/******************************************************************/ | /******************************************************************/ | ||||
#include "Wire.h" | |||||
#define WM8731_I2C_ADDR 0x1A | |||||
//#define WM8731_I2C_ADDR 0x1B | |||||
#define WM8731_REG_LLINEIN 0 | |||||
#define WM8731_REG_RLINEIN 1 | |||||
#define WM8731_REG_LHEADOUT 2 | |||||
#define WM8731_REG_RHEADOUT 3 | |||||
#define WM8731_REG_ANALOG 4 | |||||
#define WM8731_REG_DIGITAL 5 | |||||
#define WM8731_REG_POWERDOWN 6 | |||||
#define WM8731_REG_INTERFACE 7 | |||||
#define WM8731_REG_SAMPLING 8 | |||||
#define WM8731_REG_ACTIVE 9 | |||||
#define WM8731_REG_RESET 15 | |||||
bool AudioControlWM8731::enable(void) | |||||
{ | |||||
Wire.begin(); | |||||
delay(5); | |||||
//write(WM8731_REG_RESET, 0); | |||||
write(WM8731_REG_INTERFACE, 0x02); // I2S, 16 bit, MCLK slave | |||||
write(WM8731_REG_SAMPLING, 0x20); // 256*Fs, 44.1 kHz, MCLK/1 | |||||
// In order to prevent pops, the DAC should first be soft-muted (DACMU), | |||||
// the output should then be de-selected from the line and headphone output | |||||
// (DACSEL), then the DAC powered down (DACPD). | |||||
write(WM8731_REG_DIGITAL, 0x08); // DAC soft mute | |||||
write(WM8731_REG_ANALOG, 0x00); // disable all | |||||
write(WM8731_REG_POWERDOWN, 0x00); // codec powerdown | |||||
write(WM8731_REG_LHEADOUT, 0x80); // volume off | |||||
write(WM8731_REG_RHEADOUT, 0x80); | |||||
delay(100); // how long to power up? | |||||
write(WM8731_REG_ACTIVE, 1); | |||||
delay(5); | |||||
write(WM8731_REG_DIGITAL, 0x00); // DAC unmuted | |||||
write(WM8731_REG_ANALOG, 0x10); // DAC selected | |||||
return true; | |||||
} | |||||
bool AudioControlWM8731::write(unsigned int reg, unsigned int val) | |||||
{ | |||||
Wire.beginTransmission(WM8731_I2C_ADDR); | |||||
Wire.write((reg << 1) | ((val >> 8) & 1)); | |||||
Wire.write(val & 0xFF); | |||||
Wire.endTransmission(); | |||||
return true; | |||||
} | |||||
bool AudioControlWM8731::volumeInteger(unsigned int n) | |||||
{ | |||||
if (n > 127) n = 127; | |||||
//Serial.print("volumeInteger, n = "); | |||||
//Serial.println(n); | |||||
write(WM8731_REG_LHEADOUT, n | 0x180); | |||||
write(WM8731_REG_RHEADOUT, n | 0x80); | |||||
return true; | |||||
} | |||||
/******************************************************************/ | |||||
bool AudioControlWM8731master::enable(void) | |||||
{ | |||||
Wire.begin(); | |||||
delay(5); | |||||
//write(WM8731_REG_RESET, 0); | |||||
write(WM8731_REG_INTERFACE, 0x42); // I2S, 16 bit, MCLK master | |||||
write(WM8731_REG_SAMPLING, 0x20); // 256*Fs, 44.1 kHz, MCLK/1 | |||||
// In order to prevent pops, the DAC should first be soft-muted (DACMU), | |||||
// the output should then be de-selected from the line and headphone output | |||||
// (DACSEL), then the DAC powered down (DACPD). | |||||
write(WM8731_REG_DIGITAL, 0x08); // DAC soft mute | |||||
write(WM8731_REG_ANALOG, 0x00); // disable all | |||||
write(WM8731_REG_POWERDOWN, 0x00); // codec powerdown | |||||
write(WM8731_REG_LHEADOUT, 0x80); // volume off | |||||
write(WM8731_REG_RHEADOUT, 0x80); | |||||
delay(100); // how long to power up? | |||||
write(WM8731_REG_ACTIVE, 1); | |||||
delay(5); | |||||
write(WM8731_REG_DIGITAL, 0x00); // DAC unmuted | |||||
write(WM8731_REG_ANALOG, 0x10); // DAC selected | |||||
return true; | |||||
} | |||||
/******************************************************************/ | |||||
#define CHIP_ID 0x0000 | |||||
// 15:8 PARTID 0xA0 - 8 bit identifier for SGTL5000 | |||||
// 7:0 REVID 0x00 - revision number for SGTL5000. | |||||
#define CHIP_DIG_POWER 0x0002 | |||||
// 6 ADC_POWERUP 1=Enable, 0=disable the ADC block, both digital & analog, | |||||
// 5 DAC_POWERUP 1=Enable, 0=disable the DAC block, both analog and digital | |||||
// 4 DAP_POWERUP 1=Enable, 0=disable the DAP block | |||||
// 1 I2S_OUT_POWERUP 1=Enable, 0=disable the I2S data output | |||||
// 0 I2S_IN_POWERUP 1=Enable, 0=disable the I2S data input | |||||
#define CHIP_CLK_CTRL 0x0004 | |||||
// 5:4 RATE_MODE Sets the sample rate mode. MCLK_FREQ is still specified | |||||
// relative to the rate in SYS_FS | |||||
// 0x0 = SYS_FS specifies the rate | |||||
// 0x1 = Rate is 1/2 of the SYS_FS rate | |||||
// 0x2 = Rate is 1/4 of the SYS_FS rate | |||||
// 0x3 = Rate is 1/6 of the SYS_FS rate | |||||
// 3:2 SYS_FS Sets the internal system sample rate (default=2) | |||||
// 0x0 = 32 kHz | |||||
// 0x1 = 44.1 kHz | |||||
// 0x2 = 48 kHz | |||||
// 0x3 = 96 kHz | |||||
// 1:0 MCLK_FREQ Identifies incoming SYS_MCLK frequency and if the PLL should be used | |||||
// 0x0 = 256*Fs | |||||
// 0x1 = 384*Fs | |||||
// 0x2 = 512*Fs | |||||
// 0x3 = Use PLL | |||||
// The 0x3 (Use PLL) setting must be used if the SYS_MCLK is not | |||||
// a standard multiple of Fs (256, 384, or 512). This setting can | |||||
// also be used if SYS_MCLK is a standard multiple of Fs. | |||||
// Before this field is set to 0x3 (Use PLL), the PLL must be | |||||
// powered up by setting CHIP_ANA_POWER->PLL_POWERUP and | |||||
// CHIP_ANA_POWER->VCOAMP_POWERUP. Also, the PLL dividers must | |||||
// be calculated based on the external MCLK rate and | |||||
// CHIP_PLL_CTRL register must be set (see CHIP_PLL_CTRL register | |||||
// description details on how to calculate the divisors). | |||||
#define CHIP_I2S_CTRL 0x0006 | |||||
// 8 SCLKFREQ Sets frequency of I2S_SCLK when in master mode (MS=1). When in slave | |||||
// mode (MS=0), this field must be set appropriately to match SCLK input | |||||
// rate. | |||||
// 0x0 = 64Fs | |||||
// 0x1 = 32Fs - Not supported for RJ mode (I2S_MODE = 1) | |||||
// 7 MS Configures master or slave of I2S_LRCLK and I2S_SCLK. | |||||
// 0x0 = Slave: I2S_LRCLK an I2S_SCLK are inputs | |||||
// 0x1 = Master: I2S_LRCLK and I2S_SCLK are outputs | |||||
// NOTE: If the PLL is used (CHIP_CLK_CTRL->MCLK_FREQ==0x3), | |||||
// the SGTL5000 must be a master of the I2S port (MS==1) | |||||
// 6 SCLK_INV Sets the edge that data (input and output) is clocked in on for I2S_SCLK | |||||
// 0x0 = data is valid on rising edge of I2S_SCLK | |||||
// 0x1 = data is valid on falling edge of I2S_SCLK | |||||
// 5:4 DLEN I2S data length (default=1) | |||||
// 0x0 = 32 bits (only valid when SCLKFREQ=0), | |||||
// not valid for Right Justified Mode | |||||
// 0x1 = 24 bits (only valid when SCLKFREQ=0) | |||||
// 0x2 = 20 bits | |||||
// 0x3 = 16 bits | |||||
// 3:2 I2S_MODE Sets the mode for the I2S port | |||||
// 0x0 = I2S mode or Left Justified (Use LRALIGN to select) | |||||
// 0x1 = Right Justified Mode | |||||
// 0x2 = PCM Format A/B | |||||
// 0x3 = RESERVED | |||||
// 1 LRALIGN I2S_LRCLK Alignment to data word. Not used for Right Justified mode | |||||
// 0x0 = Data word starts 1 I2S_SCLK delay after I2S_LRCLK | |||||
// transition (I2S format, PCM format A) | |||||
// 0x1 = Data word starts after I2S_LRCLK transition (left | |||||
// justified format, PCM format B) | |||||
// 0 LRPOL I2S_LRCLK Polarity when data is presented. | |||||
// 0x0 = I2S_LRCLK = 0 - Left, 1 - Right | |||||
// 1x0 = I2S_LRCLK = 0 - Right, 1 - Left | |||||
// The left subframe should be presented first regardless of | |||||
// the setting of LRPOL. | |||||
#define CHIP_SSS_CTRL 0x000A | |||||
// 14 DAP_MIX_LRSWAP DAP Mixer Input Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the DAP MIXER Input are swapped. | |||||
// 13 DAP_LRSWAP DAP Mixer Input Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the DAP Input are swapped | |||||
// 12 DAC_LRSWAP DAC Input Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the DAC are swapped | |||||
// 10 I2S_LRSWAP I2S_DOUT Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the I2S_DOUT are swapped | |||||
// 9:8 DAP_MIX_SELECT Select data source for DAP mixer | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = Reserved | |||||
// 7:6 DAP_SELECT Select data source for DAP | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = Reserved | |||||
// 5:4 DAC_SELECT Select data source for DAC (default=1) | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = DAP | |||||
// 1:0 I2S_SELECT Select data source for I2S_DOUT | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = DAP | |||||
#define CHIP_ADCDAC_CTRL 0x000E | |||||
// 13 VOL_BUSY_DAC_RIGHT Volume Busy DAC Right | |||||
// 0x0 = Ready | |||||
// 0x1 = Busy - This indicates the channel has not reached its | |||||
// programmed volume/mute level | |||||
// 12 VOL_BUSY_DAC_LEFT Volume Busy DAC Left | |||||
// 0x0 = Ready | |||||
// 0x1 = Busy - This indicates the channel has not reached its | |||||
// programmed volume/mute level | |||||
// 9 VOL_RAMP_EN Volume Ramp Enable (default=1) | |||||
// 0x0 = Disables volume ramp. New volume settings take immediate | |||||
// effect without a ramp | |||||
// 0x1 = Enables volume ramp | |||||
// This field affects DAC_VOL. The volume ramp effects both | |||||
// volume settings and mute When set to 1 a soft mute is enabled. | |||||
// 8 VOL_EXPO_RAMP Exponential Volume Ramp Enable | |||||
// 0x0 = Linear ramp over top 4 volume octaves | |||||
// 0x1 = Exponential ramp over full volume range | |||||
// This bit only takes effect if VOL_RAMP_EN is 1. | |||||
// 3 DAC_MUTE_RIGHT DAC Right Mute (default=1) | |||||
// 0x0 = Unmute | |||||
// 0x1 = Muted | |||||
// If VOL_RAMP_EN = 1, this is a soft mute. | |||||
// 2 DAC_MUTE_LEFT DAC Left Mute (default=1) | |||||
// 0x0 = Unmute | |||||
// 0x1 = Muted | |||||
// If VOL_RAMP_EN = 1, this is a soft mute. | |||||
// 1 ADC_HPF_FREEZE ADC High Pass Filter Freeze | |||||
// 0x0 = Normal operation | |||||
// 0x1 = Freeze the ADC high-pass filter offset register. The | |||||
// offset continues to be subtracted from the ADC data stream. | |||||
// 0 ADC_HPF_BYPASS ADC High Pass Filter Bypass | |||||
// 0x0 = Normal operation | |||||
// 0x1 = Bypassed and offset not updated | |||||
#define CHIP_DAC_VOL 0x0010 | |||||
// 15:8 DAC_VOL_RIGHT DAC Right Channel Volume. Set the Right channel DAC volume | |||||
// with 0.5017 dB steps from 0 to -90 dB | |||||
// 0x3B and less = Reserved | |||||
// 0x3C = 0 dB | |||||
// 0x3D = -0.5 dB | |||||
// 0xF0 = -90 dB | |||||
// 0xFC and greater = Muted | |||||
// If VOL_RAMP_EN = 1, there is an automatic ramp to the | |||||
// new volume setting. | |||||
// 7:0 DAC_VOL_LEFT DAC Left Channel Volume. Set the Left channel DAC volume | |||||
// with 0.5017 dB steps from 0 to -90 dB | |||||
// 0x3B and less = Reserved | |||||
// 0x3C = 0 dB | |||||
// 0x3D = -0.5 dB | |||||
// 0xF0 = -90 dB | |||||
// 0xFC and greater = Muted | |||||
// If VOL_RAMP_EN = 1, there is an automatic ramp to the | |||||
// new volume setting. | |||||
#define CHIP_PAD_STRENGTH 0x0014 | |||||
// 9:8 I2S_LRCLK I2S LRCLK Pad Drive Strength (default=1) | |||||
// Sets drive strength for output pads per the table below. | |||||
// VDDIO 1.8 V 2.5 V 3.3 V | |||||
// 0x0 = Disable | |||||
// 0x1 = 1.66 mA 2.87 mA 4.02 mA | |||||
// 0x2 = 3.33 mA 5.74 mA 8.03 mA | |||||
// 0x3 = 4.99 mA 8.61 mA 12.05 mA | |||||
// 7:6 I2S_SCLK I2S SCLK Pad Drive Strength (default=1) | |||||
// 5:4 I2S_DOUT I2S DOUT Pad Drive Strength (default=1) | |||||
// 3:2 CTRL_DATA I2C DATA Pad Drive Strength (default=3) | |||||
// 1:0 CTRL_CLK I2C CLK Pad Drive Strength (default=3) | |||||
// (all use same table as I2S_LRCLK) | |||||
#define CHIP_ANA_ADC_CTRL 0x0020 | |||||
// 8 ADC_VOL_M6DB ADC Volume Range Reduction | |||||
// This bit shifts both right and left analog ADC volume | |||||
// range down by 6.0 dB. | |||||
// 0x0 = No change in ADC range | |||||
// 0x1 = ADC range reduced by 6.0 dB | |||||
// 7:4 ADC_VOL_RIGHT ADC Right Channel Volume | |||||
// Right channel analog ADC volume control in 1.5 dB steps. | |||||
// 0x0 = 0 dB | |||||
// 0x1 = +1.5 dB | |||||
// ... | |||||
// 0xF = +22.5 dB | |||||
// This range is -6.0 dB to +16.5 dB if ADC_VOL_M6DB is set to 1. | |||||
// 3:0 ADC_VOL_LEFT ADC Left Channel Volume | |||||
// (same scale as ADC_VOL_RIGHT) | |||||
#define CHIP_ANA_HP_CTRL 0x0022 | |||||
// 14:8 HP_VOL_RIGHT Headphone Right Channel Volume (default 0x18) | |||||
// Right channel headphone volume control with 0.5 dB steps. | |||||
// 0x00 = +12 dB | |||||
// 0x01 = +11.5 dB | |||||
// 0x18 = 0 dB | |||||
// ... | |||||
// 0x7F = -51.5 dB | |||||
// 6:0 HP_VOL_LEFT Headphone Left Channel Volume (default 0x18) | |||||
// (same scale as HP_VOL_RIGHT) | |||||
#define CHIP_ANA_CTRL 0x0024 | |||||
// 8 MUTE_LO LINEOUT Mute, 0 = Unmute, 1 = Mute (default 1) | |||||
// 6 SELECT_HP Select the headphone input, 0 = DAC, 1 = LINEIN | |||||
// 5 EN_ZCD_HP Enable the headphone zero cross detector (ZCD) | |||||
// 0x0 = HP ZCD disabled | |||||
// 0x1 = HP ZCD enabled | |||||
// 4 MUTE_HP Mute the headphone outputs, 0 = Unmute, 1 = Mute (default) | |||||
// 2 SELECT_ADC Select the ADC input, 0 = Microphone, 1 = LINEIN | |||||
// 1 EN_ZCD_ADC Enable the ADC analog zero cross detector (ZCD) | |||||
// 0x0 = ADC ZCD disabled | |||||
// 0x1 = ADC ZCD enabled | |||||
// 0 MUTE_ADC Mute the ADC analog volume, 0 = Unmute, 1 = Mute (default) | |||||
#define CHIP_LINREG_CTRL 0x0026 | |||||
// 6 VDDC_MAN_ASSN Determines chargepump source when VDDC_ASSN_OVRD is set. | |||||
// 0x0 = VDDA | |||||
// 0x1 = VDDIO | |||||
// 5 VDDC_ASSN_OVRD Charge pump Source Assignment Override | |||||
// 0x0 = Charge pump source is automatically assigned based | |||||
// on higher of VDDA and VDDIO | |||||
// 0x1 = the source of charge pump is manually assigned by | |||||
// VDDC_MAN_ASSN If VDDIO and VDDA are both the same | |||||
// and greater than 3.1 V, VDDC_ASSN_OVRD and | |||||
// VDDC_MAN_ASSN should be used to manually assign | |||||
// VDDIO as the source for charge pump. | |||||
// 3:0 D_PROGRAMMING Sets the VDDD linear regulator output voltage in 50 mV steps. | |||||
// Must clear the LINREG_SIMPLE_POWERUP and STARTUP_POWERUP bits | |||||
// in the 0x0030 (CHIP_ANA_POWER) register after power-up, for | |||||
// this setting to produce the proper VDDD voltage. | |||||
// 0x0 = 1.60 | |||||
// 0xF = 0.85 | |||||
#define CHIP_REF_CTRL 0x0028 // bandgap reference bias voltage and currents | |||||
// 8:4 VAG_VAL Analog Ground Voltage Control | |||||
// These bits control the analog ground voltage in 25 mV steps. | |||||
// This should usually be set to VDDA/2 or lower for best | |||||
// performance (maximum output swing at minimum THD). This VAG | |||||
// reference is also used for the DAC and ADC voltage reference. | |||||
// So changing this voltage scales the output swing of the DAC | |||||
// and the output signal of the ADC. | |||||
// 0x00 = 0.800 V | |||||
// 0x1F = 1.575 V | |||||
// 3:1 BIAS_CTRL Bias control | |||||
// These bits adjust the bias currents for all of the analog | |||||
// blocks. By lowering the bias current a lower quiescent power | |||||
// is achieved. It should be noted that this mode can affect | |||||
// performance by 3-4 dB. | |||||
// 0x0 = Nominal | |||||
// 0x1-0x3=+12.5% | |||||
// 0x4=-12.5% | |||||
// 0x5=-25% | |||||
// 0x6=-37.5% | |||||
// 0x7=-50% | |||||
// 0 SMALL_POP VAG Ramp Control | |||||
// Setting this bit slows down the VAG ramp from ~200 to ~400 ms | |||||
// to reduce the startup pop, but increases the turn on/off time. | |||||
// 0x0 = Normal VAG ramp | |||||
// 0x1 = Slow down VAG ramp | |||||
#define CHIP_MIC_CTRL 0x002A // microphone gain & internal microphone bias | |||||
// 9:8 BIAS_RESISTOR MIC Bias Output Impedance Adjustment | |||||
// Controls an adjustable output impedance for the microphone bias. | |||||
// If this is set to zero the micbias block is powered off and | |||||
// the output is highZ. | |||||
// 0x0 = Powered off | |||||
// 0x1 = 2.0 kohm | |||||
// 0x2 = 4.0 kohm | |||||
// 0x3 = 8.0 kohm | |||||
// 6:4 BIAS_VOLT MIC Bias Voltage Adjustment | |||||
// Controls an adjustable bias voltage for the microphone bias | |||||
// amp in 250 mV steps. This bias voltage setting should be no | |||||
// more than VDDA-200 mV for adequate power supply rejection. | |||||
// 0x0 = 1.25 V | |||||
// ... | |||||
// 0x7 = 3.00 V | |||||
// 1:0 GAIN MIC Amplifier Gain | |||||
// Sets the microphone amplifier gain. At 0 dB setting the THD | |||||
// can be slightly higher than other paths- typically around | |||||
// ~65 dB. At other gain settings the THD are better. | |||||
// 0x0 = 0 dB | |||||
// 0x1 = +20 dB | |||||
// 0x2 = +30 dB | |||||
// 0x3 = +40 dB | |||||
#define CHIP_LINE_OUT_CTRL 0x002C | |||||
// 11:8 OUT_CURRENT Controls the output bias current for the LINEOUT amplifiers. The | |||||
// nominal recommended setting for a 10 kohm load with 1.0 nF load cap | |||||
// is 0x3. There are only 5 valid settings. | |||||
// 0x0=0.18 mA | |||||
// 0x1=0.27 mA | |||||
// 0x3=0.36 mA | |||||
// 0x7=0.45 mA | |||||
// 0xF=0.54 mA | |||||
// 5:0 LO_VAGCNTRL LINEOUT Amplifier Analog Ground Voltage | |||||
// Controls the analog ground voltage for the LINEOUT amplifiers | |||||
// in 25 mV steps. This should usually be set to VDDIO/2. | |||||
// 0x00 = 0.800 V | |||||
// ... | |||||
// 0x1F = 1.575 V | |||||
// ... | |||||
// 0x23 = 1.675 V | |||||
// 0x24-0x3F are invalid | |||||
#define CHIP_LINE_OUT_VOL 0x002E | |||||
// 12:8 LO_VOL_RIGHT LINEOUT Right Channel Volume (default=4) | |||||
// Controls the right channel LINEOUT volume in 0.5 dB steps. | |||||
// Higher codes have more attenuation. | |||||
// 4:0 LO_VOL_LEFT LINEOUT Left Channel Output Level (default=4) | |||||
// Used to normalize the output level of the left line output | |||||
// to full scale based on the values used to set | |||||
// LINE_OUT_CTRL->LO_VAGCNTRL and CHIP_REF_CTRL->VAG_VAL. | |||||
// In general this field should be set to: | |||||
// 40*log((VAG_VAL)/(LO_VAGCNTRL)) + 15 | |||||
// Suggested values based on typical VDDIO and VDDA voltages. | |||||
// VDDA VAG_VAL VDDIO LO_VAGCNTRL LO_VOL_* | |||||
// 1.8 V 0.9 3.3 V 1.55 0x06 | |||||
// 1.8 V 0.9 1.8 V 0.9 0x0F | |||||
// 3.3 V 1.55 1.8 V 0.9 0x19 | |||||
// 3.3 V 1.55 3.3 V 1.55 0x0F | |||||
// After setting to the nominal voltage, this field can be used | |||||
// to adjust the output level in +/-0.5 dB increments by using | |||||
// values higher or lower than the nominal setting. | |||||
#define CHIP_ANA_POWER 0x0030 // power down controls for the analog blocks. | |||||
// The only other power-down controls are BIAS_RESISTOR in the MIC_CTRL register | |||||
// and the EN_ZCD control bits in ANA_CTRL. | |||||
// 14 DAC_MONO While DAC_POWERUP is set, this allows the DAC to be put into left only | |||||
// mono operation for power savings. 0=mono, 1=stereo (default) | |||||
// 13 LINREG_SIMPLE_POWERUP Power up the simple (low power) digital supply regulator. | |||||
// After reset, this bit can be cleared IF VDDD is driven | |||||
// externally OR the primary digital linreg is enabled with | |||||
// LINREG_D_POWERUP | |||||
// 12 STARTUP_POWERUP Power up the circuitry needed during the power up ramp and reset. | |||||
// After reset this bit can be cleared if VDDD is coming from | |||||
// an external source. | |||||
// 11 VDDC_CHRGPMP_POWERUP Power up the VDDC charge pump block. If neither VDDA or VDDIO | |||||
// is 3.0 V or larger this bit should be cleared before analog | |||||
// blocks are powered up. | |||||
// 10 PLL_POWERUP PLL Power Up, 0 = Power down, 1 = Power up | |||||
// When cleared, the PLL is turned off. This must be set before | |||||
// CHIP_CLK_CTRL->MCLK_FREQ is programmed to 0x3. The | |||||
// CHIP_PLL_CTRL register must be configured correctly before | |||||
// setting this bit. | |||||
// 9 LINREG_D_POWERUP Power up the primary VDDD linear regulator, 0 = Power down, 1 = Power up | |||||
// 8 VCOAMP_POWERUP Power up the PLL VCO amplifier, 0 = Power down, 1 = Power up | |||||
// 7 VAG_POWERUP Power up the VAG reference buffer. | |||||
// Setting this bit starts the power up ramp for the headphone | |||||
// and LINEOUT. The headphone (and/or LINEOUT) powerup should | |||||
// be set BEFORE clearing this bit. When this bit is cleared | |||||
// the power-down ramp is started. The headphone (and/or LINEOUT) | |||||
// powerup should stay set until the VAG is fully ramped down | |||||
// (200 to 400 ms after clearing this bit). | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 6 ADC_MONO While ADC_POWERUP is set, this allows the ADC to be put into left only | |||||
// mono operation for power savings. This mode is useful when | |||||
// only using the microphone input. | |||||
// 0x0 = Mono (left only), 0x1 = Stereo | |||||
// 5 REFTOP_POWERUP Power up the reference bias currents | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// This bit can be cleared when the part is a sleep state | |||||
// to minimize analog power. | |||||
// 4 HEADPHONE_POWERUP Power up the headphone amplifiers | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 3 DAC_POWERUP Power up the DACs | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 2 CAPLESS_HEADPHONE_POWERUP Power up the capless headphone mode | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 1 ADC_POWERUP Power up the ADCs | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 0 LINEOUT_POWERUP Power up the LINEOUT amplifiers | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
#define CHIP_PLL_CTRL 0x0032 | |||||
// 15:11 INT_DIVISOR | |||||
// 10:0 FRAC_DIVISOR | |||||
#define CHIP_CLK_TOP_CTRL 0x0034 | |||||
// 11 ENABLE_INT_OSC Setting this bit enables an internal oscillator to be used for the | |||||
// zero cross detectors, the short detect recovery, and the | |||||
// charge pump. This allows the I2S clock to be shut off while | |||||
// still operating an analog signal path. This bit can be kept | |||||
// on when the I2S clock is enabled, but the I2S clock is more | |||||
// accurate so it is preferred to clear this bit when I2S is present. | |||||
// 3 INPUT_FREQ_DIV2 SYS_MCLK divider before PLL input | |||||
// 0x0 = pass through | |||||
// 0x1 = SYS_MCLK is divided by 2 before entering PLL | |||||
// This must be set when the input clock is above 17 Mhz. This | |||||
// has no effect when the PLL is powered down. | |||||
#define CHIP_ANA_STATUS 0x0036 | |||||
// 9 LRSHORT_STS This bit is high whenever a short is detected on the left or right | |||||
// channel headphone drivers. | |||||
// 8 CSHORT_STS This bit is high whenever a short is detected on the capless headphone | |||||
// common/center channel driver. | |||||
// 4 PLL_IS_LOCKED This bit goes high after the PLL is locked. | |||||
#define CHIP_ANA_TEST1 0x0038 // intended only for debug. | |||||
#define CHIP_ANA_TEST2 0x003A // intended only for debug. | |||||
#define CHIP_SHORT_CTRL 0x003C | |||||
// 14:12 LVLADJR Right channel headphone short detector in 25 mA steps. | |||||
// 0x3=25 mA | |||||
// 0x2=50 mA | |||||
// 0x1=75 mA | |||||
// 0x0=100 mA | |||||
// 0x4=125 mA | |||||
// 0x5=150 mA | |||||
// 0x6=175 mA | |||||
// 0x7=200 mA | |||||
// This trip point can vary by ~30% over process so leave plenty | |||||
// of guard band to avoid false trips. This short detect trip | |||||
// point is also effected by the bias current adjustments made | |||||
// by CHIP_REF_CTRL->BIAS_CTRL and by CHIP_ANA_TEST1->HP_IALL_ADJ. | |||||
// 10:8 LVLADJL Left channel headphone short detector in 25 mA steps. | |||||
// (same scale as LVLADJR) | |||||
// 6:4 LVLADJC Capless headphone center channel short detector in 50 mA steps. | |||||
// 0x3=50 mA | |||||
// 0x2=100 mA | |||||
// 0x1=150 mA | |||||
// 0x0=200 mA | |||||
// 0x4=250 mA | |||||
// 0x5=300 mA | |||||
// 0x6=350 mA | |||||
// 0x7=400 mA | |||||
// 3:2 MODE_LR Behavior of left/right short detection | |||||
// 0x0 = Disable short detector, reset short detect latch, | |||||
// software view non-latched short signal | |||||
// 0x1 = Enable short detector and reset the latch at timeout | |||||
// (every ~50 ms) | |||||
// 0x2 = This mode is not used/invalid | |||||
// 0x3 = Enable short detector with only manual reset (have | |||||
// to return to 0x0 to reset the latch) | |||||
// 1:0 MODE_CM Behavior of capless headphone central short detection | |||||
// (same settings as MODE_LR) | |||||
#define DAP_CONTROL 0x0100 | |||||
#define DAP_PEQ 0x0102 | |||||
#define DAP_BASS_ENHANCE 0x0104 | |||||
#define DAP_BASS_ENHANCE_CTRL 0x0106 | |||||
#define DAP_AUDIO_EQ 0x0108 | |||||
#define DAP_SGTL_SURROUND 0x010A | |||||
#define DAP_FILTER_COEF_ACCESS 0x010C | |||||
#define DAP_COEF_WR_B0_MSB 0x010E | |||||
#define DAP_COEF_WR_B0_LSB 0x0110 | |||||
#define DAP_AUDIO_EQ_BASS_BAND0 0x0116 // 115 Hz | |||||
#define DAP_AUDIO_EQ_BAND1 0x0118 // 330 Hz | |||||
#define DAP_AUDIO_EQ_BAND2 0x011A // 990 Hz | |||||
#define DAP_AUDIO_EQ_BAND3 0x011C // 3000 Hz | |||||
#define DAP_AUDIO_EQ_TREBLE_BAND4 0x011E // 9900 Hz | |||||
#define DAP_MAIN_CHAN 0x0120 | |||||
#define DAP_MIX_CHAN 0x0122 | |||||
#define DAP_AVC_CTRL 0x0124 | |||||
#define DAP_AVC_THRESHOLD 0x0126 | |||||
#define DAP_AVC_ATTACK 0x0128 | |||||
#define DAP_AVC_DECAY 0x012A | |||||
#define DAP_COEF_WR_B1_MSB 0x012C | |||||
#define DAP_COEF_WR_B1_LSB 0x012E | |||||
#define DAP_COEF_WR_B2_MSB 0x0130 | |||||
#define DAP_COEF_WR_B2_LSB 0x0132 | |||||
#define DAP_COEF_WR_A1_MSB 0x0134 | |||||
#define DAP_COEF_WR_A1_LSB 0x0136 | |||||
#define DAP_COEF_WR_A2_MSB 0x0138 | |||||
#define DAP_COEF_WR_A2_LSB 0x013A | |||||
#define SGTL5000_I2C_ADDR 0x0A // CTRL_ADR0_CS pin low (normal configuration) | |||||
//#define SGTL5000_I2C_ADDR 0x2A // CTRL_ADR0_CS pin high | |||||
bool AudioControlSGTL5000::enable(void) | |||||
{ | |||||
//unsigned int n; | |||||
muted = true; | |||||
Wire.begin(); | |||||
delay(5); | |||||
//Serial.print("chip ID = "); | |||||
//delay(5); | |||||
//n = read(CHIP_ID); | |||||
//Serial.println(n, HEX); | |||||
write(CHIP_ANA_POWER, 0x4060); // VDDD is externally driven with 1.8V | |||||
write(CHIP_LINREG_CTRL, 0x006C); // VDDA & VDDIO both over 3.1V | |||||
write(CHIP_REF_CTRL, 0x01F1); // VAG=1.575 slow ramp, normal bias current | |||||
write(CHIP_LINE_OUT_CTRL, 0x0322); // LO_VAGCNTRL=1.65V, OUT_CURRENT=0.36mA | |||||
write(CHIP_SHORT_CTRL, 0x4446); // allow up to 125mA | |||||
write(CHIP_ANA_CTRL, 0x0137); // enable zero cross detectors | |||||
write(CHIP_ANA_POWER, 0x40FF); // power up: lineout, hp, adc, dac | |||||
write(CHIP_DIG_POWER, 0x0073); // power up all digital stuff | |||||
delay(400); | |||||
// 40*log((1.575)/(1.65)) + 15 = 13.1391993746043 but it seems wrong, 5 is better... | |||||
write(CHIP_LINE_OUT_VOL, 0x0505); // TODO: correct value for 3.3V | |||||
write(CHIP_CLK_CTRL, 0x0004); // 44.1 kHz, 256*Fs | |||||
write(CHIP_I2S_CTRL, 0x0130); // SCLK=32*Fs, 16bit, I2S format | |||||
// default signal routing is ok? | |||||
write(CHIP_SSS_CTRL, 0x0010); // ADC->I2S, I2S->DAC | |||||
write(CHIP_ADCDAC_CTRL, 0x0000); // disable dac mute | |||||
write(CHIP_DAC_VOL, 0x3C3C); // digital gain, 0dB | |||||
write(CHIP_ANA_HP_CTRL, 0x7F7F); // set volume (lowest level) | |||||
write(CHIP_ANA_CTRL, 0x0136); // enable zero cross detectors | |||||
//mute = false; | |||||
return true; | |||||
} | |||||
unsigned int AudioControlSGTL5000::read(unsigned int reg) | |||||
{ | |||||
unsigned int val; | |||||
Wire.beginTransmission(SGTL5000_I2C_ADDR); | |||||
Wire.write(reg >> 8); | |||||
Wire.write(reg); | |||||
if (Wire.endTransmission(false) != 0) return 0; | |||||
if (Wire.requestFrom(SGTL5000_I2C_ADDR, 2) < 2) return 0; | |||||
val = Wire.read() << 8; | |||||
val |= Wire.read(); | |||||
return val; | |||||
} | |||||
bool AudioControlSGTL5000::write(unsigned int reg, unsigned int val) | |||||
{ | |||||
if (reg == CHIP_ANA_CTRL) ana_ctrl = val; | |||||
Wire.beginTransmission(SGTL5000_I2C_ADDR); | |||||
Wire.write(reg >> 8); | |||||
Wire.write(reg); | |||||
Wire.write(val >> 8); | |||||
Wire.write(val); | |||||
if (Wire.endTransmission() == 0) return true; | |||||
return false; | |||||
} | |||||
unsigned int AudioControlSGTL5000::modify(unsigned int reg, unsigned int val, unsigned int iMask) | |||||
{ | |||||
unsigned int val1 = (read(reg)&(~iMask))|val; | |||||
if(!write(reg,val1)) return 0; | |||||
return val1; | |||||
} | |||||
bool AudioControlSGTL5000::volumeInteger(unsigned int n) | |||||
{ | |||||
if (n == 0) { | |||||
muted = true; | |||||
write(CHIP_ANA_HP_CTRL, 0x7F7F); | |||||
return muteHeadphone(); | |||||
} else if (n > 0x80) { | |||||
n = 0; | |||||
} else { | |||||
n = 0x80 - n; | |||||
} | |||||
if (muted) { | |||||
muted = false; | |||||
unmuteHeadphone(); | |||||
} | |||||
n = n | (n << 8); | |||||
return write(CHIP_ANA_HP_CTRL, n); // set volume | |||||
} | |||||
bool AudioControlSGTL5000::volume(float left, float right) | |||||
{ | |||||
unsigned short m=((0x7F-calcVol(right,0x7F))<<8)|(0x7F-calcVol(left,0x7F)); | |||||
return write(CHIP_ANA_HP_CTRL, m); | |||||
} | |||||
// CHIP_LINE_OUT_VOL | |||||
unsigned short AudioControlSGTL5000::lo_lvl(uint8_t n) | |||||
{ | |||||
n&=31; | |||||
return modify(CHIP_LINE_OUT_VOL,(n<<8)|n,(31<<8)|31); | |||||
} | |||||
unsigned short AudioControlSGTL5000::lo_lvl(uint8_t left, uint8_t right) | |||||
{ | |||||
left&=31; | |||||
right&=31; | |||||
return modify(CHIP_LINE_OUT_VOL,(right<<8)|left,(31<<8)|31); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dac_vol(float n) // set both directly | |||||
{ | |||||
if(read(CHIP_ADCDAC_CTRL)&(3<<2)!=((n>0 ? 0:3)<<2)) modify(CHIP_ADCDAC_CTRL,(n>0 ? 0:3)<<2,3<<2); | |||||
unsigned char m=calcVol(n,0xC0); | |||||
return modify(CHIP_DAC_VOL,((0xFC-m)<<8)|(0xFC-m),65535); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dac_vol(float left, float right) | |||||
{ | |||||
unsigned short adcdac=((right>0 ? 0:2)|(left>0 ? 0:1))<<2; | |||||
if(read(CHIP_ADCDAC_CTRL)&(3<<2)!=adcdac) modify(CHIP_ADCDAC_CTRL,adcdac,1<<2); | |||||
unsigned short m=(0xFC-calcVol(right,0xC0))<<8|(0xFC-calcVol(left,0xC0)); | |||||
return modify(CHIP_DAC_VOL,m,65535); | |||||
} | |||||
// DAP_CONTROL | |||||
unsigned short AudioControlSGTL5000::dap_mix_enable(uint8_t n) | |||||
{ | |||||
return modify(DAP_CONTROL,(n&1)<<4,1<<4); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dap_enable(uint8_t n) | |||||
{ | |||||
if(n) n=1; | |||||
unsigned char DAC=1+(2*n); // I2S_IN if n==0 else DAP | |||||
modify(DAP_CONTROL,n,1); | |||||
return modify(CHIP_SSS_CTRL,(0<<6)|(DAC<<4),(3<<6)|(3<<4)); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dap_enable(void) | |||||
{ | |||||
return dap_enable(1); | |||||
} | |||||
// DAP_PEQ | |||||
unsigned short AudioControlSGTL5000::dap_peqs(uint8_t n) // valid to n&7, 0 thru 7 filters enabled. | |||||
{ | |||||
return modify(DAP_PEQ,(n&7),7); | |||||
} | |||||
// DAP_AUDIO_EQ | |||||
unsigned short AudioControlSGTL5000::dap_audio_eq(uint8_t n) // 0=NONE, 1=PEQ (7 IIR Biquad filters), 2=TONE (tone), 3=GEQ (5 band EQ) | |||||
{ | |||||
return modify(DAP_AUDIO_EQ,n&3,3); | |||||
} | |||||
/******************************************************************/ | |||||
void AudioFilterFIR::begin(short *cp,int n_coeffs) | void AudioFilterFIR::begin(short *cp,int n_coeffs) | ||||
{ | { | ||||
} | } | ||||
// DAP_AUDIO_EQ_BASS_BAND0 & DAP_AUDIO_EQ_BAND1 & DAP_AUDIO_EQ_BAND2 etc etc | |||||
unsigned short AudioControlSGTL5000::dap_audio_eq_band(uint8_t bandNum, float n) // by signed percentage -100/+100; dap_audio_eq(3); | |||||
{ // 0x00==-12dB, 0x2F==0dB, 0x5F==12dB | |||||
n=((n/100)*48)+0.499; | |||||
if(n<-47) n=-47; | |||||
if(n>48) n=48; | |||||
n+=47; | |||||
return modify(DAP_AUDIO_EQ_BASS_BAND0+(bandNum*2),(unsigned int)n,127); | |||||
} | |||||
void AudioControlSGTL5000::dap_audio_eq_geq(float bass, float mid_bass, float midrange, float mid_treble, float treble) | |||||
{ | |||||
dap_audio_eq_band(0,bass); | |||||
dap_audio_eq_band(1,mid_bass); | |||||
dap_audio_eq_band(2,midrange); | |||||
dap_audio_eq_band(3,mid_treble); | |||||
dap_audio_eq_band(4,treble); | |||||
} | |||||
void AudioControlSGTL5000::dap_audio_eq_tone(float bass, float treble) // dap_audio_eq(2); | |||||
{ | |||||
dap_audio_eq_band(0,bass); | |||||
dap_audio_eq_band(4,treble); | |||||
} | |||||
// SGTL5000 PEQ Coefficient loader | |||||
void AudioControlSGTL5000::load_peq(uint8_t filterNum, int *filterParameters) | |||||
{ | |||||
// 1111 11111111 11111111 | |||||
write(DAP_COEF_WR_B0_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_B0_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_B1_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_B1_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_B2_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_B2_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_A1_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_A1_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_A2_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_A2_LSB,(*filterParameters++)&15); | |||||
write(DAP_FILTER_COEF_ACCESS,(uint16_t)0x100|filterNum); | |||||
delay(10); // seems necessary, didn't work for 1ms. | |||||
modify(DAP_FILTER_COEF_ACCESS,(uint16_t)filterNum,15); | |||||
} | |||||
unsigned char AudioControlSGTL5000::calcVol(float n, unsigned char range) | |||||
{ | |||||
n=(n*(((float)range)/100))+0.499; | |||||
if ((unsigned char)n>range) n=range; | |||||
return (unsigned char)n; | |||||
} | |||||
// if(SGTL5000_PEQ) quantization_unit=524288; if(AudioFilterBiquad) quantization_unit=2147483648; | |||||
void calcBiquad(uint8_t filtertype, float fC, float dB_Gain, float Q, uint32_t quantization_unit, uint32_t fS, int *coef) | |||||
{ | |||||
// I used resources like http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt | |||||
// to make this routine, I tested most of the filter types and they worked. Such filters have limits and | |||||
// before calling this routine with varying values the end user should check that those values are limited | |||||
// to valid results. | |||||
float A; | |||||
if(filtertype<FILTER_PARAEQ) A=pow(10,dB_Gain/20); else A=pow(10,dB_Gain/40); | |||||
float W0 = 2*3.14159265358979323846*fC/fS; | |||||
float cosw=cos(W0); | |||||
float sinw=sin(W0); | |||||
//float alpha = sinw*sinh((log(2)/2)*BW*W0/sinw); | |||||
//float beta = sqrt(2*A); | |||||
float alpha = sinw / (2 * Q); | |||||
float beta = sqrt(A)/Q; | |||||
float b0,b1,b2,a0,a1,a2; | |||||
switch(filtertype) { | |||||
case FILTER_LOPASS: | |||||
b0 = (1.0F - cosw) * 0.5F; // =(1-COS($H$2))/2 | |||||
b1 = 1.0F - cosw; | |||||
b2 = (1.0F - cosw) * 0.5F; | |||||
a0 = 1.0F + alpha; | |||||
a1 = 2.0F * cosw; | |||||
a2 = alpha - 1.0F; | |||||
break; | |||||
case FILTER_HIPASS: | |||||
b0 = (1.0F + cosw) * 0.5F; | |||||
b1 = -(cosw + 1.0F); | |||||
b2 = (1.0F + cosw) * 0.5F; | |||||
a0 = 1.0F + alpha; | |||||
a1 = 2.0F * cosw; | |||||
a2 = alpha - 1.0F; | |||||
break; | |||||
case FILTER_BANDPASS: | |||||
b0 = alpha; | |||||
b1 = 0.0F; | |||||
b2 = -alpha; | |||||
a0 = 1.0F + alpha; | |||||
a1 = 2.0F * cosw; | |||||
a2 = alpha - 1.0F; | |||||
break; | |||||
case FILTER_NOTCH: | |||||
b0=1; | |||||
b1=-2*cosw; | |||||
b2=1; | |||||
a0=1+alpha; | |||||
a1=2*cosw; | |||||
a2=-(1-alpha); | |||||
break; | |||||
case FILTER_PARAEQ: | |||||
b0 = 1 + (alpha*A); | |||||
b1 =-2 * cosw; | |||||
b2 = 1 - (alpha*A); | |||||
a0 = 1 + (alpha/A); | |||||
a1 = 2 * cosw; | |||||
a2 =-(1-(alpha/A)); | |||||
break; | |||||
case FILTER_LOSHELF: | |||||
b0 = A * ((A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw)); | |||||
b1 = 2.0F * A * ((A-1.0F) - ((A+1.0F)*cosw)); | |||||
b2 = A * ((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw)); | |||||
a0 = (A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw); | |||||
a1 = 2.0F * ((A-1.0F) + ((A+1.0F)*cosw)); | |||||
a2 = -((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw)); | |||||
break; | |||||
case FILTER_HISHELF: | |||||
b0 = A * ((A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw)); | |||||
b1 = -2.0F * A * ((A-1.0F) + ((A+1.0F)*cosw)); | |||||
b2 = A * ((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw)); | |||||
a0 = (A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw); | |||||
a1 = -2.0F * ((A-1.0F) - ((A+1.0F)*cosw)); | |||||
a2 = -((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw)); | |||||
} | |||||
a0=(a0*2)/(float)quantization_unit; // once here instead of five times there... | |||||
b0/=a0; | |||||
*coef++=(int)(b0+0.499); | |||||
b1/=a0; | |||||
*coef++=(int)(b1+0.499); | |||||
b2/=a0; | |||||
*coef++=(int)(b2+0.499); | |||||
a1/=a0; | |||||
*coef++=(int)(a1+0.499); | |||||
a2/=a0; | |||||
*coef++=(int)(a2+0.499); | |||||
} | |||||
/******************************************************************/ | /******************************************************************/ | ||||
#include "Audio.h" | |||||
#include "arm_math.h" | |||||
#include "Wire.h" | |||||
#define CHIP_ID 0x0000 | |||||
// 15:8 PARTID 0xA0 - 8 bit identifier for SGTL5000 | |||||
// 7:0 REVID 0x00 - revision number for SGTL5000. | |||||
#define CHIP_DIG_POWER 0x0002 | |||||
// 6 ADC_POWERUP 1=Enable, 0=disable the ADC block, both digital & analog, | |||||
// 5 DAC_POWERUP 1=Enable, 0=disable the DAC block, both analog and digital | |||||
// 4 DAP_POWERUP 1=Enable, 0=disable the DAP block | |||||
// 1 I2S_OUT_POWERUP 1=Enable, 0=disable the I2S data output | |||||
// 0 I2S_IN_POWERUP 1=Enable, 0=disable the I2S data input | |||||
#define CHIP_CLK_CTRL 0x0004 | |||||
// 5:4 RATE_MODE Sets the sample rate mode. MCLK_FREQ is still specified | |||||
// relative to the rate in SYS_FS | |||||
// 0x0 = SYS_FS specifies the rate | |||||
// 0x1 = Rate is 1/2 of the SYS_FS rate | |||||
// 0x2 = Rate is 1/4 of the SYS_FS rate | |||||
// 0x3 = Rate is 1/6 of the SYS_FS rate | |||||
// 3:2 SYS_FS Sets the internal system sample rate (default=2) | |||||
// 0x0 = 32 kHz | |||||
// 0x1 = 44.1 kHz | |||||
// 0x2 = 48 kHz | |||||
// 0x3 = 96 kHz | |||||
// 1:0 MCLK_FREQ Identifies incoming SYS_MCLK frequency and if the PLL should be used | |||||
// 0x0 = 256*Fs | |||||
// 0x1 = 384*Fs | |||||
// 0x2 = 512*Fs | |||||
// 0x3 = Use PLL | |||||
// The 0x3 (Use PLL) setting must be used if the SYS_MCLK is not | |||||
// a standard multiple of Fs (256, 384, or 512). This setting can | |||||
// also be used if SYS_MCLK is a standard multiple of Fs. | |||||
// Before this field is set to 0x3 (Use PLL), the PLL must be | |||||
// powered up by setting CHIP_ANA_POWER->PLL_POWERUP and | |||||
// CHIP_ANA_POWER->VCOAMP_POWERUP. Also, the PLL dividers must | |||||
// be calculated based on the external MCLK rate and | |||||
// CHIP_PLL_CTRL register must be set (see CHIP_PLL_CTRL register | |||||
// description details on how to calculate the divisors). | |||||
#define CHIP_I2S_CTRL 0x0006 | |||||
// 8 SCLKFREQ Sets frequency of I2S_SCLK when in master mode (MS=1). When in slave | |||||
// mode (MS=0), this field must be set appropriately to match SCLK input | |||||
// rate. | |||||
// 0x0 = 64Fs | |||||
// 0x1 = 32Fs - Not supported for RJ mode (I2S_MODE = 1) | |||||
// 7 MS Configures master or slave of I2S_LRCLK and I2S_SCLK. | |||||
// 0x0 = Slave: I2S_LRCLK an I2S_SCLK are inputs | |||||
// 0x1 = Master: I2S_LRCLK and I2S_SCLK are outputs | |||||
// NOTE: If the PLL is used (CHIP_CLK_CTRL->MCLK_FREQ==0x3), | |||||
// the SGTL5000 must be a master of the I2S port (MS==1) | |||||
// 6 SCLK_INV Sets the edge that data (input and output) is clocked in on for I2S_SCLK | |||||
// 0x0 = data is valid on rising edge of I2S_SCLK | |||||
// 0x1 = data is valid on falling edge of I2S_SCLK | |||||
// 5:4 DLEN I2S data length (default=1) | |||||
// 0x0 = 32 bits (only valid when SCLKFREQ=0), | |||||
// not valid for Right Justified Mode | |||||
// 0x1 = 24 bits (only valid when SCLKFREQ=0) | |||||
// 0x2 = 20 bits | |||||
// 0x3 = 16 bits | |||||
// 3:2 I2S_MODE Sets the mode for the I2S port | |||||
// 0x0 = I2S mode or Left Justified (Use LRALIGN to select) | |||||
// 0x1 = Right Justified Mode | |||||
// 0x2 = PCM Format A/B | |||||
// 0x3 = RESERVED | |||||
// 1 LRALIGN I2S_LRCLK Alignment to data word. Not used for Right Justified mode | |||||
// 0x0 = Data word starts 1 I2S_SCLK delay after I2S_LRCLK | |||||
// transition (I2S format, PCM format A) | |||||
// 0x1 = Data word starts after I2S_LRCLK transition (left | |||||
// justified format, PCM format B) | |||||
// 0 LRPOL I2S_LRCLK Polarity when data is presented. | |||||
// 0x0 = I2S_LRCLK = 0 - Left, 1 - Right | |||||
// 1x0 = I2S_LRCLK = 0 - Right, 1 - Left | |||||
// The left subframe should be presented first regardless of | |||||
// the setting of LRPOL. | |||||
#define CHIP_SSS_CTRL 0x000A | |||||
// 14 DAP_MIX_LRSWAP DAP Mixer Input Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the DAP MIXER Input are swapped. | |||||
// 13 DAP_LRSWAP DAP Mixer Input Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the DAP Input are swapped | |||||
// 12 DAC_LRSWAP DAC Input Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the DAC are swapped | |||||
// 10 I2S_LRSWAP I2S_DOUT Swap | |||||
// 0x0 = Normal Operation | |||||
// 0x1 = Left and Right channels for the I2S_DOUT are swapped | |||||
// 9:8 DAP_MIX_SELECT Select data source for DAP mixer | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = Reserved | |||||
// 7:6 DAP_SELECT Select data source for DAP | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = Reserved | |||||
// 5:4 DAC_SELECT Select data source for DAC (default=1) | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = DAP | |||||
// 1:0 I2S_SELECT Select data source for I2S_DOUT | |||||
// 0x0 = ADC | |||||
// 0x1 = I2S_IN | |||||
// 0x2 = Reserved | |||||
// 0x3 = DAP | |||||
#define CHIP_ADCDAC_CTRL 0x000E | |||||
// 13 VOL_BUSY_DAC_RIGHT Volume Busy DAC Right | |||||
// 0x0 = Ready | |||||
// 0x1 = Busy - This indicates the channel has not reached its | |||||
// programmed volume/mute level | |||||
// 12 VOL_BUSY_DAC_LEFT Volume Busy DAC Left | |||||
// 0x0 = Ready | |||||
// 0x1 = Busy - This indicates the channel has not reached its | |||||
// programmed volume/mute level | |||||
// 9 VOL_RAMP_EN Volume Ramp Enable (default=1) | |||||
// 0x0 = Disables volume ramp. New volume settings take immediate | |||||
// effect without a ramp | |||||
// 0x1 = Enables volume ramp | |||||
// This field affects DAC_VOL. The volume ramp effects both | |||||
// volume settings and mute When set to 1 a soft mute is enabled. | |||||
// 8 VOL_EXPO_RAMP Exponential Volume Ramp Enable | |||||
// 0x0 = Linear ramp over top 4 volume octaves | |||||
// 0x1 = Exponential ramp over full volume range | |||||
// This bit only takes effect if VOL_RAMP_EN is 1. | |||||
// 3 DAC_MUTE_RIGHT DAC Right Mute (default=1) | |||||
// 0x0 = Unmute | |||||
// 0x1 = Muted | |||||
// If VOL_RAMP_EN = 1, this is a soft mute. | |||||
// 2 DAC_MUTE_LEFT DAC Left Mute (default=1) | |||||
// 0x0 = Unmute | |||||
// 0x1 = Muted | |||||
// If VOL_RAMP_EN = 1, this is a soft mute. | |||||
// 1 ADC_HPF_FREEZE ADC High Pass Filter Freeze | |||||
// 0x0 = Normal operation | |||||
// 0x1 = Freeze the ADC high-pass filter offset register. The | |||||
// offset continues to be subtracted from the ADC data stream. | |||||
// 0 ADC_HPF_BYPASS ADC High Pass Filter Bypass | |||||
// 0x0 = Normal operation | |||||
// 0x1 = Bypassed and offset not updated | |||||
#define CHIP_DAC_VOL 0x0010 | |||||
// 15:8 DAC_VOL_RIGHT DAC Right Channel Volume. Set the Right channel DAC volume | |||||
// with 0.5017 dB steps from 0 to -90 dB | |||||
// 0x3B and less = Reserved | |||||
// 0x3C = 0 dB | |||||
// 0x3D = -0.5 dB | |||||
// 0xF0 = -90 dB | |||||
// 0xFC and greater = Muted | |||||
// If VOL_RAMP_EN = 1, there is an automatic ramp to the | |||||
// new volume setting. | |||||
// 7:0 DAC_VOL_LEFT DAC Left Channel Volume. Set the Left channel DAC volume | |||||
// with 0.5017 dB steps from 0 to -90 dB | |||||
// 0x3B and less = Reserved | |||||
// 0x3C = 0 dB | |||||
// 0x3D = -0.5 dB | |||||
// 0xF0 = -90 dB | |||||
// 0xFC and greater = Muted | |||||
// If VOL_RAMP_EN = 1, there is an automatic ramp to the | |||||
// new volume setting. | |||||
#define CHIP_PAD_STRENGTH 0x0014 | |||||
// 9:8 I2S_LRCLK I2S LRCLK Pad Drive Strength (default=1) | |||||
// Sets drive strength for output pads per the table below. | |||||
// VDDIO 1.8 V 2.5 V 3.3 V | |||||
// 0x0 = Disable | |||||
// 0x1 = 1.66 mA 2.87 mA 4.02 mA | |||||
// 0x2 = 3.33 mA 5.74 mA 8.03 mA | |||||
// 0x3 = 4.99 mA 8.61 mA 12.05 mA | |||||
// 7:6 I2S_SCLK I2S SCLK Pad Drive Strength (default=1) | |||||
// 5:4 I2S_DOUT I2S DOUT Pad Drive Strength (default=1) | |||||
// 3:2 CTRL_DATA I2C DATA Pad Drive Strength (default=3) | |||||
// 1:0 CTRL_CLK I2C CLK Pad Drive Strength (default=3) | |||||
// (all use same table as I2S_LRCLK) | |||||
#define CHIP_ANA_ADC_CTRL 0x0020 | |||||
// 8 ADC_VOL_M6DB ADC Volume Range Reduction | |||||
// This bit shifts both right and left analog ADC volume | |||||
// range down by 6.0 dB. | |||||
// 0x0 = No change in ADC range | |||||
// 0x1 = ADC range reduced by 6.0 dB | |||||
// 7:4 ADC_VOL_RIGHT ADC Right Channel Volume | |||||
// Right channel analog ADC volume control in 1.5 dB steps. | |||||
// 0x0 = 0 dB | |||||
// 0x1 = +1.5 dB | |||||
// ... | |||||
// 0xF = +22.5 dB | |||||
// This range is -6.0 dB to +16.5 dB if ADC_VOL_M6DB is set to 1. | |||||
// 3:0 ADC_VOL_LEFT ADC Left Channel Volume | |||||
// (same scale as ADC_VOL_RIGHT) | |||||
#define CHIP_ANA_HP_CTRL 0x0022 | |||||
// 14:8 HP_VOL_RIGHT Headphone Right Channel Volume (default 0x18) | |||||
// Right channel headphone volume control with 0.5 dB steps. | |||||
// 0x00 = +12 dB | |||||
// 0x01 = +11.5 dB | |||||
// 0x18 = 0 dB | |||||
// ... | |||||
// 0x7F = -51.5 dB | |||||
// 6:0 HP_VOL_LEFT Headphone Left Channel Volume (default 0x18) | |||||
// (same scale as HP_VOL_RIGHT) | |||||
#define CHIP_ANA_CTRL 0x0024 | |||||
// 8 MUTE_LO LINEOUT Mute, 0 = Unmute, 1 = Mute (default 1) | |||||
// 6 SELECT_HP Select the headphone input, 0 = DAC, 1 = LINEIN | |||||
// 5 EN_ZCD_HP Enable the headphone zero cross detector (ZCD) | |||||
// 0x0 = HP ZCD disabled | |||||
// 0x1 = HP ZCD enabled | |||||
// 4 MUTE_HP Mute the headphone outputs, 0 = Unmute, 1 = Mute (default) | |||||
// 2 SELECT_ADC Select the ADC input, 0 = Microphone, 1 = LINEIN | |||||
// 1 EN_ZCD_ADC Enable the ADC analog zero cross detector (ZCD) | |||||
// 0x0 = ADC ZCD disabled | |||||
// 0x1 = ADC ZCD enabled | |||||
// 0 MUTE_ADC Mute the ADC analog volume, 0 = Unmute, 1 = Mute (default) | |||||
#define CHIP_LINREG_CTRL 0x0026 | |||||
// 6 VDDC_MAN_ASSN Determines chargepump source when VDDC_ASSN_OVRD is set. | |||||
// 0x0 = VDDA | |||||
// 0x1 = VDDIO | |||||
// 5 VDDC_ASSN_OVRD Charge pump Source Assignment Override | |||||
// 0x0 = Charge pump source is automatically assigned based | |||||
// on higher of VDDA and VDDIO | |||||
// 0x1 = the source of charge pump is manually assigned by | |||||
// VDDC_MAN_ASSN If VDDIO and VDDA are both the same | |||||
// and greater than 3.1 V, VDDC_ASSN_OVRD and | |||||
// VDDC_MAN_ASSN should be used to manually assign | |||||
// VDDIO as the source for charge pump. | |||||
// 3:0 D_PROGRAMMING Sets the VDDD linear regulator output voltage in 50 mV steps. | |||||
// Must clear the LINREG_SIMPLE_POWERUP and STARTUP_POWERUP bits | |||||
// in the 0x0030 (CHIP_ANA_POWER) register after power-up, for | |||||
// this setting to produce the proper VDDD voltage. | |||||
// 0x0 = 1.60 | |||||
// 0xF = 0.85 | |||||
#define CHIP_REF_CTRL 0x0028 // bandgap reference bias voltage and currents | |||||
// 8:4 VAG_VAL Analog Ground Voltage Control | |||||
// These bits control the analog ground voltage in 25 mV steps. | |||||
// This should usually be set to VDDA/2 or lower for best | |||||
// performance (maximum output swing at minimum THD). This VAG | |||||
// reference is also used for the DAC and ADC voltage reference. | |||||
// So changing this voltage scales the output swing of the DAC | |||||
// and the output signal of the ADC. | |||||
// 0x00 = 0.800 V | |||||
// 0x1F = 1.575 V | |||||
// 3:1 BIAS_CTRL Bias control | |||||
// These bits adjust the bias currents for all of the analog | |||||
// blocks. By lowering the bias current a lower quiescent power | |||||
// is achieved. It should be noted that this mode can affect | |||||
// performance by 3-4 dB. | |||||
// 0x0 = Nominal | |||||
// 0x1-0x3=+12.5% | |||||
// 0x4=-12.5% | |||||
// 0x5=-25% | |||||
// 0x6=-37.5% | |||||
// 0x7=-50% | |||||
// 0 SMALL_POP VAG Ramp Control | |||||
// Setting this bit slows down the VAG ramp from ~200 to ~400 ms | |||||
// to reduce the startup pop, but increases the turn on/off time. | |||||
// 0x0 = Normal VAG ramp | |||||
// 0x1 = Slow down VAG ramp | |||||
#define CHIP_MIC_CTRL 0x002A // microphone gain & internal microphone bias | |||||
// 9:8 BIAS_RESISTOR MIC Bias Output Impedance Adjustment | |||||
// Controls an adjustable output impedance for the microphone bias. | |||||
// If this is set to zero the micbias block is powered off and | |||||
// the output is highZ. | |||||
// 0x0 = Powered off | |||||
// 0x1 = 2.0 kohm | |||||
// 0x2 = 4.0 kohm | |||||
// 0x3 = 8.0 kohm | |||||
// 6:4 BIAS_VOLT MIC Bias Voltage Adjustment | |||||
// Controls an adjustable bias voltage for the microphone bias | |||||
// amp in 250 mV steps. This bias voltage setting should be no | |||||
// more than VDDA-200 mV for adequate power supply rejection. | |||||
// 0x0 = 1.25 V | |||||
// ... | |||||
// 0x7 = 3.00 V | |||||
// 1:0 GAIN MIC Amplifier Gain | |||||
// Sets the microphone amplifier gain. At 0 dB setting the THD | |||||
// can be slightly higher than other paths- typically around | |||||
// ~65 dB. At other gain settings the THD are better. | |||||
// 0x0 = 0 dB | |||||
// 0x1 = +20 dB | |||||
// 0x2 = +30 dB | |||||
// 0x3 = +40 dB | |||||
#define CHIP_LINE_OUT_CTRL 0x002C | |||||
// 11:8 OUT_CURRENT Controls the output bias current for the LINEOUT amplifiers. The | |||||
// nominal recommended setting for a 10 kohm load with 1.0 nF load cap | |||||
// is 0x3. There are only 5 valid settings. | |||||
// 0x0=0.18 mA | |||||
// 0x1=0.27 mA | |||||
// 0x3=0.36 mA | |||||
// 0x7=0.45 mA | |||||
// 0xF=0.54 mA | |||||
// 5:0 LO_VAGCNTRL LINEOUT Amplifier Analog Ground Voltage | |||||
// Controls the analog ground voltage for the LINEOUT amplifiers | |||||
// in 25 mV steps. This should usually be set to VDDIO/2. | |||||
// 0x00 = 0.800 V | |||||
// ... | |||||
// 0x1F = 1.575 V | |||||
// ... | |||||
// 0x23 = 1.675 V | |||||
// 0x24-0x3F are invalid | |||||
#define CHIP_LINE_OUT_VOL 0x002E | |||||
// 12:8 LO_VOL_RIGHT LINEOUT Right Channel Volume (default=4) | |||||
// Controls the right channel LINEOUT volume in 0.5 dB steps. | |||||
// Higher codes have more attenuation. | |||||
// 4:0 LO_VOL_LEFT LINEOUT Left Channel Output Level (default=4) | |||||
// Used to normalize the output level of the left line output | |||||
// to full scale based on the values used to set | |||||
// LINE_OUT_CTRL->LO_VAGCNTRL and CHIP_REF_CTRL->VAG_VAL. | |||||
// In general this field should be set to: | |||||
// 40*log((VAG_VAL)/(LO_VAGCNTRL)) + 15 | |||||
// Suggested values based on typical VDDIO and VDDA voltages. | |||||
// VDDA VAG_VAL VDDIO LO_VAGCNTRL LO_VOL_* | |||||
// 1.8 V 0.9 3.3 V 1.55 0x06 | |||||
// 1.8 V 0.9 1.8 V 0.9 0x0F | |||||
// 3.3 V 1.55 1.8 V 0.9 0x19 | |||||
// 3.3 V 1.55 3.3 V 1.55 0x0F | |||||
// After setting to the nominal voltage, this field can be used | |||||
// to adjust the output level in +/-0.5 dB increments by using | |||||
// values higher or lower than the nominal setting. | |||||
#define CHIP_ANA_POWER 0x0030 // power down controls for the analog blocks. | |||||
// The only other power-down controls are BIAS_RESISTOR in the MIC_CTRL register | |||||
// and the EN_ZCD control bits in ANA_CTRL. | |||||
// 14 DAC_MONO While DAC_POWERUP is set, this allows the DAC to be put into left only | |||||
// mono operation for power savings. 0=mono, 1=stereo (default) | |||||
// 13 LINREG_SIMPLE_POWERUP Power up the simple (low power) digital supply regulator. | |||||
// After reset, this bit can be cleared IF VDDD is driven | |||||
// externally OR the primary digital linreg is enabled with | |||||
// LINREG_D_POWERUP | |||||
// 12 STARTUP_POWERUP Power up the circuitry needed during the power up ramp and reset. | |||||
// After reset this bit can be cleared if VDDD is coming from | |||||
// an external source. | |||||
// 11 VDDC_CHRGPMP_POWERUP Power up the VDDC charge pump block. If neither VDDA or VDDIO | |||||
// is 3.0 V or larger this bit should be cleared before analog | |||||
// blocks are powered up. | |||||
// 10 PLL_POWERUP PLL Power Up, 0 = Power down, 1 = Power up | |||||
// When cleared, the PLL is turned off. This must be set before | |||||
// CHIP_CLK_CTRL->MCLK_FREQ is programmed to 0x3. The | |||||
// CHIP_PLL_CTRL register must be configured correctly before | |||||
// setting this bit. | |||||
// 9 LINREG_D_POWERUP Power up the primary VDDD linear regulator, 0 = Power down, 1 = Power up | |||||
// 8 VCOAMP_POWERUP Power up the PLL VCO amplifier, 0 = Power down, 1 = Power up | |||||
// 7 VAG_POWERUP Power up the VAG reference buffer. | |||||
// Setting this bit starts the power up ramp for the headphone | |||||
// and LINEOUT. The headphone (and/or LINEOUT) powerup should | |||||
// be set BEFORE clearing this bit. When this bit is cleared | |||||
// the power-down ramp is started. The headphone (and/or LINEOUT) | |||||
// powerup should stay set until the VAG is fully ramped down | |||||
// (200 to 400 ms after clearing this bit). | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 6 ADC_MONO While ADC_POWERUP is set, this allows the ADC to be put into left only | |||||
// mono operation for power savings. This mode is useful when | |||||
// only using the microphone input. | |||||
// 0x0 = Mono (left only), 0x1 = Stereo | |||||
// 5 REFTOP_POWERUP Power up the reference bias currents | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// This bit can be cleared when the part is a sleep state | |||||
// to minimize analog power. | |||||
// 4 HEADPHONE_POWERUP Power up the headphone amplifiers | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 3 DAC_POWERUP Power up the DACs | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 2 CAPLESS_HEADPHONE_POWERUP Power up the capless headphone mode | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 1 ADC_POWERUP Power up the ADCs | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
// 0 LINEOUT_POWERUP Power up the LINEOUT amplifiers | |||||
// 0x0 = Power down, 0x1 = Power up | |||||
#define CHIP_PLL_CTRL 0x0032 | |||||
// 15:11 INT_DIVISOR | |||||
// 10:0 FRAC_DIVISOR | |||||
#define CHIP_CLK_TOP_CTRL 0x0034 | |||||
// 11 ENABLE_INT_OSC Setting this bit enables an internal oscillator to be used for the | |||||
// zero cross detectors, the short detect recovery, and the | |||||
// charge pump. This allows the I2S clock to be shut off while | |||||
// still operating an analog signal path. This bit can be kept | |||||
// on when the I2S clock is enabled, but the I2S clock is more | |||||
// accurate so it is preferred to clear this bit when I2S is present. | |||||
// 3 INPUT_FREQ_DIV2 SYS_MCLK divider before PLL input | |||||
// 0x0 = pass through | |||||
// 0x1 = SYS_MCLK is divided by 2 before entering PLL | |||||
// This must be set when the input clock is above 17 Mhz. This | |||||
// has no effect when the PLL is powered down. | |||||
#define CHIP_ANA_STATUS 0x0036 | |||||
// 9 LRSHORT_STS This bit is high whenever a short is detected on the left or right | |||||
// channel headphone drivers. | |||||
// 8 CSHORT_STS This bit is high whenever a short is detected on the capless headphone | |||||
// common/center channel driver. | |||||
// 4 PLL_IS_LOCKED This bit goes high after the PLL is locked. | |||||
#define CHIP_ANA_TEST1 0x0038 // intended only for debug. | |||||
#define CHIP_ANA_TEST2 0x003A // intended only for debug. | |||||
#define CHIP_SHORT_CTRL 0x003C | |||||
// 14:12 LVLADJR Right channel headphone short detector in 25 mA steps. | |||||
// 0x3=25 mA | |||||
// 0x2=50 mA | |||||
// 0x1=75 mA | |||||
// 0x0=100 mA | |||||
// 0x4=125 mA | |||||
// 0x5=150 mA | |||||
// 0x6=175 mA | |||||
// 0x7=200 mA | |||||
// This trip point can vary by ~30% over process so leave plenty | |||||
// of guard band to avoid false trips. This short detect trip | |||||
// point is also effected by the bias current adjustments made | |||||
// by CHIP_REF_CTRL->BIAS_CTRL and by CHIP_ANA_TEST1->HP_IALL_ADJ. | |||||
// 10:8 LVLADJL Left channel headphone short detector in 25 mA steps. | |||||
// (same scale as LVLADJR) | |||||
// 6:4 LVLADJC Capless headphone center channel short detector in 50 mA steps. | |||||
// 0x3=50 mA | |||||
// 0x2=100 mA | |||||
// 0x1=150 mA | |||||
// 0x0=200 mA | |||||
// 0x4=250 mA | |||||
// 0x5=300 mA | |||||
// 0x6=350 mA | |||||
// 0x7=400 mA | |||||
// 3:2 MODE_LR Behavior of left/right short detection | |||||
// 0x0 = Disable short detector, reset short detect latch, | |||||
// software view non-latched short signal | |||||
// 0x1 = Enable short detector and reset the latch at timeout | |||||
// (every ~50 ms) | |||||
// 0x2 = This mode is not used/invalid | |||||
// 0x3 = Enable short detector with only manual reset (have | |||||
// to return to 0x0 to reset the latch) | |||||
// 1:0 MODE_CM Behavior of capless headphone central short detection | |||||
// (same settings as MODE_LR) | |||||
#define DAP_CONTROL 0x0100 | |||||
#define DAP_PEQ 0x0102 | |||||
#define DAP_BASS_ENHANCE 0x0104 | |||||
#define DAP_BASS_ENHANCE_CTRL 0x0106 | |||||
#define DAP_AUDIO_EQ 0x0108 | |||||
#define DAP_SGTL_SURROUND 0x010A | |||||
#define DAP_FILTER_COEF_ACCESS 0x010C | |||||
#define DAP_COEF_WR_B0_MSB 0x010E | |||||
#define DAP_COEF_WR_B0_LSB 0x0110 | |||||
#define DAP_AUDIO_EQ_BASS_BAND0 0x0116 // 115 Hz | |||||
#define DAP_AUDIO_EQ_BAND1 0x0118 // 330 Hz | |||||
#define DAP_AUDIO_EQ_BAND2 0x011A // 990 Hz | |||||
#define DAP_AUDIO_EQ_BAND3 0x011C // 3000 Hz | |||||
#define DAP_AUDIO_EQ_TREBLE_BAND4 0x011E // 9900 Hz | |||||
#define DAP_MAIN_CHAN 0x0120 | |||||
#define DAP_MIX_CHAN 0x0122 | |||||
#define DAP_AVC_CTRL 0x0124 | |||||
#define DAP_AVC_THRESHOLD 0x0126 | |||||
#define DAP_AVC_ATTACK 0x0128 | |||||
#define DAP_AVC_DECAY 0x012A | |||||
#define DAP_COEF_WR_B1_MSB 0x012C | |||||
#define DAP_COEF_WR_B1_LSB 0x012E | |||||
#define DAP_COEF_WR_B2_MSB 0x0130 | |||||
#define DAP_COEF_WR_B2_LSB 0x0132 | |||||
#define DAP_COEF_WR_A1_MSB 0x0134 | |||||
#define DAP_COEF_WR_A1_LSB 0x0136 | |||||
#define DAP_COEF_WR_A2_MSB 0x0138 | |||||
#define DAP_COEF_WR_A2_LSB 0x013A | |||||
#define SGTL5000_I2C_ADDR 0x0A // CTRL_ADR0_CS pin low (normal configuration) | |||||
//#define SGTL5000_I2C_ADDR 0x2A // CTRL_ADR0_CS pin high | |||||
bool AudioControlSGTL5000::enable(void) | |||||
{ | |||||
//unsigned int n; | |||||
muted = true; | |||||
Wire.begin(); | |||||
delay(5); | |||||
//Serial.print("chip ID = "); | |||||
//delay(5); | |||||
//n = read(CHIP_ID); | |||||
//Serial.println(n, HEX); | |||||
write(CHIP_ANA_POWER, 0x4060); // VDDD is externally driven with 1.8V | |||||
write(CHIP_LINREG_CTRL, 0x006C); // VDDA & VDDIO both over 3.1V | |||||
write(CHIP_REF_CTRL, 0x01F1); // VAG=1.575 slow ramp, normal bias current | |||||
write(CHIP_LINE_OUT_CTRL, 0x0322); // LO_VAGCNTRL=1.65V, OUT_CURRENT=0.36mA | |||||
write(CHIP_SHORT_CTRL, 0x4446); // allow up to 125mA | |||||
write(CHIP_ANA_CTRL, 0x0137); // enable zero cross detectors | |||||
write(CHIP_ANA_POWER, 0x40FF); // power up: lineout, hp, adc, dac | |||||
write(CHIP_DIG_POWER, 0x0073); // power up all digital stuff | |||||
delay(400); | |||||
// 40*log((1.575)/(1.65)) + 15 = 13.1391993746043 but it seems wrong, 5 is better... | |||||
write(CHIP_LINE_OUT_VOL, 0x0505); // TODO: correct value for 3.3V | |||||
write(CHIP_CLK_CTRL, 0x0004); // 44.1 kHz, 256*Fs | |||||
write(CHIP_I2S_CTRL, 0x0130); // SCLK=32*Fs, 16bit, I2S format | |||||
// default signal routing is ok? | |||||
write(CHIP_SSS_CTRL, 0x0010); // ADC->I2S, I2S->DAC | |||||
write(CHIP_ADCDAC_CTRL, 0x0000); // disable dac mute | |||||
write(CHIP_DAC_VOL, 0x3C3C); // digital gain, 0dB | |||||
write(CHIP_ANA_HP_CTRL, 0x7F7F); // set volume (lowest level) | |||||
write(CHIP_ANA_CTRL, 0x0136); // enable zero cross detectors | |||||
//mute = false; | |||||
return true; | |||||
} | |||||
unsigned int AudioControlSGTL5000::read(unsigned int reg) | |||||
{ | |||||
unsigned int val; | |||||
Wire.beginTransmission(SGTL5000_I2C_ADDR); | |||||
Wire.write(reg >> 8); | |||||
Wire.write(reg); | |||||
if (Wire.endTransmission(false) != 0) return 0; | |||||
if (Wire.requestFrom(SGTL5000_I2C_ADDR, 2) < 2) return 0; | |||||
val = Wire.read() << 8; | |||||
val |= Wire.read(); | |||||
return val; | |||||
} | |||||
bool AudioControlSGTL5000::write(unsigned int reg, unsigned int val) | |||||
{ | |||||
if (reg == CHIP_ANA_CTRL) ana_ctrl = val; | |||||
Wire.beginTransmission(SGTL5000_I2C_ADDR); | |||||
Wire.write(reg >> 8); | |||||
Wire.write(reg); | |||||
Wire.write(val >> 8); | |||||
Wire.write(val); | |||||
if (Wire.endTransmission() == 0) return true; | |||||
return false; | |||||
} | |||||
unsigned int AudioControlSGTL5000::modify(unsigned int reg, unsigned int val, unsigned int iMask) | |||||
{ | |||||
unsigned int val1 = (read(reg)&(~iMask))|val; | |||||
if(!write(reg,val1)) return 0; | |||||
return val1; | |||||
} | |||||
bool AudioControlSGTL5000::volumeInteger(unsigned int n) | |||||
{ | |||||
if (n == 0) { | |||||
muted = true; | |||||
write(CHIP_ANA_HP_CTRL, 0x7F7F); | |||||
return muteHeadphone(); | |||||
} else if (n > 0x80) { | |||||
n = 0; | |||||
} else { | |||||
n = 0x80 - n; | |||||
} | |||||
if (muted) { | |||||
muted = false; | |||||
unmuteHeadphone(); | |||||
} | |||||
n = n | (n << 8); | |||||
return write(CHIP_ANA_HP_CTRL, n); // set volume | |||||
} | |||||
bool AudioControlSGTL5000::volume(float left, float right) | |||||
{ | |||||
unsigned short m=((0x7F-calcVol(right,0x7F))<<8)|(0x7F-calcVol(left,0x7F)); | |||||
return write(CHIP_ANA_HP_CTRL, m); | |||||
} | |||||
// CHIP_LINE_OUT_VOL | |||||
unsigned short AudioControlSGTL5000::lo_lvl(uint8_t n) | |||||
{ | |||||
n&=31; | |||||
return modify(CHIP_LINE_OUT_VOL,(n<<8)|n,(31<<8)|31); | |||||
} | |||||
unsigned short AudioControlSGTL5000::lo_lvl(uint8_t left, uint8_t right) | |||||
{ | |||||
left&=31; | |||||
right&=31; | |||||
return modify(CHIP_LINE_OUT_VOL,(right<<8)|left,(31<<8)|31); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dac_vol(float n) // set both directly | |||||
{ | |||||
if(read(CHIP_ADCDAC_CTRL)&(3<<2)!=((n>0 ? 0:3)<<2)) modify(CHIP_ADCDAC_CTRL,(n>0 ? 0:3)<<2,3<<2); | |||||
unsigned char m=calcVol(n,0xC0); | |||||
return modify(CHIP_DAC_VOL,((0xFC-m)<<8)|(0xFC-m),65535); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dac_vol(float left, float right) | |||||
{ | |||||
unsigned short adcdac=((right>0 ? 0:2)|(left>0 ? 0:1))<<2; | |||||
if(read(CHIP_ADCDAC_CTRL)&(3<<2)!=adcdac) modify(CHIP_ADCDAC_CTRL,adcdac,1<<2); | |||||
unsigned short m=(0xFC-calcVol(right,0xC0))<<8|(0xFC-calcVol(left,0xC0)); | |||||
return modify(CHIP_DAC_VOL,m,65535); | |||||
} | |||||
// DAP_CONTROL | |||||
unsigned short AudioControlSGTL5000::dap_mix_enable(uint8_t n) | |||||
{ | |||||
return modify(DAP_CONTROL,(n&1)<<4,1<<4); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dap_enable(uint8_t n) | |||||
{ | |||||
if(n) n=1; | |||||
unsigned char DAC=1+(2*n); // I2S_IN if n==0 else DAP | |||||
modify(DAP_CONTROL,n,1); | |||||
return modify(CHIP_SSS_CTRL,(0<<6)|(DAC<<4),(3<<6)|(3<<4)); | |||||
} | |||||
unsigned short AudioControlSGTL5000::dap_enable(void) | |||||
{ | |||||
return dap_enable(1); | |||||
} | |||||
// DAP_PEQ | |||||
unsigned short AudioControlSGTL5000::dap_peqs(uint8_t n) // valid to n&7, 0 thru 7 filters enabled. | |||||
{ | |||||
return modify(DAP_PEQ,(n&7),7); | |||||
} | |||||
// DAP_AUDIO_EQ | |||||
unsigned short AudioControlSGTL5000::dap_audio_eq(uint8_t n) // 0=NONE, 1=PEQ (7 IIR Biquad filters), 2=TONE (tone), 3=GEQ (5 band EQ) | |||||
{ | |||||
return modify(DAP_AUDIO_EQ,n&3,3); | |||||
} | |||||
// DAP_AUDIO_EQ_BASS_BAND0 & DAP_AUDIO_EQ_BAND1 & DAP_AUDIO_EQ_BAND2 etc etc | |||||
unsigned short AudioControlSGTL5000::dap_audio_eq_band(uint8_t bandNum, float n) // by signed percentage -100/+100; dap_audio_eq(3); | |||||
{ // 0x00==-12dB, 0x2F==0dB, 0x5F==12dB | |||||
n=((n/100)*48)+0.499; | |||||
if(n<-47) n=-47; | |||||
if(n>48) n=48; | |||||
n+=47; | |||||
return modify(DAP_AUDIO_EQ_BASS_BAND0+(bandNum*2),(unsigned int)n,127); | |||||
} | |||||
void AudioControlSGTL5000::dap_audio_eq_geq(float bass, float mid_bass, float midrange, float mid_treble, float treble) | |||||
{ | |||||
dap_audio_eq_band(0,bass); | |||||
dap_audio_eq_band(1,mid_bass); | |||||
dap_audio_eq_band(2,midrange); | |||||
dap_audio_eq_band(3,mid_treble); | |||||
dap_audio_eq_band(4,treble); | |||||
} | |||||
void AudioControlSGTL5000::dap_audio_eq_tone(float bass, float treble) // dap_audio_eq(2); | |||||
{ | |||||
dap_audio_eq_band(0,bass); | |||||
dap_audio_eq_band(4,treble); | |||||
} | |||||
// SGTL5000 PEQ Coefficient loader | |||||
void AudioControlSGTL5000::load_peq(uint8_t filterNum, int *filterParameters) | |||||
{ | |||||
// 1111 11111111 11111111 | |||||
write(DAP_COEF_WR_B0_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_B0_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_B1_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_B1_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_B2_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_B2_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_A1_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_A1_LSB,(*filterParameters++)&15); | |||||
write(DAP_COEF_WR_A2_MSB,(*filterParameters>>4)&65535); | |||||
write(DAP_COEF_WR_A2_LSB,(*filterParameters++)&15); | |||||
write(DAP_FILTER_COEF_ACCESS,(uint16_t)0x100|filterNum); | |||||
delay(10); // seems necessary, didn't work for 1ms. | |||||
modify(DAP_FILTER_COEF_ACCESS,(uint16_t)filterNum,15); | |||||
} | |||||
unsigned char AudioControlSGTL5000::calcVol(float n, unsigned char range) | |||||
{ | |||||
n=(n*(((float)range)/100))+0.499; | |||||
if ((unsigned char)n>range) n=range; | |||||
return (unsigned char)n; | |||||
} | |||||
// if(SGTL5000_PEQ) quantization_unit=524288; if(AudioFilterBiquad) quantization_unit=2147483648; | |||||
void calcBiquad(uint8_t filtertype, float fC, float dB_Gain, float Q, uint32_t quantization_unit, uint32_t fS, int *coef) | |||||
{ | |||||
// I used resources like http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt | |||||
// to make this routine, I tested most of the filter types and they worked. Such filters have limits and | |||||
// before calling this routine with varying values the end user should check that those values are limited | |||||
// to valid results. | |||||
float A; | |||||
if(filtertype<FILTER_PARAEQ) A=pow(10,dB_Gain/20); else A=pow(10,dB_Gain/40); | |||||
float W0 = 2*3.14159265358979323846*fC/fS; | |||||
float cosw=cos(W0); | |||||
float sinw=sin(W0); | |||||
//float alpha = sinw*sinh((log(2)/2)*BW*W0/sinw); | |||||
//float beta = sqrt(2*A); | |||||
float alpha = sinw / (2 * Q); | |||||
float beta = sqrt(A)/Q; | |||||
float b0,b1,b2,a0,a1,a2; | |||||
switch(filtertype) { | |||||
case FILTER_LOPASS: | |||||
b0 = (1.0F - cosw) * 0.5F; // =(1-COS($H$2))/2 | |||||
b1 = 1.0F - cosw; | |||||
b2 = (1.0F - cosw) * 0.5F; | |||||
a0 = 1.0F + alpha; | |||||
a1 = 2.0F * cosw; | |||||
a2 = alpha - 1.0F; | |||||
break; | |||||
case FILTER_HIPASS: | |||||
b0 = (1.0F + cosw) * 0.5F; | |||||
b1 = -(cosw + 1.0F); | |||||
b2 = (1.0F + cosw) * 0.5F; | |||||
a0 = 1.0F + alpha; | |||||
a1 = 2.0F * cosw; | |||||
a2 = alpha - 1.0F; | |||||
break; | |||||
case FILTER_BANDPASS: | |||||
b0 = alpha; | |||||
b1 = 0.0F; | |||||
b2 = -alpha; | |||||
a0 = 1.0F + alpha; | |||||
a1 = 2.0F * cosw; | |||||
a2 = alpha - 1.0F; | |||||
break; | |||||
case FILTER_NOTCH: | |||||
b0=1; | |||||
b1=-2*cosw; | |||||
b2=1; | |||||
a0=1+alpha; | |||||
a1=2*cosw; | |||||
a2=-(1-alpha); | |||||
break; | |||||
case FILTER_PARAEQ: | |||||
b0 = 1 + (alpha*A); | |||||
b1 =-2 * cosw; | |||||
b2 = 1 - (alpha*A); | |||||
a0 = 1 + (alpha/A); | |||||
a1 = 2 * cosw; | |||||
a2 =-(1-(alpha/A)); | |||||
break; | |||||
case FILTER_LOSHELF: | |||||
b0 = A * ((A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw)); | |||||
b1 = 2.0F * A * ((A-1.0F) - ((A+1.0F)*cosw)); | |||||
b2 = A * ((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw)); | |||||
a0 = (A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw); | |||||
a1 = 2.0F * ((A-1.0F) + ((A+1.0F)*cosw)); | |||||
a2 = -((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw)); | |||||
break; | |||||
case FILTER_HISHELF: | |||||
b0 = A * ((A+1.0F) + ((A-1.0F)*cosw) + (beta*sinw)); | |||||
b1 = -2.0F * A * ((A-1.0F) + ((A+1.0F)*cosw)); | |||||
b2 = A * ((A+1.0F) + ((A-1.0F)*cosw) - (beta*sinw)); | |||||
a0 = (A+1.0F) - ((A-1.0F)*cosw) + (beta*sinw); | |||||
a1 = -2.0F * ((A-1.0F) - ((A+1.0F)*cosw)); | |||||
a2 = -((A+1.0F) - ((A-1.0F)*cosw) - (beta*sinw)); | |||||
} | |||||
a0=(a0*2)/(float)quantization_unit; // once here instead of five times there... | |||||
b0/=a0; | |||||
*coef++=(int)(b0+0.499); | |||||
b1/=a0; | |||||
*coef++=(int)(b1+0.499); | |||||
b2/=a0; | |||||
*coef++=(int)(b2+0.499); | |||||
a1/=a0; | |||||
*coef++=(int)(a1+0.499); | |||||
a2/=a0; | |||||
*coef++=(int)(a2+0.499); | |||||
} | |||||
#include "Audio.h" | |||||
#include "arm_math.h" | |||||
#include "Wire.h" | |||||
#define WM8731_I2C_ADDR 0x1A | |||||
//#define WM8731_I2C_ADDR 0x1B | |||||
#define WM8731_REG_LLINEIN 0 | |||||
#define WM8731_REG_RLINEIN 1 | |||||
#define WM8731_REG_LHEADOUT 2 | |||||
#define WM8731_REG_RHEADOUT 3 | |||||
#define WM8731_REG_ANALOG 4 | |||||
#define WM8731_REG_DIGITAL 5 | |||||
#define WM8731_REG_POWERDOWN 6 | |||||
#define WM8731_REG_INTERFACE 7 | |||||
#define WM8731_REG_SAMPLING 8 | |||||
#define WM8731_REG_ACTIVE 9 | |||||
#define WM8731_REG_RESET 15 | |||||
bool AudioControlWM8731::enable(void) | |||||
{ | |||||
Wire.begin(); | |||||
delay(5); | |||||
//write(WM8731_REG_RESET, 0); | |||||
write(WM8731_REG_INTERFACE, 0x02); // I2S, 16 bit, MCLK slave | |||||
write(WM8731_REG_SAMPLING, 0x20); // 256*Fs, 44.1 kHz, MCLK/1 | |||||
// In order to prevent pops, the DAC should first be soft-muted (DACMU), | |||||
// the output should then be de-selected from the line and headphone output | |||||
// (DACSEL), then the DAC powered down (DACPD). | |||||
write(WM8731_REG_DIGITAL, 0x08); // DAC soft mute | |||||
write(WM8731_REG_ANALOG, 0x00); // disable all | |||||
write(WM8731_REG_POWERDOWN, 0x00); // codec powerdown | |||||
write(WM8731_REG_LHEADOUT, 0x80); // volume off | |||||
write(WM8731_REG_RHEADOUT, 0x80); | |||||
delay(100); // how long to power up? | |||||
write(WM8731_REG_ACTIVE, 1); | |||||
delay(5); | |||||
write(WM8731_REG_DIGITAL, 0x00); // DAC unmuted | |||||
write(WM8731_REG_ANALOG, 0x10); // DAC selected | |||||
return true; | |||||
} | |||||
bool AudioControlWM8731::write(unsigned int reg, unsigned int val) | |||||
{ | |||||
Wire.beginTransmission(WM8731_I2C_ADDR); | |||||
Wire.write((reg << 1) | ((val >> 8) & 1)); | |||||
Wire.write(val & 0xFF); | |||||
Wire.endTransmission(); | |||||
return true; | |||||
} | |||||
bool AudioControlWM8731::volumeInteger(unsigned int n) | |||||
{ | |||||
if (n > 127) n = 127; | |||||
//Serial.print("volumeInteger, n = "); | |||||
//Serial.println(n); | |||||
write(WM8731_REG_LHEADOUT, n | 0x180); | |||||
write(WM8731_REG_RHEADOUT, n | 0x80); | |||||
return true; | |||||
} | |||||
/******************************************************************/ | |||||
bool AudioControlWM8731master::enable(void) | |||||
{ | |||||
Wire.begin(); | |||||
delay(5); | |||||
//write(WM8731_REG_RESET, 0); | |||||
write(WM8731_REG_INTERFACE, 0x42); // I2S, 16 bit, MCLK master | |||||
write(WM8731_REG_SAMPLING, 0x20); // 256*Fs, 44.1 kHz, MCLK/1 | |||||
// In order to prevent pops, the DAC should first be soft-muted (DACMU), | |||||
// the output should then be de-selected from the line and headphone output | |||||
// (DACSEL), then the DAC powered down (DACPD). | |||||
write(WM8731_REG_DIGITAL, 0x08); // DAC soft mute | |||||
write(WM8731_REG_ANALOG, 0x00); // disable all | |||||
write(WM8731_REG_POWERDOWN, 0x00); // codec powerdown | |||||
write(WM8731_REG_LHEADOUT, 0x80); // volume off | |||||
write(WM8731_REG_RHEADOUT, 0x80); | |||||
delay(100); // how long to power up? | |||||
write(WM8731_REG_ACTIVE, 1); | |||||
delay(5); | |||||
write(WM8731_REG_DIGITAL, 0x00); // DAC unmuted | |||||
write(WM8731_REG_ANALOG, 0x10); // DAC selected | |||||
return true; | |||||
} | |||||