|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405 |
- /* Audio Library for Teensy 3.X
- * Copyright (c) 2018, Paul Stoffregen, paul@pjrc.com
- *
- * Development of this audio library was funded by PJRC.COM, LLC by sales of
- * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
- * open source software by purchasing Teensy or other PJRC products.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice, development funding notice, and this permission
- * notice shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include <Arduino.h>
- #include "synth_waveform.h"
- #include "arm_math.h"
- #include "utility/dspinst.h"
-
-
- // uncomment for more accurate but more computationally expensive frequency modulation
- //#define IMPROVE_EXPONENTIAL_ACCURACY
-
-
- void AudioSynthWaveform::update(void)
- {
- audio_block_t *block;
- int16_t *bp, *end;
- int32_t val1, val2;
- int16_t magnitude15;
- uint32_t i, ph, index, index2, scale;
- const uint32_t inc = phase_increment;
-
- ph = phase_accumulator + phase_offset;
- if (magnitude == 0) {
- phase_accumulator += inc * AUDIO_BLOCK_SAMPLES;
- return;
- }
- block = allocate();
- if (!block) {
- phase_accumulator += inc * AUDIO_BLOCK_SAMPLES;
- return;
- }
- bp = block->data;
-
- switch(tone_type) {
- case WAVEFORM_SINE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- val1 = AudioWaveformSine[index];
- val2 = AudioWaveformSine[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- ph += inc;
- }
- break;
-
- case WAVEFORM_ARBITRARY:
- if (!arbdata) {
- release(block);
- phase_accumulator += inc * AUDIO_BLOCK_SAMPLES;
- return;
- }
- // len = 256
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- index2 = index + 1;
- if (index2 >= 256) index2 = 0;
- val1 = *(arbdata + index);
- val2 = *(arbdata + index2);
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- ph += inc;
- }
- break;
-
- case WAVEFORM_SQUARE:
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (ph & 0x80000000) {
- *bp++ = -magnitude15;
- } else {
- *bp++ = magnitude15;
- }
- ph += inc;
- }
- break;
-
- case WAVEFORM_SAWTOOTH:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(magnitude, ph);
- ph += inc;
- }
- break;
-
- case WAVEFORM_SAWTOOTH_REVERSE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, ph);
- ph += inc;
- }
- break;
-
- case WAVEFORM_TRIANGLE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- uint32_t phtop = ph >> 30;
- if (phtop == 1 || phtop == 2) {
- *bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16;
- } else {
- *bp++ = ((ph >> 15) * magnitude) >> 16;
- }
- ph += inc;
- }
- break;
-
- case WAVEFORM_TRIANGLE_VARIABLE:
- do {
- uint32_t rise = 0xFFFFFFFF / (pulse_width >> 16);
- uint32_t fall = 0xFFFFFFFF / (0xFFFF - (pulse_width >> 16));
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (ph < pulse_width/2) {
- uint32_t n = (ph >> 16) * rise;
- *bp++ = ((n >> 16) * magnitude) >> 16;
- } else if (ph < 0xFFFFFFFF - pulse_width/2) {
- uint32_t n = 0x7FFFFFFF - (((ph - pulse_width/2) >> 16) * fall);
- *bp++ = ((n >> 16) * magnitude) >> 16;
- } else {
- uint32_t n = ((ph + pulse_width/2) >> 16) * rise + 0x80000000;
- *bp++ = ((n >> 16) * magnitude) >> 16;
- }
- ph += inc;
- }
- } while (0);
- break;
-
- case WAVEFORM_PULSE:
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (ph < pulse_width) {
- *bp++ = magnitude15;
- } else {
- *bp++ = -magnitude15;
- }
- ph += inc;
- }
- break;
-
- case WAVEFORM_SAMPLE_HOLD:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = sample;
- uint32_t newph = ph + inc;
- if (newph < ph) {
- sample = random(magnitude) - (magnitude >> 1);
- }
- ph = newph;
- }
- break;
- }
- phase_accumulator = ph - phase_offset;
-
- if (tone_offset) {
- bp = block->data;
- end = bp + AUDIO_BLOCK_SAMPLES;
- do {
- val1 = *bp;
- *bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0);
- } while (bp < end);
- }
- transmit(block, 0);
- release(block);
- }
-
- //--------------------------------------------------------------------------------
-
- void AudioSynthWaveformModulated::update(void)
- {
- audio_block_t *block, *moddata, *shapedata;
- int16_t *bp, *end;
- int32_t val1, val2;
- int16_t magnitude15;
- uint32_t i, ph, index, index2, scale, priorphase;
- const uint32_t inc = phase_increment;
-
- moddata = receiveReadOnly(0);
- shapedata = receiveReadOnly(1);
-
- // Pre-compute the phase angle for every output sample of this update
- ph = phase_accumulator;
- priorphase = phasedata[AUDIO_BLOCK_SAMPLES-1];
- if (moddata && modulation_type == 0) {
- // Frequency Modulation
- bp = moddata->data;
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- int32_t n = (*bp++) * modulation_factor; // n is # of octaves to mod
- int32_t ipart = n >> 27; // 4 integer bits
- n &= 0x7FFFFFF; // 27 fractional bits
- #ifdef IMPROVE_EXPONENTIAL_ACCURACY
- // exp2 polynomial suggested by Stefan Stenzel on "music-dsp"
- // mail list, Wed, 3 Sep 2014 10:08:55 +0200
- int32_t x = n << 3;
- n = multiply_accumulate_32x32_rshift32_rounded(536870912, x, 1494202713);
- int32_t sq = multiply_32x32_rshift32_rounded(x, x);
- n = multiply_accumulate_32x32_rshift32_rounded(n, sq, 1934101615);
- n = n + (multiply_32x32_rshift32_rounded(sq,
- multiply_32x32_rshift32_rounded(x, 1358044250)) << 1);
- n = n << 1;
- #else
- // exp2 algorithm by Laurent de Soras
- // http://www.musicdsp.org/showone.php?id=106
- n = (n + 134217728) << 3;
- n = multiply_32x32_rshift32_rounded(n, n);
- n = multiply_32x32_rshift32_rounded(n, 715827883) << 3;
- n = n + 715827882;
- #endif
- uint32_t scale = n >> (14 - ipart);
- uint64_t phstep = (uint64_t)inc * scale;
- uint32_t phstep_msw = phstep >> 32;
- if (phstep_msw < 0x7FFE) {
- ph += phstep >> 16;
- } else {
- ph += 0x7FFE0000;
- }
- phasedata[i] = ph;
- }
- release(moddata);
- } else if (moddata) {
- // Phase Modulation
- bp = moddata->data;
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- // more than +/- 180 deg shift by 32 bit overflow of "n"
- uint32_t n = (uint16_t)(*bp++) * modulation_factor;
- phasedata[i] = ph + n;
- ph += inc;
- }
- release(moddata);
- } else {
- // No Modulation Input
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- phasedata[i] = ph;
- ph += inc;
- }
- }
- phase_accumulator = ph;
-
- // If the amplitude is zero, no output, but phase still increments properly
- if (magnitude == 0) {
- if (shapedata) release(shapedata);
- return;
- }
- block = allocate();
- if (!block) {
- if (shapedata) release(shapedata);
- return;
- }
- bp = block->data;
-
- // Now generate the output samples using the pre-computed phase angles
- switch(tone_type) {
- case WAVEFORM_SINE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- index = ph >> 24;
- val1 = AudioWaveformSine[index];
- val2 = AudioWaveformSine[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- }
- break;
-
- case WAVEFORM_ARBITRARY:
- if (!arbdata) {
- release(block);
- if (shapedata) release(shapedata);
- return;
- }
- // len = 256
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- index = ph >> 24;
- index2 = index + 1;
- if (index2 >= 256) index2 = 0;
- val1 = *(arbdata + index);
- val2 = *(arbdata + index2);
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- }
- break;
-
- case WAVEFORM_PULSE:
- if (shapedata) {
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16;
- if (phasedata[i] < width) {
- *bp++ = magnitude15;
- } else {
- *bp++ = -magnitude15;
- }
- }
- break;
- } // else fall through to orginary square without shape modulation
-
- case WAVEFORM_SQUARE:
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (phasedata[i] & 0x80000000) {
- *bp++ = -magnitude15;
- } else {
- *bp++ = magnitude15;
- }
- }
- break;
-
- case WAVEFORM_SAWTOOTH:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(magnitude, phasedata[i]);
- }
- break;
-
- case WAVEFORM_SAWTOOTH_REVERSE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, phasedata[i]);
- }
- break;
-
- case WAVEFORM_TRIANGLE_VARIABLE:
- if (shapedata) {
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- uint32_t width = (shapedata->data[i] + 0x8000) & 0xFFFF;
- uint32_t rise = 0xFFFFFFFF / width;
- uint32_t fall = 0xFFFFFFFF / (0xFFFF - width);
- uint32_t halfwidth = width << 15;
- uint32_t n;
- ph = phasedata[i];
- if (ph < halfwidth) {
- n = (ph >> 16) * rise;
- *bp++ = ((n >> 16) * magnitude) >> 16;
- } else if (ph < 0xFFFFFFFF - halfwidth) {
- n = 0x7FFFFFFF - (((ph - halfwidth) >> 16) * fall);
- *bp++ = ((n >> 16) * magnitude) >> 16;
- } else {
- n = ((ph + halfwidth) >> 16) * rise + 0x80000000;
- *bp++ = ((n >> 16) * magnitude) >> 16;
- }
- ph += inc;
- }
- break;
- } // else fall through to orginary triangle without shape modulation
-
- case WAVEFORM_TRIANGLE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- uint32_t phtop = ph >> 30;
- if (phtop == 1 || phtop == 2) {
- *bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16;
- } else {
- *bp++ = ((ph >> 15) * magnitude) >> 16;
- }
- }
- break;
- case WAVEFORM_SAMPLE_HOLD:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- if (ph < priorphase) { // does not work for phase modulation
- sample = random(magnitude) - (magnitude >> 1);
- }
- priorphase = ph;
- *bp++ = sample;
- }
- break;
- }
-
- if (tone_offset) {
- bp = block->data;
- end = bp + AUDIO_BLOCK_SAMPLES;
- do {
- val1 = *bp;
- *bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0);
- } while (bp < end);
- }
- if (shapedata) release(shapedata);
- transmit(block, 0);
- release(block);
- }
-
-
|