|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- /* Audio Library for Teensy 3.X
- * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
- *
- * Development of this audio library was funded by PJRC.COM, LLC by sales of
- * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
- * open source software by purchasing Teensy or other PJRC products.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice, development funding notice, and this permission
- * notice shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include "synth_waveform.h"
- #include "arm_math.h"
- #include "utility/dspinst.h"
-
-
- #ifdef ORIGINAL_AUDIOSYNTHWAVEFORM
- /******************************************************************/
- // PAH - add ramp-up and ramp-down to the onset of the wave
- // the length is specified in samples
- void AudioSynthWaveform::set_ramp_length(uint16_t r_length)
- {
- if(r_length < 0) {
- ramp_length = 0;
- return;
- }
- // Don't set the ramp length longer than about 4 milliseconds
- if(r_length > 44*4) {
- ramp_length = 44*4;
- return;
- }
- ramp_length = r_length;
- }
-
- void AudioSynthWaveform::update(void)
- {
- audio_block_t *block;
- uint32_t i, ph, inc, index, scale;
- int32_t val1, val2, val3;
-
- //Serial.println("AudioSynthWaveform::update");
- if (((magnitude > 0) || ramp_down) && (block = allocate()) != NULL) {
- ph = phase;
- inc = phase_increment;
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- val1 = wavetable[index];
- val2 = wavetable[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0xFFFF - scale;
- val3 = (val1 + val2) >> 16;
-
- // The value of ramp_up is always initialized to RAMP_LENGTH and then is
- // decremented each time through here until it reaches zero.
- // The value of ramp_up is used to generate a Q15 fraction which varies
- // from [0 - 1), and multiplies this by the current sample
- if(ramp_up) {
- // ramp up to the new magnitude
- // ramp_mag is the Q15 representation of the fraction
- // Since ramp_up can't be zero, this cannot generate +1
- ramp_mag = ((ramp_length-ramp_up)<<15)/ramp_length;
- ramp_up--;
- block->data[i] = (val3 * ((ramp_mag * magnitude)>>15)) >> 15;
-
- } else if(ramp_down) {
- // ramp down to zero from the last magnitude
- // The value of ramp_down is always initialized to RAMP_LENGTH and then is
- // decremented each time through here until it reaches zero.
- // The value of ramp_down is used to generate a Q15 fraction which varies
- // from (1 - 0], and multiplies this by the current sample
- // avoid RAMP_LENGTH/RAMP_LENGTH because Q15 format
- // cannot represent +1
- ramp_mag = ((ramp_down - 1)<<15)/ramp_length;
- ramp_down--;
- block->data[i] = (val3 * ((ramp_mag * last_magnitude)>>15)) >> 15;
- } else {
- block->data[i] = (val3 * magnitude) >> 15;
- }
-
- //Serial.print(block->data[i]);
- //Serial.print(", ");
- //if ((i % 12) == 11) Serial.println();
- ph += inc;
- }
- //Serial.println();
- phase = ph;
- transmit(block);
- release(block);
- } else {
- // is this numerical overflow ok?
- phase += phase_increment * AUDIO_BLOCK_SAMPLES;
- }
- }
-
- #else
-
- /******************************************************************/
- // PAH 140415 - change sin to use Paul's interpolation which is much
- // faster than arm's sin function
- // PAH 140316 - fix calculation of sample (amplitude error)
- // PAH 140314 - change t_hi from int to float
- // PAH - add ramp-up and ramp-down to the onset of the wave
- // the length is specified in samples
-
- void AudioSynthWaveform::set_ramp_length(int16_t r_length)
- {
- if(r_length < 0) {
- ramp_length = 0;
- return;
- }
- // Don't set the ramp length longer than about 4 milliseconds
- if(r_length > 44*4) {
- ramp_length = 44*4;
- return;
- }
- ramp_length = r_length;
- }
-
-
- boolean AudioSynthWaveform::begin(float t_amp,float t_hi,short type)
- {
- tone_type = type;
- amplitude(t_amp);
- tone_freq = t_hi > 0.0;
- if(t_hi <= 0.0)return false;
- if(t_hi >= AUDIO_SAMPLE_RATE_EXACT/2)return false;
- tone_phase = 0;
- frequency(t_hi);
- if(0) {
- Serial.print("AudioSynthWaveform.begin(tone_amp = ");
- Serial.print(t_amp);
- Serial.print(", tone_hi = ");
- Serial.print(t_hi);
- Serial.print(", tone_incr = ");
- Serial.print(tone_incr,HEX);
- // Serial.print(", tone_hi = ");
- // Serial.print(t_hi);
- Serial.println(")");
- }
- return(true);
- }
-
- // PAH - 140313 fixed a problem with ramping
- void AudioSynthWaveform::update(void)
- {
- audio_block_t *block;
- short *bp;
- // temporary for ramp in sine
- uint32_t ramp_mag;
- int32_t val1, val2, val3;
- uint32_t index, scale;
-
- // temporaries for TRIANGLE
- uint32_t mag;
- short tmp_amp;
-
- if(tone_freq == 0)return;
- // L E F T C H A N N E L O N L Y
- block = allocate();
- if(block) {
- bp = block->data;
- switch(tone_type) {
- case TONE_TYPE_SINE:
- for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) {
- // Calculate interpolated sin
- index = tone_phase >> 23;
- val1 = AudioWaveformSine[index];
- val2 = AudioWaveformSine[index+1];
- scale = (tone_phase >> 7) & 0xFFFF;
- val2 *= scale;
- val1 *= 0xFFFF - scale;
- val3 = (val1 + val2) >> 16;
- // The value of ramp_up is always initialized to RAMP_LENGTH and then is
- // decremented each time through here until it reaches zero.
- // The value of ramp_up is used to generate a Q15 fraction which varies
- // from [0 - 1), and multiplies this by the current sample
- if(ramp_up) {
- // ramp up to the new magnitude
- // ramp_mag is the Q15 representation of the fraction
- // Since ramp_up can't be zero, this cannot generate +1
- ramp_mag = ((ramp_length-ramp_up)<<15)/ramp_length;
- ramp_up--;
- // adjust tone_phase to Q15 format and then adjust the result
- // of the multiplication
- // calculate the sample
- tmp_amp = (short)((val3 * tone_amp) >> 15);
- *bp++ = (tmp_amp * ramp_mag)>>15;
- }
- else if(ramp_down) {
- // ramp down to zero from the last magnitude
- // The value of ramp_down is always initialized to RAMP_LENGTH and then is
- // decremented each time through here until it reaches zero.
- // The value of ramp_down is used to generate a Q15 fraction which varies
- // from [0 - 1), and multiplies this by the current sample
- // avoid RAMP_LENGTH/RAMP_LENGTH because Q15 format
- // cannot represent +1
- ramp_mag = ((ramp_down - 1)<<15)/ramp_length;
- ramp_down--;
- tmp_amp = (short)((val3 * last_tone_amp) >> 15);
- *bp++ = (tmp_amp * ramp_mag)>>15;
- } else {
- *bp++ = (short)((val3 * tone_amp) >> 15);
- }
-
- // phase and incr are both unsigned 32-bit fractions
- tone_phase += tone_incr;
- // If tone_phase has overflowed, truncate the top bit
- if(tone_phase & 0x80000000)tone_phase &= 0x7fffffff;
- }
- break;
-
- case TONE_TYPE_SQUARE:
- for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) {
- if(tone_phase & 0x40000000)*bp++ = -tone_amp;
- else *bp++ = tone_amp;
- // phase and incr are both unsigned 32-bit fractions
- tone_phase += tone_incr;
- }
- break;
-
- case TONE_TYPE_SAWTOOTH:
- for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) {
- *bp++ = ((short)(tone_phase>>15)*tone_amp) >> 15;
- // phase and incr are both unsigned 32-bit fractions
- tone_phase += tone_incr;
- }
- break;
-
- case TONE_TYPE_TRIANGLE:
- for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) {
- if(tone_phase & 0x80000000) {
- // negative half-cycle
- tmp_amp = -tone_amp;
- }
- else {
- // positive half-cycle
- tmp_amp = tone_amp;
- }
- mag = tone_phase << 2;
- // Determine which quadrant
- if(tone_phase & 0x40000000) {
- // negate the magnitude
- mag = ~mag + 1;
- }
- *bp++ = ((short)(mag>>17)*tmp_amp) >> 15;
- tone_phase += 2*tone_incr;
- }
- break;
- }
- // send the samples to the left channel
- transmit(block,0);
- release(block);
- }
- }
-
-
- #endif
-
-
-
-
-
-
-
-
- #if 0
- void AudioSineWaveMod::frequency(float f)
- {
- if (f > AUDIO_SAMPLE_RATE_EXACT / 2 || f < 0.0) return;
- phase_increment = (f / AUDIO_SAMPLE_RATE_EXACT) * 4294967296.0f;
- }
-
- void AudioSineWaveMod::update(void)
- {
- audio_block_t *block, *modinput;
- uint32_t i, ph, inc, index, scale;
- int32_t val1, val2;
-
- //Serial.println("AudioSineWave::update");
- modinput = receiveReadOnly();
- ph = phase;
- inc = phase_increment;
- block = allocate();
- if (!block) {
- // unable to allocate memory, so we'll send nothing
- if (modinput) {
- // but if we got modulation data, update the phase
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph += inc + modinput->data[i] * modulation_factor;
- }
- release(modinput);
- } else {
- ph += phase_increment * AUDIO_BLOCK_SAMPLES;
- }
- phase = ph;
- return;
- }
- if (modinput) {
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- val1 = sine_table[index];
- val2 = sine_table[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0xFFFF - scale;
- block->data[i] = (val1 + val2) >> 16;
- //Serial.print(block->data[i]);
- //Serial.print(", ");
- //if ((i % 12) == 11) Serial.println();
- ph += inc + modinput->data[i] * modulation_factor;
- }
- release(modinput);
- } else {
- ph = phase;
- inc = phase_increment;
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- val1 = sine_table[index];
- val2 = sine_table[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0xFFFF - scale;
- block->data[i] = (val1 + val2) >> 16;
- //Serial.print(block->data[i]);
- //Serial.print(", ");
- //if ((i % 12) == 11) Serial.println();
- ph += inc;
- }
- }
- phase = ph;
- transmit(block);
- release(block);
- }
- #endif
-
-
-
-
-
|