@@ -3148,3 +3148,415 @@ void AudioFilterFIR::update(void) | |||
if(b_new)release(b_new); | |||
} | |||
/******************************************************************/ | |||
// A u d i o E f f e c t F l a n g e | |||
// Written by Pete (El Supremo) Jan 2014 | |||
// circular addressing indices for left and right channels | |||
short AudioEffectFlange::l_circ_idx; | |||
short AudioEffectFlange::r_circ_idx; | |||
short * AudioEffectFlange::l_delayline = NULL; | |||
short * AudioEffectFlange::r_delayline = NULL; | |||
// User-supplied offset for the delayed sample | |||
// but start with passthru | |||
int AudioEffectFlange::delay_offset_idx = DELAY_PASSTHRU; | |||
int AudioEffectFlange::delay_length; | |||
int AudioEffectFlange::delay_depth; | |||
int AudioEffectFlange::delay_rate_incr; | |||
unsigned int AudioEffectFlange::l_delay_rate_index; | |||
unsigned int AudioEffectFlange::r_delay_rate_index; | |||
// fails if the user provides unreasonable values but will | |||
// coerce them and go ahead anyway. e.g. if the delay offset | |||
// is >= CHORUS_DELAY_LENGTH, the code will force it to | |||
// CHORUS_DELAY_LENGTH-1 and return false. | |||
// delay_rate is the rate (in Hz) of the sine wave modulation | |||
// delay_depth is the maximum variation around delay_offset | |||
// i.e. the total offset is delay_offset + delay_depth * sin(delay_rate) | |||
boolean AudioEffectFlange::begin(short *delayline,int d_length,int delay_offset,int d_depth,float delay_rate) | |||
{ | |||
boolean all_ok = true; | |||
Serial.print("AudioEffectFlange.begin(ofsset = "); | |||
Serial.print(delay_offset); | |||
Serial.print(", depth = "); | |||
Serial.print(d_depth); | |||
Serial.print(", rate = "); | |||
Serial.print(delay_rate,3); | |||
Serial.println(")"); | |||
Serial.print(" CHORUS_DELAY_LENGTH = "); | |||
Serial.println(d_length); | |||
delay_length = d_length/2; | |||
l_delayline = delayline; | |||
r_delayline = delayline + delay_length; | |||
delay_depth = d_depth; | |||
// initial index | |||
l_delay_rate_index = 0; | |||
r_delay_rate_index = 0; | |||
l_circ_idx = 0; | |||
r_circ_idx = 0; | |||
delay_rate_incr = 2*PI*delay_rate/44100.*2147483648.; | |||
//Serial.println(delay_rate_incr,HEX); | |||
delay_offset_idx = delay_offset; | |||
// Allow the passthru code to go through | |||
if(delay_offset_idx < -1) { | |||
delay_offset_idx = 0; | |||
all_ok = false; | |||
} | |||
if(delay_offset_idx >= delay_length) { | |||
delay_offset_idx = delay_length - 1; | |||
all_ok = false; | |||
} | |||
return(all_ok); | |||
} | |||
boolean AudioEffectFlange::modify(int delay_offset,int d_depth,float delay_rate) | |||
{ | |||
boolean all_ok = true; | |||
delay_depth = d_depth; | |||
delay_rate_incr = 2*PI*delay_rate/44100.*2147483648.; | |||
delay_offset_idx = delay_offset; | |||
// Allow the passthru code to go through | |||
if(delay_offset_idx < -1) { | |||
delay_offset_idx = 0; | |||
all_ok = false; | |||
} | |||
if(delay_offset_idx >= delay_length) { | |||
delay_offset_idx = delay_length - 1; | |||
all_ok = false; | |||
} | |||
l_delay_rate_index = 0; | |||
r_delay_rate_index = 0; | |||
l_circ_idx = 0; | |||
r_circ_idx = 0; | |||
return(all_ok); | |||
} | |||
void AudioEffectFlange::update(void) | |||
{ | |||
audio_block_t *block; | |||
int idx; | |||
short *bp; | |||
short frac; | |||
int idx1; | |||
if(l_delayline == NULL)return; | |||
if(r_delayline == NULL)return; | |||
// do passthru | |||
if(delay_offset_idx == DELAY_PASSTHRU) { | |||
// Just passthrough | |||
block = receiveWritable(0); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
l_circ_idx++; | |||
if(l_circ_idx >= delay_length) { | |||
l_circ_idx = 0; | |||
} | |||
l_delayline[l_circ_idx] = *bp++; | |||
} | |||
transmit(block,0); | |||
release(block); | |||
} | |||
block = receiveWritable(1); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
r_circ_idx++; | |||
if(r_circ_idx >= delay_length) { | |||
r_circ_idx = 0; | |||
} | |||
r_delayline[r_circ_idx] = *bp++; | |||
} | |||
transmit(block,1); | |||
release(block); | |||
} | |||
return; | |||
} | |||
// L E F T C H A N N E L | |||
block = receiveWritable(0); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
l_circ_idx++; | |||
if(l_circ_idx >= delay_length) { | |||
l_circ_idx = 0; | |||
} | |||
l_delayline[l_circ_idx] = *bp; | |||
idx = arm_sin_q15( (q15_t)((l_delay_rate_index >> 16) & 0x7fff)); | |||
idx = (idx * delay_depth) >> 15; | |||
//Serial.println(idx); | |||
idx = l_circ_idx - (delay_offset_idx + idx); | |||
if(idx < 0) { | |||
idx += delay_length; | |||
} | |||
if(idx >= delay_length) { | |||
idx -= delay_length; | |||
} | |||
if(frac < 0) | |||
idx1 = idx - 1; | |||
else | |||
idx1 = idx + 1; | |||
if(idx1 < 0) { | |||
idx1 += delay_length; | |||
} | |||
if(idx1 >= delay_length) { | |||
idx1 -= delay_length; | |||
} | |||
frac = (l_delay_rate_index >> 1) &0x7fff; | |||
frac = (( (int)(l_delayline[idx1] - l_delayline[idx])*frac) >> 15); | |||
//frac = 0; | |||
*bp++ = (l_delayline[l_circ_idx] | |||
+ l_delayline[idx] + frac | |||
// + l_delayline[(l_circ_idx + delay_length/2) % delay_length] | |||
)/2; | |||
l_delay_rate_index += delay_rate_incr; | |||
if(l_delay_rate_index & 0x80000000) { | |||
l_delay_rate_index &= 0x7fffffff; | |||
} | |||
} | |||
// send the effect output to the left channel | |||
transmit(block,0); | |||
release(block); | |||
} | |||
// R I G H T C H A N N E L | |||
block = receiveWritable(1); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
r_circ_idx++; | |||
if(r_circ_idx >= delay_length) { | |||
r_circ_idx = 0; | |||
} | |||
r_delayline[r_circ_idx] = *bp; | |||
idx = arm_sin_q15( (q15_t)((r_delay_rate_index >> 16)&0x7fff)); | |||
idx = (idx * delay_depth) >> 15; | |||
idx = r_circ_idx - (delay_offset_idx + idx); | |||
if(idx < 0) { | |||
idx += delay_length; | |||
} | |||
if(idx >= delay_length) { | |||
idx -= delay_length; | |||
} | |||
if(frac < 0) | |||
idx1 = idx - 1; | |||
else | |||
idx1 = idx + 1; | |||
if(idx1 < 0) { | |||
idx1 += delay_length; | |||
} | |||
if(idx1 >= delay_length) { | |||
idx1 -= delay_length; | |||
} | |||
frac = (r_delay_rate_index >> 1) &0x7fff; | |||
frac = (( (int)(r_delayline[idx1] - r_delayline[idx])*frac) >> 15); | |||
//frac = 0; | |||
*bp++ = (r_delayline[r_circ_idx] | |||
+ r_delayline[idx] + frac | |||
)/2; | |||
r_delay_rate_index += delay_rate_incr; | |||
if(r_delay_rate_index & 0x80000000) { | |||
r_delay_rate_index &= 0x7fffffff; | |||
} | |||
} | |||
// send the effect output to the right channel | |||
transmit(block,1); | |||
release(block); | |||
} | |||
} | |||
/******************************************************************/ | |||
// A u d i o E f f e c t C h o r u s | |||
// Written by Pete (El Supremo) Jan 2014 | |||
// circular addressing indices for left and right channels | |||
short AudioEffectChorus::l_circ_idx; | |||
short AudioEffectChorus::r_circ_idx; | |||
short * AudioEffectChorus::l_delayline = NULL; | |||
short * AudioEffectChorus::r_delayline = NULL; | |||
int AudioEffectChorus::delay_length; | |||
// An initial value of zero indicates passthru | |||
int AudioEffectChorus::num_chorus = 0; | |||
// All three must be valid. | |||
boolean AudioEffectChorus::begin(short *delayline,int d_length,int n_chorus) | |||
{ | |||
Serial.print("AudioEffectChorus.begin(Chorus delay line length = "); | |||
Serial.print(d_length); | |||
Serial.print(", n_chorus = "); | |||
Serial.print(n_chorus); | |||
Serial.println(")"); | |||
l_delayline = NULL; | |||
r_delayline = NULL; | |||
delay_length = 0; | |||
l_circ_idx = 0; | |||
r_circ_idx = 0; | |||
if(delayline == NULL) { | |||
return(false); | |||
} | |||
if(d_length < 10) { | |||
return(false); | |||
} | |||
if(n_chorus < 1) { | |||
return(false); | |||
} | |||
l_delayline = delayline; | |||
r_delayline = delayline + d_length/2; | |||
delay_length = d_length/2; | |||
num_chorus = n_chorus; | |||
return(true); | |||
} | |||
// This has the same effect as begin(NULL,0); | |||
void AudioEffectChorus::stop(void) | |||
{ | |||
} | |||
void AudioEffectChorus::modify(int n_chorus) | |||
{ | |||
num_chorus = n_chorus; | |||
} | |||
int iabs(int x) | |||
{ | |||
if(x < 0)return(-x); | |||
return(x); | |||
} | |||
//static int d_count = 0; | |||
int last_idx = 0; | |||
void AudioEffectChorus::update(void) | |||
{ | |||
audio_block_t *block; | |||
short *bp; | |||
int sum; | |||
int c_idx; | |||
if(l_delayline == NULL)return; | |||
if(r_delayline == NULL)return; | |||
// do passthru | |||
// It stores the unmodified data in the delay line so that | |||
// it isn't as likely to click | |||
if(num_chorus < 1) { | |||
// Just passthrough | |||
block = receiveWritable(0); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
l_circ_idx++; | |||
if(l_circ_idx >= delay_length) { | |||
l_circ_idx = 0; | |||
} | |||
l_delayline[l_circ_idx] = *bp++; | |||
} | |||
transmit(block,0); | |||
release(block); | |||
} | |||
block = receiveWritable(1); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
r_circ_idx++; | |||
if(r_circ_idx >= delay_length) { | |||
r_circ_idx = 0; | |||
} | |||
r_delayline[r_circ_idx] = *bp++; | |||
} | |||
transmit(block,1); | |||
release(block); | |||
} | |||
return; | |||
} | |||
// L E F T C H A N N E L | |||
block = receiveWritable(0); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
l_circ_idx++; | |||
if(l_circ_idx >= delay_length) { | |||
l_circ_idx = 0; | |||
} | |||
l_delayline[l_circ_idx] = *bp; | |||
sum = 0; | |||
c_idx = l_circ_idx; | |||
for(int k = 0; k < num_chorus; k++) { | |||
sum += l_delayline[c_idx]; | |||
if(num_chorus > 1)c_idx -= delay_length/(num_chorus - 1) - 1; | |||
if(c_idx < 0) { | |||
c_idx += delay_length; | |||
} | |||
} | |||
*bp++ = sum/num_chorus; | |||
} | |||
// send the effect output to the left channel | |||
transmit(block,0); | |||
release(block); | |||
} | |||
// R I G H T C H A N N E L | |||
block = receiveWritable(1); | |||
if(block) { | |||
bp = block->data; | |||
for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { | |||
r_circ_idx++; | |||
if(r_circ_idx >= delay_length) { | |||
r_circ_idx = 0; | |||
} | |||
r_delayline[r_circ_idx] = *bp; | |||
sum = 0; | |||
c_idx = r_circ_idx; | |||
for(int k = 0; k < num_chorus; k++) { | |||
sum += r_delayline[c_idx]; | |||
if(num_chorus > 1)c_idx -= delay_length/(num_chorus - 1) - 1; | |||
if(c_idx < 0) { | |||
c_idx += delay_length; | |||
} | |||
} | |||
*bp++ = sum/num_chorus; | |||
} | |||
// send the effect output to the left channel | |||
transmit(block,1); | |||
release(block); | |||
} | |||
} | |||
@@ -576,6 +576,69 @@ private: | |||
/******************************************************************/ | |||
// A u d i o E f f e c t F l a n g e | |||
// Written by Pete (El Supremo) Jan 2014 | |||
#define DELAY_PASSTHRU 0 | |||
class AudioEffectFlange : | |||
public AudioStream | |||
{ | |||
public: | |||
AudioEffectFlange(void): | |||
AudioStream(2,inputQueueArray) { | |||
} | |||
boolean begin(short *delayline,int d_length,int delay_offset,int d_depth,float delay_rate); | |||
boolean modify(int delay_offset,int d_depth,float delay_rate); | |||
virtual void update(void); | |||
void stop(void); | |||
private: | |||
audio_block_t *inputQueueArray[2]; | |||
static short *l_delayline; | |||
static short *r_delayline; | |||
static int delay_length; | |||
static short l_circ_idx; | |||
static short r_circ_idx; | |||
static int delay_depth; | |||
static int delay_offset_idx; | |||
static int delay_rate_incr; | |||
static unsigned int l_delay_rate_index; | |||
static unsigned int r_delay_rate_index; | |||
}; | |||
/******************************************************************/ | |||
// A u d i o E f f e c t C h o r u s | |||
// Written by Pete (El Supremo) Jan 2014 | |||
#define DELAY_PASSTHRU -1 | |||
class AudioEffectChorus : | |||
public AudioStream | |||
{ | |||
public: | |||
AudioEffectChorus(void): | |||
AudioStream(2,inputQueueArray) { | |||
} | |||
boolean begin(short *delayline,int delay_length,int n_chorus); | |||
virtual void update(void); | |||
void stop(void); | |||
void modify(int n_chorus); | |||
private: | |||
audio_block_t *inputQueueArray[2]; | |||
static short *l_delayline; | |||
static short *r_delayline; | |||
static short l_circ_idx; | |||
static short r_circ_idx; | |||
static int num_chorus; | |||
static int delay_length; | |||
}; | |||
@@ -0,0 +1,264 @@ | |||
/* | |||
PROC/MEM 9/4 | |||
Modify filter_test_f to try out a chorus effect. | |||
TODO: | |||
140203 | |||
o | |||
I have mixed up the names "chorus" and flange". The sketches named | |||
chorus have, up to version 'm', actually implemented a flanger. | |||
From version 'o' onwards the sketches named chorus will implement | |||
a real chorus effect and flange will do a flanging effect. | |||
n only changed the effect parameters | |||
m | |||
140201 | |||
l - found the problem at last using my_flange_cd_usd_c | |||
YES! Way back when I found I hadn't been using d_depth. Now I | |||
have just discovered that I haven't been using delay_offset!!!!! | |||
140201 | |||
k | |||
interpolation doesn't remove the ticking | |||
140131 | |||
j | |||
>>> The lower the frequency, the less ticking. | |||
- try interpolation | |||
140201 | |||
- got this restored to the way it was last night | |||
and then reinstated the changes. I had a couple of | |||
changes to the right channel that were incorrect or | |||
weren't carried over from the left channel changes | |||
i | |||
- don't know why but this version seems to have more "presence" | |||
than previous versions. | |||
The presence occurred when "sign = 1" was put in front of the left. | |||
It essentially makes it a passthrough. | |||
If both have "sign=1" then it is identical to passthrough | |||
Ticking is still not fixed | |||
h | |||
- add sign reversal. It seems to make audio much clearer | |||
BUT it hasn't got rid of the ticking noise | |||
g | |||
- I wasn't even using delay_depth!!!! | |||
140131 | |||
f | |||
- added code to print the processor and memory usage every 5 seconds | |||
NOW the problem is to try to remove the ticking | |||
e | |||
FOUND the problem with the right channel. It was also in the left channel | |||
but the placement of the delay line arrays made it more noticeable in the | |||
right channel. I was not calculating idx properly. In particular, the | |||
resuling index could be negative. | |||
I have shortened the delay line to only 2*AUDIO_BLOCK_SAMPLES | |||
- removed redundancies in the update code. rewrite the block | |||
instead of getting a new one | |||
Haven't solved the noise in the right channel yet. | |||
Tried duplicating right channel code to left but noise stays on the right | |||
140130 | |||
d | |||
The noise stays in the right channel even if it is calculated first | |||
Switching the L/R inputs doesn't switch the noise to the left channel | |||
c | |||
>> Now add a sinusoidal modulation to the offset | |||
There's an awful noise in both channels but it is much louder in | |||
the right channel. NOPE - it is ONLY in the right channel | |||
but the audio does sound like it is working (sort of) except that it | |||
is rather tinny. Maybe it needs to have the interpolation added. | |||
b | |||
- this works with clip16_6s.wav. | |||
The original of this audio file was from http://www.donreiman.com/Chorus/Chorus.htm | |||
I reworked it with Goldwave to make it a stereo WAV file | |||
But with Rick Wakewan's Jane Seymour it seems to act more like | |||
a high-pass filter. | |||
a | |||
- removed FIR stuff and changed the name to AudioEffectChorus | |||
it's basically a blank template and compiles. | |||
From: http://www.cs.cf.ac.uk/Dave/CM0268/PDF/10_CM0268_Audio_FX.pdf | |||
about Comb filter effects | |||
Effect Delay range (ms) Modulation | |||
Resonator 0 - 20 None | |||
Flanger 0 - 15 Sinusoidal (approx 1Hz) | |||
Chorus 25 - 50 None | |||
Echo >50 None | |||
FMI: | |||
The audio board uses the following pins. | |||
6 - MEMCS | |||
7 - MOSI | |||
9 - BCLK | |||
10 - SDCS | |||
11 - MCLK | |||
12 - MISO | |||
13 - RX | |||
14 - SCLK | |||
15 - VOL | |||
18 - SDA | |||
19 - SCL | |||
22 - TX | |||
23 - LRCLK | |||
AudioProcessorUsage() | |||
AudioProcessorUsageMax() | |||
AudioProcessorUsageMaxReset() | |||
AudioMemoryUsage() | |||
AudioMemoryUsageMax() | |||
AudioMemoryUsageMaxReset() | |||
The CPU usage is an integer from 0 to 100, and the memory is from 0 to however | |||
many blocks you provided with AudioMemory(). | |||
*/ | |||
#include <arm_math.h> | |||
#include <Audio.h> | |||
#include <Wire.h> | |||
//#include <WM8731.h> | |||
#include <SD.h> | |||
#include <SPI.h> | |||
#include <Bounce.h> | |||
// Number of samples in ONE channel | |||
#define CHORUS_DELAY_LENGTH (16*AUDIO_BLOCK_SAMPLES) | |||
// Allocate the delay line for left and right channels | |||
// The delayline will hold left and right samples so it | |||
// should be declared to be twice as long as the desired | |||
// number of samples in one channel | |||
#define CHORUS_DELAYLINE (CHORUS_DELAY_LENGTH*2) | |||
// The delay line for left and right channels | |||
short delayline[CHORUS_DELAYLINE]; | |||
// If this pin is grounded the FIR filter is turned which | |||
// makes just pass through the audio | |||
// Don't use any of the pins listed above | |||
#define PASSTHRU_PIN 1 | |||
Bounce b_passthru = Bounce(PASSTHRU_PIN,15); | |||
//const int myInput = AUDIO_INPUT_MIC; | |||
const int myInput = AUDIO_INPUT_LINEIN; | |||
AudioInputI2S audioInput; // audio shield: mic or line-in | |||
AudioEffectChorus myEffect; | |||
AudioOutputI2S audioOutput; // audio shield: headphones & line-out | |||
// Create Audio connections between the components | |||
// Both channels of the audio input go to the FIR filter | |||
AudioConnection c1(audioInput, 0, myEffect, 0); | |||
AudioConnection c2(audioInput, 1, myEffect, 1); | |||
// both channels from the FIR filter go to the audio output | |||
AudioConnection c3(myEffect, 0, audioOutput, 0); | |||
AudioConnection c4(myEffect, 1, audioOutput, 1); | |||
AudioControlSGTL5000 audioShield; | |||
// number of "voices" in the chorus which INCLUDES the original voice | |||
int n_chorus = 3; | |||
// <<<<<<<<<<<<<<>>>>>>>>>>>>>>>> | |||
void setup() { | |||
Serial.begin(9600); | |||
while (!Serial) ; | |||
delay(3000); | |||
pinMode(PASSTHRU_PIN,INPUT_PULLUP); | |||
// Maximum memory usage was reported as 4 | |||
// Proc = 9 (9), Mem = 4 (4) | |||
AudioMemory(4); | |||
audioShield.enable(); | |||
audioShield.inputSelect(myInput); | |||
audioShield.volume(50); | |||
// Warn that the passthru pin is grounded | |||
if(!digitalRead(PASSTHRU_PIN)) { | |||
Serial.print("PASSTHRU_PIN ("); | |||
Serial.print(PASSTHRU_PIN); | |||
Serial.println(") is grounded"); | |||
} | |||
// Initialize the effect | |||
// address of delayline | |||
// total number of samples (left AND right) in the delay line | |||
// number of voices in the chorus INCLUDING the original voice | |||
if(!myEffect.begin(delayline,CHORUS_DELAYLINE,n_chorus)) { | |||
Serial.println("AudioEffectChorus - begin failed"); | |||
while(1); | |||
} | |||
// I want output on the line out too | |||
audioShield.unmuteLineout(); | |||
// audioShield.muteHeadphone(); | |||
Serial.println("setup done"); | |||
AudioProcessorUsageMaxReset(); | |||
AudioMemoryUsageMaxReset(); | |||
} | |||
// audio volume | |||
int volume = 0; | |||
unsigned long last_time = millis(); | |||
void loop() | |||
{ | |||
// Volume control | |||
int n = analogRead(15); | |||
if (n != volume) { | |||
volume = n; | |||
audioShield.volume((float)n / 10.23); | |||
} | |||
if(1) { | |||
if(millis() - last_time >= 5000) { | |||
Serial.print("Proc = "); | |||
Serial.print(AudioProcessorUsage()); | |||
Serial.print(" ("); | |||
Serial.print(AudioProcessorUsageMax()); | |||
Serial.print("), Mem = "); | |||
Serial.print(AudioMemoryUsage()); | |||
Serial.print(" ("); | |||
Serial.print(AudioMemoryUsageMax()); | |||
Serial.println(")"); | |||
last_time = millis(); | |||
} | |||
} | |||
// update the button | |||
b_passthru.update(); | |||
// If the passthru button is pushed, switch the effect to passthru | |||
if(b_passthru.fallingEdge()) { | |||
myEffect.modify(0); | |||
} | |||
// If passthru button is released, restore the previous chorus | |||
if(b_passthru.risingEdge()) { | |||
myEffect.modify(n_chorus); | |||
} | |||
} | |||
@@ -0,0 +1,43 @@ | |||
/* | |||
CHORUS and FLANGE effects | |||
Both effects use a delay line to hold previous samples. This allows | |||
the current sample to be combined in some way with a sample that | |||
occurred in the past. An obvious effect this would allow would be | |||
an echo where the current sample is combined with a sample from, | |||
say, 250 milliseconds ago. The chorus and flange effects do this | |||
as well but they combine samples from only about 50ms or less ago. | |||
CHORUS EFFECT | |||
This combines one or more samples up to about 50ms ago. In this | |||
library, the additional samples are evenly spread through the | |||
supplied delay line. | |||
E.G. If the number of voices is specified as 2 then the effect | |||
combines the current sample and the oldest sample (the last one in | |||
the delay line). If the number of voices is 3 then the effect | |||
combines the most recent sample, the oldest sample and the sample | |||
in the middle of the delay line. | |||
For two voices the effect can be represented as: | |||
result = sample(0) + sample(dt) | |||
where sample(0) represents the current sample and sample(dt) is | |||
the sample in the delay line from dt milliseconds ago. | |||
FLANGE EFFECT | |||
This combines only one sample from the delay line but the position | |||
of that sample varies sinusoidally. | |||
In this case the effect can be represented as: | |||
result = sample(0) + sample(dt + depth*sin(2*PI*Fe)) | |||
The value of the sine function is always a number from -1 to +1 | |||
and so the result of depth*(sinFe) is always a number from | |||
-depth to +depth. Thus, the delayed sample will be selected from | |||
the range (dt-depth) to (dt+depth). This selection will vary | |||
at whatever rate is specified as the frequency of the effect Fe. | |||
I have found that rates of .25 seconds or less are best, otherwise | |||
the effect is very "watery" and in extreme cases the sound is | |||
even off-key! | |||
When trying out these effects with recorded music as input, it is | |||
best to use those where there is a solo voice which is clearly | |||
"in front" of the accompaninemnt. Tracks which already contain | |||
flange or chorus effects don't work well. | |||
*/ |
@@ -0,0 +1,314 @@ | |||
/* | |||
Change the chorus code to produce a flange effect | |||
PROC/MEM 25/4 | |||
140204 | |||
d | |||
- fixed the problem with user-supplied delay line | |||
140203 | |||
c | |||
140203 | |||
b | |||
- when switching to/from passthru, keep the delay line filled | |||
BUT to be effective must also fix up begin and add another | |||
function to allow changing to/from passthru without | |||
reinitialing everything. | |||
I have mixed up the names "chorus" and flange". The sketches named | |||
chorus have, up to version 'm', actually implemented a flanger. | |||
From version 'o' onwards the sketches named chorus will implement | |||
a real chorus effect and flange will do a flanging effect. | |||
140202 | |||
a | |||
Modify filter_test_f to try out a chorus effect | |||
m + n only changed the effect parameters | |||
- | |||
140201 | |||
l - found the problem at last using my_flange_cd_usd_c | |||
YES! Way back when I found I hadn't been using d_depth. Now I | |||
have just discovered that I haven't been using delay_offset!!!!! | |||
140201 | |||
k | |||
interpolation doesn't remove the ticking | |||
140131 | |||
j | |||
>>> The lower the frequency, the less ticking. | |||
- try interpolation | |||
140201 | |||
- got this restored to the way it was last night | |||
and then reinstated the changes. I had a couple of | |||
changes to the right channel that were incorrect or | |||
weren't carried over from the left channel changes | |||
i | |||
- don't know why but this version seems to have more "presence" | |||
than previous versions. | |||
The presence occurred when "sign = 1" was put in front of the left. | |||
It essentially makes it a passthrough. | |||
If both have "sign=1" then it is identical to passthrough | |||
Ticking is still not fixed | |||
h | |||
- add sign reversal. It seems to make audio much clearer | |||
BUT it hasn't got rid of the ticking noise | |||
g | |||
- I wasn't even using delay_depth!!!! | |||
140131 | |||
f | |||
- added code to print the processor and memory usage every 5 seconds | |||
NOW the problem is to try to remove the ticking | |||
e | |||
FOUND the problem with the right channel. It was also in the left channel | |||
but the placement of the delay line arrays made it more noticeable in the | |||
right channel. I was not calculating idx properly. In particular, the | |||
resuling index could be negative. | |||
I have shortened the delay line to only 2*AUDIO_BLOCK_SAMPLES | |||
- removed redundancies in the update code. rewrite the block | |||
instead of getting a new one | |||
Haven't solved the noise in the right channel yet. | |||
Tried duplicating right channel code to left but noise stays on the right | |||
140130 | |||
d | |||
The noise stays in the right channel even if it is calculated first | |||
Switching the L/R inputs doesn't switch the noise to the left channel | |||
c | |||
>> Now add a sinusoidal modulation to the offset | |||
There's an awful noise in both channels but it is much louder in | |||
the right channel. NOPE - it is ONLY in the right channel | |||
but the audio does sound like it is working (sort of) except that it | |||
is rather tinny. Maybe it needs to have the interpolation added. | |||
b | |||
- this works with clip16_6s.wav. | |||
The original of this audio file was from http://www.donreiman.com/Chorus/Chorus.htm | |||
I reworked it with Goldwave to make it a stereo WAV file | |||
But with Rick Wakewan's Jane Seymour it seems to act more like | |||
a high-pass filter. | |||
a | |||
- removed FIR stuff and changed the name to AudioEffectChorus | |||
it's basically a blank template and compiles. | |||
From: http://www.cs.cf.ac.uk/Dave/CM0268/PDF/10_CM0268_Audio_FX.pdf | |||
about Comb filter effects | |||
Effect Delay range (ms) Modulation | |||
Resonator 0 - 20 None | |||
Flanger 0 - 15 Sinusoidal (approx 1Hz) | |||
Chorus 25 - 50 None | |||
Echo >50 None | |||
FMI: | |||
The audio board uses the following pins. | |||
6 - MEMCS | |||
7 - MOSI | |||
9 - BCLK | |||
10 - SDCS | |||
11 - MCLK | |||
12 - MISO | |||
13 - RX | |||
14 - SCLK | |||
15 - VOL | |||
18 - SDA | |||
19 - SCL | |||
22 - TX | |||
23 - LRCLK | |||
AudioProcessorUsage() | |||
AudioProcessorUsageMax() | |||
AudioProcessorUsageMaxReset() | |||
AudioMemoryUsage() | |||
AudioMemoryUsageMax() | |||
AudioMemoryUsageMaxReset() | |||
The CPU usage is an integer from 0 to 100, and the memory is from 0 to however | |||
many blocks you provided with AudioMemory(). | |||
*/ | |||
#include <arm_math.h> | |||
#include <Audio.h> | |||
#include <Wire.h> | |||
//#include <WM8731.h> | |||
#include <SD.h> | |||
#include <SPI.h> | |||
#include <Bounce.h> | |||
// Number of samples in ONE channel | |||
#define FLANGE_DELAY_LENGTH (16*AUDIO_BLOCK_SAMPLES) | |||
// Allocate the delay line for left and right channels | |||
// The delayline will hold left and right samples so it | |||
// should be declared to be twice as long as the desired | |||
// number of samples in one channel | |||
#define FLANGE_DELAYLINE (FLANGE_DELAY_LENGTH*2) | |||
// The delay line for left and right channels | |||
short delayline[FLANGE_DELAYLINE]; | |||
// If this pin is grounded the FIR filter is turned which | |||
// makes just pass through the audio | |||
// Don't use any of the pins listed above | |||
#define PASSTHRU_PIN 1 | |||
Bounce b_passthru = Bounce(PASSTHRU_PIN,15); | |||
//const int myInput = AUDIO_INPUT_MIC; | |||
const int myInput = AUDIO_INPUT_LINEIN; | |||
AudioInputI2S audioInput; // audio shield: mic or line-in | |||
AudioEffectFlange myEffect; | |||
AudioOutputI2S audioOutput; // audio shield: headphones & line-out | |||
// Create Audio connections between the components | |||
// Both channels of the audio input go to the FIR filter | |||
AudioConnection c1(audioInput, 0, myEffect, 0); | |||
AudioConnection c2(audioInput, 1, myEffect, 1); | |||
// both channels from the FIR filter go to the audio output | |||
AudioConnection c3(myEffect, 0, audioOutput, 0); | |||
AudioConnection c4(myEffect, 1, audioOutput, 1); | |||
AudioControlSGTL5000 audioShield; | |||
/* | |||
int s_idx = FLANGE_DELAY_LENGTH/2; | |||
int s_depth = FLANGE_DELAY_LENGTH/16; | |||
double s_freq = 1; | |||
// <<<<<<<<<<<<<<>>>>>>>>>>>>>>>> | |||
// 12 | |||
int s_idx = FLANGE_DELAY_LENGTH/2; | |||
int s_depth = FLANGE_DELAY_LENGTH/8; | |||
double s_freq = .125; | |||
// with .125 the ticking is about 1Hz with music | |||
// but with the noise sample it is a bit slower than that | |||
// <<<<<<<<<<<<<<>>>>>>>>>>>>>>>> | |||
*/ | |||
/* | |||
// <<<<<<<<<<<<<<>>>>>>>>>>>>>>>> | |||
// 12 | |||
int s_idx = FLANGE_DELAY_LENGTH/2; | |||
int s_depth = FLANGE_DELAY_LENGTH/12; | |||
double s_freq = .125; | |||
// with .125 the ticking is about 1Hz with music | |||
// but with the noise sample it is a bit slower than that | |||
// <<<<<<<<<<<<<<>>>>>>>>>>>>>>>> | |||
*/ | |||
/* | |||
//12 | |||
int s_idx = 15*FLANGE_DELAY_LENGTH/16; | |||
int s_depth = 15*FLANGE_DELAY_LENGTH/16; | |||
double s_freq = 0; | |||
*/ | |||
/* | |||
//12 | |||
int s_idx = 2*FLANGE_DELAY_LENGTH/4; | |||
int s_depth = FLANGE_DELAY_LENGTH/8; | |||
double s_freq = .0625; | |||
*/ | |||
//12 - good with Eric Clapton Unplugged | |||
int s_idx = 3*FLANGE_DELAY_LENGTH/4; | |||
int s_depth = FLANGE_DELAY_LENGTH/8; | |||
double s_freq = .0625; | |||
void setup() { | |||
Serial.begin(9600); | |||
while (!Serial) ; | |||
delay(3000); | |||
pinMode(PASSTHRU_PIN,INPUT_PULLUP); | |||
// It doesn't work properly with any less than 8 | |||
// but that was an earlier version. Processor and | |||
// memory usage are now (ver j) | |||
// Proc = 24 (24), Mem = 4 (4) | |||
AudioMemory(8); | |||
audioShield.enable(); | |||
audioShield.inputSelect(myInput); | |||
audioShield.volume(50); | |||
// Warn that the passthru pin is grounded | |||
if(!digitalRead(PASSTHRU_PIN)) { | |||
Serial.print("PASSTHRU_PIN ("); | |||
Serial.print(PASSTHRU_PIN); | |||
Serial.println(") is grounded"); | |||
} | |||
// Set up the flange effect | |||
// address of delayline | |||
// total number of samples (left AND right) in the delay line | |||
// Index (in samples) into the delay line for the added voice | |||
// Depth of the flange effect | |||
// frequency of the flange effect | |||
myEffect.begin(delayline,FLANGE_DELAYLINE,s_idx,s_depth,s_freq); | |||
// I want output on the line out too | |||
audioShield.unmuteLineout(); | |||
Serial.println("setup done"); | |||
AudioProcessorUsageMaxReset(); | |||
AudioMemoryUsageMaxReset(); | |||
} | |||
// audio volume | |||
int volume = 0; | |||
unsigned long last_time = millis(); | |||
void loop() | |||
{ | |||
// Volume control | |||
int n = analogRead(15); | |||
if (n != volume) { | |||
volume = n; | |||
audioShield.volume((float)n / 10.23); | |||
} | |||
if(1) { | |||
if(millis() - last_time >= 5000) { | |||
Serial.print("Proc = "); | |||
Serial.print(AudioProcessorUsage()); | |||
Serial.print(" ("); | |||
Serial.print(AudioProcessorUsageMax()); | |||
Serial.print("), Mem = "); | |||
Serial.print(AudioMemoryUsage()); | |||
Serial.print(" ("); | |||
Serial.print(AudioMemoryUsageMax()); | |||
Serial.println(")"); | |||
last_time = millis(); | |||
} | |||
} | |||
// update the button | |||
b_passthru.update(); | |||
// If the passthru button is pushed, save the current | |||
// filter index and then switch the filter to passthru | |||
if(b_passthru.fallingEdge()) { | |||
myEffect.modify(DELAY_PASSTHRU,0,0); | |||
} | |||
// If passthru button is released, restore the effect | |||
if(b_passthru.risingEdge()) { | |||
myEffect.modify(s_idx,s_depth,s_freq); | |||
} | |||
} | |||
@@ -0,0 +1,44 @@ | |||
/* | |||
CHORUS and FLANGE effects | |||
Both effects use a delay line to hold previous samples. This allows | |||
the current sample to be combined in some way with a sample that | |||
occurred in the past. An obvious effect this would allow would be | |||
an echo where the current sample is combined with a sample from, | |||
say, 250 milliseconds ago. The chorus and flange effects do this | |||
as well but they combine samples from only about 50ms (or less) ago. | |||
CHORUS EFFECT | |||
This combines one or more samples up to about 50ms ago. In this | |||
library, the additional samples are evenly spread through the | |||
supplied delay line. | |||
E.G. If the number of voices is specified as 2 then the effect | |||
combines the current sample and the oldest sample (the last one in | |||
the delay line). If the number of voices is 3 then the effect | |||
combines the most recent sample, the oldest sample and the sample | |||
in the middle of the delay line. | |||
For two voices the effect can be represented as: | |||
result = sample(0) + sample(dt) | |||
where sample(0) represents the current sample and sample(dt) is | |||
the sample in the delay line from dt milliseconds ago. | |||
FLANGE EFFECT | |||
This combines only one sample from the delay line but the position | |||
of that sample varies sinusoidally. | |||
In this case the effect can be represented as: | |||
result = sample(0) + sample(dt + depth*sin(2*PI*Fe)) | |||
The value of the sine function is always a number from -1 to +1 | |||
and so the result of depth*(sinFe) is always a number from | |||
-depth to +depth. Thus, the delayed sample will be selected from | |||
the range (dt-depth) to (dt+depth). This selection will vary | |||
at whatever rate is specified as the frequency of the effect Fe. | |||
I have found that rates of .25 seconds or less are best, otherwise | |||
the effect is very "watery" and in extreme cases the sound is | |||
even off-key! | |||
When trying out these effects with recorded music as input, it is | |||
best to use those where there is a solo voice which is clearly | |||
"in front" of the accompaninemnt. Tracks which already contain | |||
flange or chorus effects don't work well. | |||
*/ |