|
- /* Audio Library Note Frequency Detection & Guitar/Bass Tuner
- * Copyright (c) 2015, Colin Duffy
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice, development funding notice, and this permission
- * notice shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include "analyze_notefreq_fast.h"
- #include "utility/dspinst.h"
- #include "arm_math.h"
- #include "Arduino.h"
-
- #define NUM_SAMPLES ( AUDIO_GUITARTUNER_BLOCKS << 7 )
-
- void AudioTuner::update( void ) {
-
- audio_block_t *block;
-
- block = receiveReadOnly();
- if (!block) return;
-
- if ( !enabled ) {
- release( block );
- return;
- }
-
- /**
- * "factor" is the new block size calculatedby
- * the decimated shift to incremnt the buffer
- * address.
- */
- const uint8_t factor = AUDIO_BLOCK_SAMPLES >> decimation_shift;
-
- // filter and decimate block by block the incoming signal and store in a buffer.
- arm_fir_decimate_fast_q15( &firDecimateInst, block->data, AudioBuffer + ( state * factor ), AUDIO_BLOCK_SAMPLES );
-
- /**
- * when half the blocks + 1 of the total
- * blocks have been stored in the buffer
- * start processing the data.
- */
- if ( state++ >= AUDIO_GUITARTUNER_BLOCKS >> 1 ) {
-
- if ( process_buffer ) process( AudioBuffer );
-
- if ( state == 0 ) process_buffer = true;
- }
-
- release( block );
- }
-
- /**
- * Start the Yin algorithm
- *
- * TODO: Significant speed up would be to use spectral domain to find fundamental frequency.
- * This paper explains: https://aubio.org/phd/thesis/brossier06thesis.pdf -> Section 3.2.4
- * page 79. Might have to downsample for low fundmental frequencies because of fft buffer
- * size limit.
- */
- void AudioTuner::process( int16_t *p ) {
-
- const uint16_t inner_cycles = ( NUM_SAMPLES >> decimation_shift ) >> 1;
- uint16_t outer_cycles = inner_cycles / AUDIO_GUITARTUNER_BLOCKS;
- uint16_t tau = tau_global;
- do {
- uint64_t sum = 0;
- int32_t a1, a2, b1, b2, c1, c2, d1, d2;
- int32_t out1, out2, out3, out4;
- uint16_t blkCnt;
- int16_t * cur = p;
- int16_t * lag = p + tau;
- // unrolling the inner loop by 8
- blkCnt = inner_cycles >> 3;
- do
- {
- // a(n), b(n), c(n), d(n) each hold two samples
- a1 = *__SIMD32( cur )++;
- a2 = *__SIMD32( cur )++;
- b1 = *__SIMD32( lag )++;
- b2 = *__SIMD32( lag )++;
- c1 = *__SIMD32( cur )++;
- c2 = *__SIMD32( cur )++;
- d1 = *__SIMD32( lag )++;
- d2 = *__SIMD32( lag )++;
- // subract two samples at a time
- out1 = __QSUB16( a1, b1 );
- out2 = __QSUB16( a2, b2 );
- out3 = __QSUB16( c1, d1 );
- out4 = __QSUB16( c2, d2 );
- // square the difference
- sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out1, out1 );
- sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out2, out2 );
- sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out3, out3 );
- sum = multiply_accumulate_16tx16t_add_16bx16b( sum, out4, out4 );
-
- } while( --blkCnt );
-
- uint64_t rs = running_sum;
- rs += sum;
- yin_buffer[yin_idx] = sum*tau;
- rs_buffer[yin_idx] = rs;
- running_sum = rs;
- yin_idx = ( ++yin_idx >= 5 ) ? 0 : yin_idx;
- tau = estimate( yin_buffer, rs_buffer, yin_idx, tau );
-
- if ( tau == 0 ) {
- process_buffer = false;
- new_output = true;
- yin_idx = 1;
- running_sum = 0;
- tau_global = 1;
- state = 0;
- return;
- }
-
- } while ( --outer_cycles );
-
- if ( tau >= inner_cycles ) {
- process_buffer = true;
- new_output = false;
- yin_idx = 1;
- running_sum = 0;
- tau_global = 1;
- state = 0;
- return;
- }
- tau_global = tau;
- }
-
- /**
- * check the sampled data for fundamental frequency
- *
- * @param yin buffer to hold sum*tau value
- * @param rs buffer to hold running sum for sampled window
- * @param head buffer index
- * @param tau lag we are curly working on gets incremented
- *
- * @return tau
- */
- uint16_t AudioTuner::estimate( uint64_t *yin, uint64_t *rs, uint16_t head, uint16_t tau ) {
- const uint64_t *y = ( uint64_t * )yin;
- const uint64_t *r = ( uint64_t * )rs;
- uint16_t _tau, _head;
- const float thresh = yin_threshold;
- _tau = tau;
- _head = head;
-
- if ( _tau > 4 ) {
-
- uint16_t idx0, idx1, idx2;
- idx0 = _head;
- idx1 = _head + 1;
- idx1 = ( idx1 >= 5 ) ? 0 : idx1;
- idx2 = _head + 2;
- idx2 = ( idx2 >= 5 ) ? idx2 - 5 : idx2;
-
- // maybe fixed point would be better here? But how?
- float s0, s1, s2;
- s0 = ( ( float )*( y+idx0 ) / ( float )*( r+idx0 ) );
- s1 = ( ( float )*( y+idx1 ) / ( float )*( r+idx1 ) );
- s2 = ( ( float )*( y+idx2 ) / ( float )*( r+idx2 ) );
-
- if ( s1 < thresh && s1 < s2 ) {
- uint16_t period = _tau - 3;
- periodicity = 1 - s1;
- data = period + 0.5f * ( s0 - s2 ) / ( s0 - 2.0f * s1 + s2 );
- return 0;
- }
- }
- return _tau + 1;
- }
-
- /**
- * Initialise
- *
- * @param threshold Allowed uncertainty
- */
- void AudioTuner::begin( float threshold, int16_t *coeff, uint8_t taps, uint8_t factor ) {
- __disable_irq( );
- process_buffer = true;
- yin_threshold = threshold;
- periodicity = 0.0f;
- running_sum = 0;
- tau_global = 1;
- yin_idx = 1;
- enabled = true;
- state = 0;
- data = 0.0f;
- decimation_factor = factor;
- decimation_shift = log( factor ) / log( 2 );
- coeff_size = taps;
- coeff_p = coeff;
- arm_fir_decimate_init_q15( &firDecimateInst, coeff_size, decimation_factor, coeff_p, &coeff_state[0], AUDIO_BLOCK_SAMPLES );
- __enable_irq( );
- }
-
- /**
- * available
- *
- * @return true if data is ready else false
- */
- bool AudioTuner::available( void ) {
- __disable_irq( );
- bool flag = new_output;
- if ( flag ) new_output = false;
- __enable_irq( );
- return flag;
- }
-
- /**
- * read processes the data samples for the Yin algorithm.
- *
- * @return frequency in hertz
- */
- float AudioTuner::read( void ) {
- __disable_irq( );
- float d = data;
- __enable_irq( );
- return ( AUDIO_SAMPLE_RATE_EXACT / decimation_factor ) / d;
- }
-
- /**
- * Periodicity of the sampled signal.
- *
- * @return periodicity
- */
- float AudioTuner::probability( void ) {
- __disable_irq( );
- float p = periodicity;
- __enable_irq( );
- return p;
- }
-
- /**
- * Initialise parameters.
- *
- * @param thresh Allowed uncertainty
- */
- void AudioTuner::coeff( int16_t *p, int n ) {
- //coeff_size = n;
- //coeff_p = p;
- //arm_fir_decimate_init_q15(&firDecimateInst, coeff_size, 4, coeff_p, coeff_state, 128);
- }
-
- /**
- * Initialise parameters.
- *
- * @param thresh Allowed uncertainty
- */
- void AudioTuner::threshold( float p ) {
- __disable_irq( );
- yin_threshold = p;
- __enable_irq( );
- }
|