |||||
return; | |||||
} | |||||
else if ( tau >= HALF_BUFFER ) { | |||||
process_buffer = false; | |||||
new_output = false; | |||||
//digitalWriteFast(0, LOW); | |||||
return; | |||||
} | |||||
} while ( tau <= cycles ); | |||||
tau_global = tau; | |||||
tau_global = 1; | |||||
//digitalWriteFast(0, LOW); | //digitalWriteFast(0, LOW); | ||||
return; | |||||
} | } | ||||
tau_global = tau; | |||||
//digitalWriteFast(0, LOW); | |||||
} | } | ||||
/** | /** | ||||
* @return tau | * @return tau | ||||
*/ | */ | ||||
uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ) { | uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ) { | ||||
const int64_t *p = ( int64_t * )yin; | |||||
const int64_t *y = ( int64_t * )yin; | |||||
const int64_t *r = ( int64_t * )rs; | const int64_t *r = ( int64_t * )rs; | ||||
uint16_t _tau, _head; | uint16_t _tau, _head; | ||||
const float thresh = yin_threshold; | |||||
_tau = tau; | _tau = tau; | ||||
_head = head; | _head = head; | ||||
idx2 = ( idx2 >= 5 ) ? 0 : idx2; | idx2 = ( idx2 >= 5 ) ? 0 : idx2; | ||||
float s0, s1, s2; | float s0, s1, s2; | ||||
s0 = ( ( float )*( p+idx0 ) / *( r+idx0 ) ); | |||||
s1 = ( ( float )*( p+idx1 ) / *( r+idx1 ) ); | |||||
s2 = ( ( float )*( p+idx2 ) / *( r+idx2 ) ); | |||||
s0 = ( ( float )*( y+idx0 ) / *( r+idx0 ) ); | |||||
s1 = ( ( float )*( y+idx1 ) / *( r+idx1 ) ); | |||||
s2 = ( ( float )*( y+idx2 ) / *( r+idx2 ) ); | |||||
if ( s1 < yin_threshold && s1 < s2 ) { | |||||
if ( s1 < thresh && s1 < s2 ) { | |||||
uint16_t period = _tau - 3; | uint16_t period = _tau - 3; | ||||
periodicity = 1 - s1; | periodicity = 1 - s1; | ||||
data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 ); | data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 ); | ||||
return 0; | return 0; | ||||
} | } | ||||
//if ( s1 > 2.4 ) return _tau + 2; | |||||
//else return _tau + 1; | |||||
} | } | ||||
return _tau + 1; | return _tau + 1; | ||||
} | } | ||||
* @param threshold Allowed uncertainty | * @param threshold Allowed uncertainty | ||||
* @param cpu_max How much cpu usage before throttling | * @param cpu_max How much cpu usage before throttling | ||||
*/ | */ | ||||
void AudioTuner::initialize( float threshold, float cpu_max ) { | |||||
void AudioTuner::initialize( float threshold ) { | |||||
__disable_irq( ); | __disable_irq( ); | ||||
cpu_usage_max = cpu_max*100; | |||||
yin_threshold = threshold; | |||||
process_buffer = false; | process_buffer = false; | ||||
yin_threshold = threshold; | |||||
periodicity = 0.0f; | periodicity = 0.0f; | ||||
next_buffer = true; | next_buffer = true; | ||||
running_sum = 0; | running_sum = 0; | ||||
count_global = 0; | |||||
tau_global = 1; | |||||
first_run = true; | |||||
yin_idx = 1; | yin_idx = 1; | ||||
data = 0; | |||||
enabled = true; | enabled = true; | ||||
state = 0; | |||||
data = 0.0f; | |||||
__enable_irq( ); | __enable_irq( ); | ||||
} | } | ||||
__disable_irq( ); | __disable_irq( ); | ||||
float d = data; | float d = data; | ||||
__enable_irq( ); | __enable_irq( ); | ||||
return SAMPLE_RATE_EXACT / d; | |||||
return AUDIO_SAMPLE_RATE_EXACT / d; | |||||
} | } | ||||
/** | /** |
#define AudioTuner_h_ | #define AudioTuner_h_ | ||||
#include "AudioStream.h" | #include "AudioStream.h" | ||||
/****************************************************************/ | |||||
#define SAMPLE_RATE_44100 1 // 44100 sample rate | |||||
#define SAMPLE_RATE_22050 2 // 22050 sample rate | |||||
#define SAMPLE_RATE_11025 4 // 11025 sample rate | |||||
/****************************************************************/ | |||||
/**************************************************************** | /**************************************************************** | ||||
* Safe to adjust these values below * | * Safe to adjust these values below * | ||||
* * | * * | ||||
* These two parameters define how this object works. * | |||||
* This parameter defines the size of the buffer. * | |||||
* * | * * | ||||
* 1. NUM_SAMPLES - Size of the buffer. Since object uses * | |||||
* double buffering this value will be 4x in bytes of * | |||||
* memory. !!! Must be power of 2 !!!! * | |||||
* 1. AUDIO_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||||
* The more AUDIO_BLOCKS the lower the * | |||||
* frequency you can detect. The defualt * | |||||
* (24) is set to measure down to 29.14 * | |||||
* Hz or B(flat)0. * | |||||
* * | * * | ||||
* 2. SAMPLE_RATE - Just what it says. * | |||||
* * | |||||
* These two parameters work hand in hand. For example if you * | |||||
* want a high sample rate but do not allocate enough buffer * | |||||
* space, you will be limit how low of a frequency you can * | |||||
* measure. If you then increase the buffer you use up * | |||||
* precious ram and slow down the system since it takes longer * | |||||
* to processes the buffer. * | |||||
* * | |||||
* Play around with these values to find what best suits your * | |||||
* needs. The max number of buffers you can have is 8192 bins. * | |||||
****************************************************************/ | ****************************************************************/ | ||||
// !!! Must be power of 2 !!!! | |||||
#define NUM_SAMPLES 2048 // make a power of two | |||||
// Use defined sample rates above^ | |||||
#define SAMPLE_RATE SAMPLE_RATE_22050 | |||||
#define AUDIO_BLOCKS 24 | |||||
/****************************************************************/ | /****************************************************************/ | ||||
class AudioTuner : public AudioStream | |||||
{ | |||||
class AudioTuner : public AudioStream { | |||||
public: | public: | ||||
/** | /** | ||||
* constructor to setup Audio Library and initialize | * constructor to setup Audio Library and initialize | ||||
* | * | ||||
* @return none | * @return none | ||||
*/ | */ | ||||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) {} | |||||
AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) { | |||||
} | |||||
/** | /** | ||||
* initialize variables and start conversion | * initialize variables and start conversion | ||||
* | * | ||||
* @param threshold Allowed uncertainty | * @param threshold Allowed uncertainty | ||||
* @param cpu_max How much cpu usage before throttling | * @param cpu_max How much cpu usage before throttling | ||||
* | |||||
* @return none | |||||
*/ | */ | ||||
void initialize( float threshold, float cpu_max); | |||||
void initialize( float threshold ); | |||||
/** | /** | ||||
* sets threshold value | * sets threshold value | ||||
* | * | ||||
* @param thresh | * @param thresh | ||||
* @return none | |||||
*/ | */ | ||||
void threshold( float p ); | void threshold( float p ); | ||||
/** | /** | ||||
* Audio Library calls this update function ~2.9ms | * Audio Library calls this update function ~2.9ms | ||||
* | |||||
* @return none | |||||
*/ | */ | ||||
virtual void update( void ); | virtual void update( void ); | ||||
private: | private: | ||||
/** | /** | ||||
* check the sampled data for fundamental frequency | * check the sampled data for fundamental frequency | ||||
*/ | */ | ||||
uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | ||||
int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | |||||
float periodicity, yin_threshold, data, cpu_usage_max; | |||||
int64_t rs_buffer[5], yin_buffer[5]; | |||||
/** | |||||
* process audio data | |||||
* | |||||
* @return none | |||||
*/ | |||||
void process( void ); | |||||
/** | |||||
* Variables | |||||
*/ | |||||
uint64_t running_sum; | uint64_t running_sum; | ||||
uint16_t tau_global, count_global, tau_cycles; | |||||
uint8_t yin_idx; | |||||
bool enabled, process_buffer, next_buffer; | |||||
volatile bool new_output; | |||||
uint16_t tau_global; | |||||
int64_t rs_buffer[5], yin_buffer[5]; | |||||
int16_t AudioBuffer[AUDIO_BLOCKS*128] __attribute__ ( ( aligned ( 4 ) ) ); | |||||
uint8_t yin_idx, state; | |||||
float periodicity, yin_threshold, cpu_usage_max, data; | |||||
bool enabled, next_buffer, first_run; | |||||
volatile bool new_output, process_buffer; | |||||
audio_block_t *blocklist1[AUDIO_BLOCKS]; | |||||
audio_block_t *blocklist2[AUDIO_BLOCKS]; | |||||
audio_block_t *inputQueueArray[1]; | audio_block_t *inputQueueArray[1]; | ||||
}; | }; | ||||
#endif | #endif |
<p align="center"> | <p align="center"> | ||||
<b>Guitar and Bass Tuner Library v2.2</b><br> | |||||
<b>Guitar and Bass Tuner Library v2.3</b><br> | |||||
<b>Teensy 3.1/2</b><br> | <b>Teensy 3.1/2</b><br> | ||||
</p> | </p> | ||||
*---<\ P / | *---<\ P / | ||||
\_/ | \_/ | ||||
>Many optimizations have been done to the [YIN] algorithm for frequencies between 29-360Hz. | |||||
>Many optimizations have been done to the [YIN] algorithm for frequencies between 29-400Hz. | |||||
>>While its still using a brute force method ( n<sup>2</sup> ) for finding the fundamental frequency f<sub>o</sub>, it is tuned to skip certain <b>tau</b> (<img src="http://latex.numberempire.com/render?%5Cinline%20%5Chuge%20%5Cmathbf%7B%5Ctau%7D&sig=845639da85c0dd8e2de679817b06639c"/></img>) values and focus mostly on frequencies found in the bass and guitar. | >>While its still using a brute force method ( n<sup>2</sup> ) for finding the fundamental frequency f<sub>o</sub>, it is tuned to skip certain <b>tau</b> (<img src="http://latex.numberempire.com/render?%5Cinline%20%5Chuge%20%5Cmathbf%7B%5Ctau%7D&sig=845639da85c0dd8e2de679817b06639c"/></img>) values and focus mostly on frequencies found in the bass and guitar. | ||||
>>>The input is double buffered so while you are processing one buffer it is filling the other to double throughput. | >>>The input is double buffered so while you are processing one buffer it is filling the other to double throughput. | ||||
>>>>There are a few parameters that can be adjusted to "dial in" the algorithm for better estimations located in AudioTuner.h. The defaults below are what I found that have the best trade off for speed and accuracy. | |||||
>>>>The parameter AUDIO_BLOCKS below can be adjusted but its default of 24 I found to be best to work with the guitar and bass frequency range (29- 400)Hz. | |||||
>>>>Looking into finding the Auto Correlation using FFT and IFFT to speed up processing of data! Not that simple because the YIN algorithm uses a squared difference tweak to the Auto Correlation. | |||||
<h4>AudioTuner.h</h4> | <h4>AudioTuner.h</h4> | ||||
``` | ``` | ||||
/****************************************************************/ | |||||
#define SAMPLE_RATE_44100 1 // 44100 sample rate | |||||
#define SAMPLE_RATE_22050 2 // 22050 sample rate | |||||
#define SAMPLE_RATE_11025 4 // 11025 sample rate | |||||
/****************************************************************/ | |||||
/**************************************************************** | /**************************************************************** | ||||
* Safe to adjust these values below * | * Safe to adjust these values below * | ||||
* * | * * | ||||
* These two parameters define how this object works. * | |||||
* This parameter defines the size of the buffer. * | |||||
* * | * * | ||||
* 1. NUM_SAMPLES - Size of the buffer. Since object uses * | |||||
* double buffering this value will be 4x in bytes of * | |||||
* memory. !!! Must be power of 2 !!!! * | |||||
* 1. AUDIO_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||||
* The more AUDIO_BLOCKS the lower the * | |||||
* frequency you can detect. The default * | |||||
* (24) is set to measure down to 29.14 * | |||||
* Hz or B(flat)0. * | |||||
* * | * * | ||||
* 2. SAMPLE_RATE - Just what it says. * | |||||
* * | |||||
* These two parameters work hand in hand. For example if you * | |||||
* want a high sample rate but do not allocate enough buffer * | |||||
* space, you will be limit how low of a frequency you can * | |||||
* measure. If you then increase the buffer you use up * | |||||
* precious ram and slow down the system since it takes longer * | |||||
* to processes the buffer. * | |||||
* * | |||||
* Play around with these values to find what best suits your * | |||||
* needs. The max number of buffers you can have is 8192 bins. * | |||||
****************************************************************/ | ****************************************************************/ | ||||
// !!! Must be power of 2 !!!! | |||||
#define NUM_SAMPLES 2048 // make a power of two | |||||
// Use defined sample rates above^ | |||||
#define SAMPLE_RATE SAMPLE_RATE_22050 | |||||
#define AUDIO_BLOCKS 24 | |||||
/****************************************************************/ | /****************************************************************/ | ||||
``` | ``` | ||||
</ol> | </ol> | ||||
</div> | </div> | ||||
[YIN]:http://recherche.ircam.fr/equipes/pcm/cheveign/pss/2002_JASA_YIN.pdf | |||||
[YIN]:http://recherche.ircam.fr/equipes/pcm/cheveign/pss/2002_JASA_YIN.pdf | |||||
[Teensy Audio Library]:http://www.pjrc.com/teensy/td_libs_Audio.html |
} | } | ||||
//--------------------------------------------------------------------------------------- | //--------------------------------------------------------------------------------------- | ||||
void setup() { | void setup() { | ||||
AudioMemory(4); | |||||
AudioMemory(30); | |||||
/* | /* | ||||
* Initialize the yin algorithm's absolute | * Initialize the yin algorithm's absolute | ||||
* threshold, this is good number. | * threshold, this is good number. | ||||
* | |||||
* Percent of overall current cpu usage used | |||||
* before making the search algorithm less | |||||
* aggressive (0.0 - 1.0). | |||||
*/ | */ | ||||
tuner.initialize(.15, .99); | |||||
tuner.initialize(.15); | |||||
pinMode(LED_BUILTIN, OUTPUT); | pinMode(LED_BUILTIN, OUTPUT); | ||||
playNoteTimer.begin(playNote, 1000); | playNoteTimer.begin(playNote, 1000); | ||||
} | } |
char buffer[10]; | char buffer[10]; | ||||
void setup() { | void setup() { | ||||
AudioMemory(4); | |||||
AudioMemory(30); | |||||
/* | /* | ||||
* Initialize the yin algorithm's absolute | * Initialize the yin algorithm's absolute | ||||
* threshold, this is good number. | * threshold, this is good number. | ||||
* | |||||
* Percent of overall current cpu usage used | |||||
* before making the search algorithm less | |||||
* aggressive (0.0 - 1.0). | |||||
*/ | */ | ||||
tuner.initialize(.15, .99); | |||||
tuner.initialize(.15); | |||||
sine.frequency(30.87); | sine.frequency(30.87); | ||||
sine.amplitude(1); | sine.amplitude(1); |
name=AudioTuner | name=AudioTuner | ||||
version=2.2 | |||||
version=2.3 | |||||
author=Colin Duffy | author=Colin Duffy | ||||
maintainer=Colin Duffy | maintainer=Colin Duffy | ||||
sentence=Yin algorithm | sentence=Yin algorithm |
><b>Updated (11/23/15 v2.3)</b><br> | |||||
* Totally new method to gather and process data, data is available after 24 Blocks of data have been collected (~69.6ms) for all frequencies.<br> | |||||
* Double buffer to collect Audio data, while one collects the other buffer is processed.<br> | |||||
><b>Updated (10/12/15 v2.2)</b><br> | ><b>Updated (10/12/15 v2.2)</b><br> | ||||
* Fixed yin cpu usage throttling code in update function.<br> | * Fixed yin cpu usage throttling code in update function.<br> | ||||
* Function initialize second param takes a float (0.0 - 1.0).<br> | * Function initialize second param takes a float (0.0 - 1.0).<br> |