| #include "AudioTuner.h" | #include "AudioTuner.h" | ||||
| #include "utility/dspinst.h" | #include "utility/dspinst.h" | ||||
| #include "arm_math.h" | |||||
| #if SAMPLE_RATE == SAMPLE_RATE_44100 | |||||
| #define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 1 | |||||
| #elif SAMPLE_RATE == SAMPLE_RATE_22050 | |||||
| #define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 2 | |||||
| #elif SAMPLE_RATE == SAMPLE_RATE_11025 | |||||
| #define SAMPLE_RATE_EXACT AUDIO_SAMPLE_RATE_EXACT / 4 | |||||
| #endif | |||||
| #define HALF_BUFFER NUM_SAMPLES / 2 | |||||
| #define HALF_BLOCKS AUDIO_BLOCKS * 64 | |||||
| #define LOOP1(a) a | #define LOOP1(a) a | ||||
| #define LOOP2(a) a LOOP1(a) | #define LOOP2(a) a LOOP1(a) | ||||
| #define LOOP3(a) a LOOP2(a) | #define LOOP3(a) a LOOP2(a) | ||||
| #define LOOP4(a) a LOOP3(a) | |||||
| #define LOOP8(a) a LOOP3(a) a LOOP3(a) | #define LOOP8(a) a LOOP3(a) a LOOP3(a) | ||||
| #define LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP3(a) | |||||
| #define LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP1(a) a LOOP3(a) | |||||
| #define LOOP64(a) a LOOP32(a) a LOOP16(a) a LOOP8(a) a LOOP2(a) a LOOP1(a) | |||||
| #define UNROLL(n,a) LOOP##n(a) | #define UNROLL(n,a) LOOP##n(a) | ||||
| /** | |||||
| * Audio update function. | |||||
| */ | |||||
| static void copy_buffer(void *destination, const void *source) { | |||||
| const uint16_t *src = (const uint16_t *)source; | |||||
| uint16_t *dst = (uint16_t *)destination; | |||||
| for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) *dst++ = *src++; | |||||
| } | |||||
| void AudioTuner::update( void ) { | void AudioTuner::update( void ) { | ||||
| audio_block_t *block; | audio_block_t *block; | ||||
| const int16_t *p, *end; | |||||
| block = receiveReadOnly( ); | |||||
| if ( !block ) return; | |||||
| block = receiveReadOnly(); | |||||
| if (!block) return; | |||||
| if ( !enabled ) { | if ( !enabled ) { | ||||
| release( block ); | release( block ); | ||||
| return; | return; | ||||
| } | } | ||||
| p = block->data; | |||||
| end = p + AUDIO_BLOCK_SAMPLES; | |||||
| /* | |||||
| * Double buffering, one fills while the other is processed | |||||
| * 2x the throughput. | |||||
| */ | |||||
| uint16_t *dst; | |||||
| bool next = next_buffer; | |||||
| if ( next ) { | |||||
| //digitalWriteFast(6, HIGH); | |||||
| dst = ( uint16_t * )buffer; | |||||
| digitalWriteFast(2, HIGH); | |||||
| if ( next_buffer ) { | |||||
| blocklist1[state++] = block; | |||||
| if ( !first_run && process_buffer ) process( ); | |||||
| } else { | |||||
| blocklist2[state++] = block; | |||||
| if ( !first_run && process_buffer ) process( ); | |||||
| } | } | ||||
| else { | |||||
| //digitalWriteFast(6, LOW); | |||||
| dst = ( uint16_t * )buffer + NUM_SAMPLES; | |||||
| if ( state >= AUDIO_BLOCKS ) { | |||||
| if ( next_buffer ) { | |||||
| if ( !first_run && process_buffer ) process( ); | |||||
| for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist1[i]->data ); | |||||
| for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release(blocklist1[i] ); | |||||
| } else { | |||||
| if ( !first_run && process_buffer ) process( ); | |||||
| for ( int i = 0; i < AUDIO_BLOCKS; i++ ) copy_buffer( AudioBuffer+( i * 0x80 ), blocklist2[i]->data ); | |||||
| for ( int i = 0; i < AUDIO_BLOCKS; i++ ) release( blocklist2[i] ); | |||||
| } | |||||
| process_buffer = true; | |||||
| first_run = false; | |||||
| state = 0; | |||||
| //digitalWriteFast(LED_BUILTIN, !digitalReadFast(LED_BUILTIN)); | |||||
| } | } | ||||
| } | |||||
| FASTRUN void AudioTuner::process( void ) { | |||||
| //digitalWriteFast(0, HIGH); | |||||
| // gather data/and release block | |||||
| uint16_t count = count_global; | |||||
| const int16_t *p; | |||||
| p = AudioBuffer; | |||||
| uint16_t cycles = 64;; | |||||
| uint16_t tau = tau_global; | |||||
| do { | do { | ||||
| *( dst+count++ ) = *( uint16_t * )p; | |||||
| p += SAMPLE_RATE; | |||||
| } while ( p < end ); | |||||
| release( block ); | |||||
| uint16_t x = 0; | |||||
| int64_t sum = 0; | |||||
| //uint32_t res; | |||||
| do { | |||||
| /*int16_t current1, lag1, current2, lag2; | |||||
| int32_t val1, val2; | |||||
| lag1 = *( ( uint32_t * )p + ( x + tau ) ); | |||||
| current1 = *( ( uint32_t * )p + x ); | |||||
| x += 32; | |||||
| lag2 = *( ( uint32_t * )p + ( x + tau ) ); | |||||
| current2 = *( ( uint32_t * )p + x ); | |||||
| val1 = __PKHBT(current1, current2, 0x10); | |||||
| val2 = __PKHBT(lag1, lag2, 0x10); | |||||
| res = __SSUB16( val1, val2 ); | |||||
| sum = __SMLALD(res, res, sum); | |||||
| //sum = __SMLSLD(delta1, delta2, sum);*/ | |||||
| int16_t current, lag, delta; | |||||
| //UNROLL(16, | |||||
| lag = *( ( int16_t * )p + ( x+tau ) ); | |||||
| current = *( ( int16_t * )p+x ); | |||||
| delta = ( current-lag ); | |||||
| sum += delta * delta; | |||||
| #if F_CPU == 144000000 | |||||
| x += 8; | |||||
| #elif F_CPU == 120000000 | |||||
| x += 12; | |||||
| #elif F_CPU == 96000000 | |||||
| x += 16; | |||||
| #elif F_CPU < 96000000 | |||||
| x += 32; | |||||
| #endif | |||||
| //); | |||||
| } while ( x <= HALF_BLOCKS ); | |||||
| running_sum += sum; | |||||
| yin_buffer[yin_idx] = sum*tau; | |||||
| rs_buffer[yin_idx] = running_sum; | |||||
| yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx; | |||||
| tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | |||||
| if ( tau == 0 ) { | |||||
| process_buffer = false; | |||||
| new_output = true; | |||||
| yin_idx = 1; | |||||
| running_sum = 0; | |||||
| tau_global = 1; | |||||
| //digitalWriteFast(2, LOW); | |||||
| //digitalWriteFast(0, LOW); | |||||
| return; | |||||
| } | |||||
| } while ( --cycles ); | |||||
| /* | |||||
| * If buffer full switch to start filling next | |||||
| * buffer and process the just filled buffer. | |||||
| */ | |||||
| if ( count >= NUM_SAMPLES ) { | |||||
| //digitalWriteFast(2, !digitalReadFast(2)); | |||||
| __disable_irq(); | |||||
| next_buffer = !next_buffer; | |||||
| process_buffer = true; | |||||
| count_global = 0; | |||||
| tau_global = 1; | |||||
| if ( tau >= HALF_BLOCKS ) { | |||||
| process_buffer = false; | |||||
| new_output = false; | |||||
| yin_idx = 1; | yin_idx = 1; | ||||
| running_sum = 0; | running_sum = 0; | ||||
| count = 0; | |||||
| __enable_irq(); | |||||
| } | |||||
| count_global = count;// update global count | |||||
| /* | |||||
| * Set the number of cycles to be processed per receiving block. | |||||
| */ | |||||
| uint16_t cycles; | |||||
| const uint16_t usage_max = cpu_usage_max; | |||||
| if ( AudioProcessorUsage( ) > usage_max ) { | |||||
| #if NUM_SAMPLES >= 8192 | |||||
| cycles = tau_global + 2; | |||||
| #elif NUM_SAMPLES == 4096 | |||||
| cycles = tau_global + 4; | |||||
| #elif NUM_SAMPLES == 2048 | |||||
| cycles = tau_global + 8; | |||||
| #elif NUM_SAMPLES <= 1024 | |||||
| cycles = tau_global + 32; | |||||
| #endif | |||||
| } | |||||
| else { | |||||
| #if NUM_SAMPLES >= 8192 | |||||
| cycles = tau_global + 8; | |||||
| #elif NUM_SAMPLES == 4096 | |||||
| cycles = tau_global + 16; | |||||
| #elif NUM_SAMPLES == 2048 | |||||
| cycles = tau_global + 32; | |||||
| #elif NUM_SAMPLES <= 1024 | |||||
| cycles = tau_global + 64; | |||||
| #endif | |||||
| } | |||||
| if ( process_buffer ) { | |||||
| //digitalWriteFast(0, HIGH); | |||||
| uint16_t tau; | |||||
| next = next_buffer; | |||||
| tau = tau_global; | |||||
| do { | |||||
| int64_t sum = 0; | |||||
| const int16_t *end, *buf; | |||||
| if ( next ) { | |||||
| //digitalWriteFast(4, LOW); | |||||
| buf = buffer + NUM_SAMPLES; | |||||
| } | |||||
| else { | |||||
| //digitalWriteFast(4, HIGH); | |||||
| buf = buffer; | |||||
| } | |||||
| end = buf + HALF_BUFFER; | |||||
| // TODO: How to make faster? | |||||
| do { | |||||
| int16_t current, lag, delta; | |||||
| UNROLL( 8, | |||||
| lag = *( buf + tau ); | |||||
| current = *buf++; | |||||
| delta = current - lag; | |||||
| //sum = multiply_accumulate_32x32_rshift32_rounded(sum, delta, delta); | |||||
| sum += delta*delta; | |||||
| ); | |||||
| } while ( buf < end ); | |||||
| running_sum += sum; | |||||
| yin_buffer[yin_idx] = sum*tau; | |||||
| rs_buffer[yin_idx] = running_sum; | |||||
| yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx; | |||||
| tau = estimate( yin_buffer, rs_buffer, yin_idx, tau ); | |||||
| if ( tau == 0 ) { | |||||
| process_buffer = false; | |||||
| new_output = true; | |||||
| //digitalWriteFast(0, LOW); | |||||
| return; | |||||
| } | |||||
| else if ( tau >= HALF_BUFFER ) { | |||||
| process_buffer = false; | |||||
| new_output = false; | |||||
| //digitalWriteFast(0, LOW); | |||||
| return; | |||||
| } | |||||
| } while ( tau <= cycles ); | |||||
| tau_global = tau; | |||||
| tau_global = 1; | |||||
| //digitalWriteFast(0, LOW); | //digitalWriteFast(0, LOW); | ||||
| return; | |||||
| } | } | ||||
| tau_global = tau; | |||||
| //digitalWriteFast(0, LOW); | |||||
| } | } | ||||
| /** | /** | ||||
| * @return tau | * @return tau | ||||
| */ | */ | ||||
| uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ) { | uint16_t AudioTuner::estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ) { | ||||
| const int64_t *p = ( int64_t * )yin; | |||||
| const int64_t *y = ( int64_t * )yin; | |||||
| const int64_t *r = ( int64_t * )rs; | const int64_t *r = ( int64_t * )rs; | ||||
| uint16_t _tau, _head; | uint16_t _tau, _head; | ||||
| const float thresh = yin_threshold; | |||||
| _tau = tau; | _tau = tau; | ||||
| _head = head; | _head = head; | ||||
| idx2 = ( idx2 >= 5 ) ? 0 : idx2; | idx2 = ( idx2 >= 5 ) ? 0 : idx2; | ||||
| float s0, s1, s2; | float s0, s1, s2; | ||||
| s0 = ( ( float )*( p+idx0 ) / *( r+idx0 ) ); | |||||
| s1 = ( ( float )*( p+idx1 ) / *( r+idx1 ) ); | |||||
| s2 = ( ( float )*( p+idx2 ) / *( r+idx2 ) ); | |||||
| s0 = ( ( float )*( y+idx0 ) / *( r+idx0 ) ); | |||||
| s1 = ( ( float )*( y+idx1 ) / *( r+idx1 ) ); | |||||
| s2 = ( ( float )*( y+idx2 ) / *( r+idx2 ) ); | |||||
| if ( s1 < yin_threshold && s1 < s2 ) { | |||||
| if ( s1 < thresh && s1 < s2 ) { | |||||
| uint16_t period = _tau - 3; | uint16_t period = _tau - 3; | ||||
| periodicity = 1 - s1; | periodicity = 1 - s1; | ||||
| data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 ); | data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 ); | ||||
| return 0; | return 0; | ||||
| } | } | ||||
| //if ( s1 > 2.4 ) return _tau + 2; | |||||
| //else return _tau + 1; | |||||
| } | } | ||||
| return _tau + 1; | return _tau + 1; | ||||
| } | } | ||||
| * @param threshold Allowed uncertainty | * @param threshold Allowed uncertainty | ||||
| * @param cpu_max How much cpu usage before throttling | * @param cpu_max How much cpu usage before throttling | ||||
| */ | */ | ||||
| void AudioTuner::initialize( float threshold, float cpu_max ) { | |||||
| void AudioTuner::initialize( float threshold ) { | |||||
| __disable_irq( ); | __disable_irq( ); | ||||
| cpu_usage_max = cpu_max*100; | |||||
| yin_threshold = threshold; | |||||
| process_buffer = false; | process_buffer = false; | ||||
| yin_threshold = threshold; | |||||
| periodicity = 0.0f; | periodicity = 0.0f; | ||||
| next_buffer = true; | next_buffer = true; | ||||
| running_sum = 0; | running_sum = 0; | ||||
| count_global = 0; | |||||
| tau_global = 1; | |||||
| first_run = true; | |||||
| yin_idx = 1; | yin_idx = 1; | ||||
| data = 0; | |||||
| enabled = true; | enabled = true; | ||||
| state = 0; | |||||
| data = 0.0f; | |||||
| __enable_irq( ); | __enable_irq( ); | ||||
| } | } | ||||
| __disable_irq( ); | __disable_irq( ); | ||||
| float d = data; | float d = data; | ||||
| __enable_irq( ); | __enable_irq( ); | ||||
| return SAMPLE_RATE_EXACT / d; | |||||
| return AUDIO_SAMPLE_RATE_EXACT / d; | |||||
| } | } | ||||
| /** | /** |
| #define AudioTuner_h_ | #define AudioTuner_h_ | ||||
| #include "AudioStream.h" | #include "AudioStream.h" | ||||
| /****************************************************************/ | |||||
| #define SAMPLE_RATE_44100 1 // 44100 sample rate | |||||
| #define SAMPLE_RATE_22050 2 // 22050 sample rate | |||||
| #define SAMPLE_RATE_11025 4 // 11025 sample rate | |||||
| /****************************************************************/ | |||||
| /**************************************************************** | /**************************************************************** | ||||
| * Safe to adjust these values below * | * Safe to adjust these values below * | ||||
| * * | * * | ||||
| * These two parameters define how this object works. * | |||||
| * This parameter defines the size of the buffer. * | |||||
| * * | * * | ||||
| * 1. NUM_SAMPLES - Size of the buffer. Since object uses * | |||||
| * double buffering this value will be 4x in bytes of * | |||||
| * memory. !!! Must be power of 2 !!!! * | |||||
| * 1. AUDIO_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||||
| * The more AUDIO_BLOCKS the lower the * | |||||
| * frequency you can detect. The defualt * | |||||
| * (24) is set to measure down to 29.14 * | |||||
| * Hz or B(flat)0. * | |||||
| * * | * * | ||||
| * 2. SAMPLE_RATE - Just what it says. * | |||||
| * * | |||||
| * These two parameters work hand in hand. For example if you * | |||||
| * want a high sample rate but do not allocate enough buffer * | |||||
| * space, you will be limit how low of a frequency you can * | |||||
| * measure. If you then increase the buffer you use up * | |||||
| * precious ram and slow down the system since it takes longer * | |||||
| * to processes the buffer. * | |||||
| * * | |||||
| * Play around with these values to find what best suits your * | |||||
| * needs. The max number of buffers you can have is 8192 bins. * | |||||
| ****************************************************************/ | ****************************************************************/ | ||||
| // !!! Must be power of 2 !!!! | |||||
| #define NUM_SAMPLES 2048 // make a power of two | |||||
| // Use defined sample rates above^ | |||||
| #define SAMPLE_RATE SAMPLE_RATE_22050 | |||||
| #define AUDIO_BLOCKS 24 | |||||
| /****************************************************************/ | /****************************************************************/ | ||||
| class AudioTuner : public AudioStream | |||||
| { | |||||
| class AudioTuner : public AudioStream { | |||||
| public: | public: | ||||
| /** | /** | ||||
| * constructor to setup Audio Library and initialize | * constructor to setup Audio Library and initialize | ||||
| * | * | ||||
| * @return none | * @return none | ||||
| */ | */ | ||||
| AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) {} | |||||
| AudioTuner( void ) : AudioStream( 1, inputQueueArray ), enabled( false ), new_output(false) { | |||||
| } | |||||
| /** | /** | ||||
| * initialize variables and start conversion | * initialize variables and start conversion | ||||
| * | * | ||||
| * @param threshold Allowed uncertainty | * @param threshold Allowed uncertainty | ||||
| * @param cpu_max How much cpu usage before throttling | * @param cpu_max How much cpu usage before throttling | ||||
| * | |||||
| * @return none | |||||
| */ | */ | ||||
| void initialize( float threshold, float cpu_max); | |||||
| void initialize( float threshold ); | |||||
| /** | /** | ||||
| * sets threshold value | * sets threshold value | ||||
| * | * | ||||
| * @param thresh | * @param thresh | ||||
| * @return none | |||||
| */ | */ | ||||
| void threshold( float p ); | void threshold( float p ); | ||||
| /** | /** | ||||
| * Audio Library calls this update function ~2.9ms | * Audio Library calls this update function ~2.9ms | ||||
| * | |||||
| * @return none | |||||
| */ | */ | ||||
| virtual void update( void ); | virtual void update( void ); | ||||
| private: | private: | ||||
| /** | /** | ||||
| * check the sampled data for fundamental frequency | * check the sampled data for fundamental frequency | ||||
| */ | */ | ||||
| uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | uint16_t estimate( int64_t *yin, int64_t *rs, uint16_t head, uint16_t tau ); | ||||
| int16_t buffer[NUM_SAMPLES*2] __attribute__ ( ( aligned ( 4 ) ) ); | |||||
| float periodicity, yin_threshold, data, cpu_usage_max; | |||||
| int64_t rs_buffer[5], yin_buffer[5]; | |||||
| /** | |||||
| * process audio data | |||||
| * | |||||
| * @return none | |||||
| */ | |||||
| void process( void ); | |||||
| /** | |||||
| * Variables | |||||
| */ | |||||
| uint64_t running_sum; | uint64_t running_sum; | ||||
| uint16_t tau_global, count_global, tau_cycles; | |||||
| uint8_t yin_idx; | |||||
| bool enabled, process_buffer, next_buffer; | |||||
| volatile bool new_output; | |||||
| uint16_t tau_global; | |||||
| int64_t rs_buffer[5], yin_buffer[5]; | |||||
| int16_t AudioBuffer[AUDIO_BLOCKS*128] __attribute__ ( ( aligned ( 4 ) ) ); | |||||
| uint8_t yin_idx, state; | |||||
| float periodicity, yin_threshold, cpu_usage_max, data; | |||||
| bool enabled, next_buffer, first_run; | |||||
| volatile bool new_output, process_buffer; | |||||
| audio_block_t *blocklist1[AUDIO_BLOCKS]; | |||||
| audio_block_t *blocklist2[AUDIO_BLOCKS]; | |||||
| audio_block_t *inputQueueArray[1]; | audio_block_t *inputQueueArray[1]; | ||||
| }; | }; | ||||
| #endif | #endif |
| <p align="center"> | <p align="center"> | ||||
| <b>Guitar and Bass Tuner Library v2.2</b><br> | |||||
| <b>Guitar and Bass Tuner Library v2.3</b><br> | |||||
| <b>Teensy 3.1/2</b><br> | <b>Teensy 3.1/2</b><br> | ||||
| </p> | </p> | ||||
| *---<\ P / | *---<\ P / | ||||
| \_/ | \_/ | ||||
| >Many optimizations have been done to the [YIN] algorithm for frequencies between 29-360Hz. | |||||
| >Many optimizations have been done to the [YIN] algorithm for frequencies between 29-400Hz. | |||||
| >>While its still using a brute force method ( n<sup>2</sup> ) for finding the fundamental frequency f<sub>o</sub>, it is tuned to skip certain <b>tau</b> (<img src="http://latex.numberempire.com/render?%5Cinline%20%5Chuge%20%5Cmathbf%7B%5Ctau%7D&sig=845639da85c0dd8e2de679817b06639c"/></img>) values and focus mostly on frequencies found in the bass and guitar. | >>While its still using a brute force method ( n<sup>2</sup> ) for finding the fundamental frequency f<sub>o</sub>, it is tuned to skip certain <b>tau</b> (<img src="http://latex.numberempire.com/render?%5Cinline%20%5Chuge%20%5Cmathbf%7B%5Ctau%7D&sig=845639da85c0dd8e2de679817b06639c"/></img>) values and focus mostly on frequencies found in the bass and guitar. | ||||
| >>>The input is double buffered so while you are processing one buffer it is filling the other to double throughput. | >>>The input is double buffered so while you are processing one buffer it is filling the other to double throughput. | ||||
| >>>>There are a few parameters that can be adjusted to "dial in" the algorithm for better estimations located in AudioTuner.h. The defaults below are what I found that have the best trade off for speed and accuracy. | |||||
| >>>>The parameter AUDIO_BLOCKS below can be adjusted but its default of 24 I found to be best to work with the guitar and bass frequency range (29- 400)Hz. | |||||
| >>>>Looking into finding the Auto Correlation using FFT and IFFT to speed up processing of data! Not that simple because the YIN algorithm uses a squared difference tweak to the Auto Correlation. | |||||
| <h4>AudioTuner.h</h4> | <h4>AudioTuner.h</h4> | ||||
| ``` | ``` | ||||
| /****************************************************************/ | |||||
| #define SAMPLE_RATE_44100 1 // 44100 sample rate | |||||
| #define SAMPLE_RATE_22050 2 // 22050 sample rate | |||||
| #define SAMPLE_RATE_11025 4 // 11025 sample rate | |||||
| /****************************************************************/ | |||||
| /**************************************************************** | /**************************************************************** | ||||
| * Safe to adjust these values below * | * Safe to adjust these values below * | ||||
| * * | * * | ||||
| * These two parameters define how this object works. * | |||||
| * This parameter defines the size of the buffer. * | |||||
| * * | * * | ||||
| * 1. NUM_SAMPLES - Size of the buffer. Since object uses * | |||||
| * double buffering this value will be 4x in bytes of * | |||||
| * memory. !!! Must be power of 2 !!!! * | |||||
| * 1. AUDIO_BLOCKS - Buffer size is 128 * AUDIO_BLOCKS. * | |||||
| * The more AUDIO_BLOCKS the lower the * | |||||
| * frequency you can detect. The default * | |||||
| * (24) is set to measure down to 29.14 * | |||||
| * Hz or B(flat)0. * | |||||
| * * | * * | ||||
| * 2. SAMPLE_RATE - Just what it says. * | |||||
| * * | |||||
| * These two parameters work hand in hand. For example if you * | |||||
| * want a high sample rate but do not allocate enough buffer * | |||||
| * space, you will be limit how low of a frequency you can * | |||||
| * measure. If you then increase the buffer you use up * | |||||
| * precious ram and slow down the system since it takes longer * | |||||
| * to processes the buffer. * | |||||
| * * | |||||
| * Play around with these values to find what best suits your * | |||||
| * needs. The max number of buffers you can have is 8192 bins. * | |||||
| ****************************************************************/ | ****************************************************************/ | ||||
| // !!! Must be power of 2 !!!! | |||||
| #define NUM_SAMPLES 2048 // make a power of two | |||||
| // Use defined sample rates above^ | |||||
| #define SAMPLE_RATE SAMPLE_RATE_22050 | |||||
| #define AUDIO_BLOCKS 24 | |||||
| /****************************************************************/ | /****************************************************************/ | ||||
| ``` | ``` | ||||
| </ol> | </ol> | ||||
| </div> | </div> | ||||
| [YIN]:http://recherche.ircam.fr/equipes/pcm/cheveign/pss/2002_JASA_YIN.pdf | |||||
| [YIN]:http://recherche.ircam.fr/equipes/pcm/cheveign/pss/2002_JASA_YIN.pdf | |||||
| [Teensy Audio Library]:http://www.pjrc.com/teensy/td_libs_Audio.html |
| } | } | ||||
| //--------------------------------------------------------------------------------------- | //--------------------------------------------------------------------------------------- | ||||
| void setup() { | void setup() { | ||||
| AudioMemory(4); | |||||
| AudioMemory(30); | |||||
| /* | /* | ||||
| * Initialize the yin algorithm's absolute | * Initialize the yin algorithm's absolute | ||||
| * threshold, this is good number. | * threshold, this is good number. | ||||
| * | |||||
| * Percent of overall current cpu usage used | |||||
| * before making the search algorithm less | |||||
| * aggressive (0.0 - 1.0). | |||||
| */ | */ | ||||
| tuner.initialize(.15, .99); | |||||
| tuner.initialize(.15); | |||||
| pinMode(LED_BUILTIN, OUTPUT); | pinMode(LED_BUILTIN, OUTPUT); | ||||
| playNoteTimer.begin(playNote, 1000); | playNoteTimer.begin(playNote, 1000); | ||||
| } | } |
| char buffer[10]; | char buffer[10]; | ||||
| void setup() { | void setup() { | ||||
| AudioMemory(4); | |||||
| AudioMemory(30); | |||||
| /* | /* | ||||
| * Initialize the yin algorithm's absolute | * Initialize the yin algorithm's absolute | ||||
| * threshold, this is good number. | * threshold, this is good number. | ||||
| * | |||||
| * Percent of overall current cpu usage used | |||||
| * before making the search algorithm less | |||||
| * aggressive (0.0 - 1.0). | |||||
| */ | */ | ||||
| tuner.initialize(.15, .99); | |||||
| tuner.initialize(.15); | |||||
| sine.frequency(30.87); | sine.frequency(30.87); | ||||
| sine.amplitude(1); | sine.amplitude(1); |
| name=AudioTuner | name=AudioTuner | ||||
| version=2.2 | |||||
| version=2.3 | |||||
| author=Colin Duffy | author=Colin Duffy | ||||
| maintainer=Colin Duffy | maintainer=Colin Duffy | ||||
| sentence=Yin algorithm | sentence=Yin algorithm |
| ><b>Updated (11/23/15 v2.3)</b><br> | |||||
| * Totally new method to gather and process data, data is available after 24 Blocks of data have been collected (~69.6ms) for all frequencies.<br> | |||||
| * Double buffer to collect Audio data, while one collects the other buffer is processed.<br> | |||||
| ><b>Updated (10/12/15 v2.2)</b><br> | ><b>Updated (10/12/15 v2.2)</b><br> | ||||
| * Fixed yin cpu usage throttling code in update function.<br> | * Fixed yin cpu usage throttling code in update function.<br> | ||||
| * Function initialize second param takes a float (0.0 - 1.0).<br> | * Function initialize second param takes a float (0.0 - 1.0).<br> |