|
|
@@ -0,0 +1,351 @@ |
|
|
|
/* Audio Library for Teensy 3.X |
|
|
|
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com |
|
|
|
* |
|
|
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of |
|
|
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
|
|
|
* open source software by purchasing Teensy or other PJRC products. |
|
|
|
* |
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
|
|
|
* of this software and associated documentation files (the "Software"), to deal |
|
|
|
* in the Software without restriction, including without limitation the rights |
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
|
|
* copies of the Software, and to permit persons to whom the Software is |
|
|
|
* furnished to do so, subject to the following conditions: |
|
|
|
* |
|
|
|
* The above copyright notice, development funding notice, and this permission |
|
|
|
* notice shall be included in all copies or substantial portions of the Software. |
|
|
|
* |
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
|
|
* THE SOFTWARE. |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "input_adcs.h" |
|
|
|
#include "utility/pdb.h" |
|
|
|
#include "utility/dspinst.h" |
|
|
|
|
|
|
|
DMAMEM static uint16_t left_buffer[AUDIO_BLOCK_SAMPLES]; |
|
|
|
DMAMEM static uint16_t right_buffer[AUDIO_BLOCK_SAMPLES]; |
|
|
|
audio_block_t * AudioInputAnalogStereo::block_left = NULL; |
|
|
|
audio_block_t * AudioInputAnalogStereo::block_right = NULL; |
|
|
|
uint16_t AudioInputAnalogStereo::offset_left = 0; |
|
|
|
uint16_t AudioInputAnalogStereo::offset_right = 0; |
|
|
|
int32_t AudioInputAnalogStereo::left_dc_average_hist[16]; |
|
|
|
int32_t AudioInputAnalogStereo::right_dc_average_hist[16]; |
|
|
|
int32_t AudioInputAnalogStereo::current_dc_average_index = 0; |
|
|
|
bool AudioInputAnalogStereo::update_responsibility = false; |
|
|
|
DMAChannel AudioInputAnalogStereo::dma0(false); |
|
|
|
DMAChannel AudioInputAnalogStereo::dma1(false); |
|
|
|
|
|
|
|
static int analogReadADC1(uint8_t pin); |
|
|
|
|
|
|
|
void AudioInputAnalogStereo::init(uint8_t pin0, uint8_t pin1) |
|
|
|
{ |
|
|
|
uint32_t i, sum0=0, sum1=0; |
|
|
|
|
|
|
|
//pinMode(32, OUTPUT); |
|
|
|
//pinMode(33, OUTPUT); |
|
|
|
|
|
|
|
// Configure the ADC and run at least one software-triggered |
|
|
|
// conversion. This completes the self calibration stuff and |
|
|
|
// leaves the ADC in a state that's mostly ready to use |
|
|
|
analogReadRes(16); |
|
|
|
analogReference(INTERNAL); // range 0 to 1.2 volts |
|
|
|
#if F_BUS == 96000000 || F_BUS == 48000000 || F_BUS == 24000000 |
|
|
|
analogReadAveraging(8); |
|
|
|
ADC1_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1); |
|
|
|
#else |
|
|
|
analogReadAveraging(4); |
|
|
|
ADC1_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0); |
|
|
|
#endif |
|
|
|
// Actually, do many normal reads, to start with a nice DC level |
|
|
|
for (i=0; i < 1024; i++) { |
|
|
|
sum0 += analogRead(pin0); |
|
|
|
sum1 += analogReadADC1(pin1); |
|
|
|
} |
|
|
|
for (i = 0; i < 16; i++) { |
|
|
|
left_dc_average_hist[i] = sum0 >> 10; |
|
|
|
right_dc_average_hist[i] = sum1 >> 10; |
|
|
|
} |
|
|
|
|
|
|
|
// set the programmable delay block to trigger the ADC at 44.1 kHz |
|
|
|
//if (!(SIM_SCGC6 & SIM_SCGC6_PDB) |
|
|
|
//|| (PDB0_SC & PDB_CONFIG) != PDB_CONFIG |
|
|
|
//|| PDB0_MOD != PDB_PERIOD |
|
|
|
//|| PDB0_IDLY != 1 |
|
|
|
//|| PDB0_CH0C1 != 0x0101) { |
|
|
|
SIM_SCGC6 |= SIM_SCGC6_PDB; |
|
|
|
PDB0_IDLY = 1; |
|
|
|
PDB0_MOD = PDB_PERIOD; |
|
|
|
PDB0_SC = PDB_CONFIG | PDB_SC_LDOK; |
|
|
|
PDB0_SC = PDB_CONFIG | PDB_SC_SWTRIG; |
|
|
|
PDB0_CH0C1 = 0x0101; |
|
|
|
PDB0_CH1C1 = 0x0101; |
|
|
|
//} |
|
|
|
|
|
|
|
// enable the ADC for hardware trigger and DMA |
|
|
|
ADC0_SC2 |= ADC_SC2_ADTRG | ADC_SC2_DMAEN; |
|
|
|
ADC1_SC2 |= ADC_SC2_ADTRG | ADC_SC2_DMAEN; |
|
|
|
|
|
|
|
// set up a DMA channel to store the ADC data |
|
|
|
dma0.begin(true); |
|
|
|
dma1.begin(true); |
|
|
|
// ADC0_RA = 0x4003B010 |
|
|
|
// ADC1_RA = 0x400BB010 |
|
|
|
dma0.TCD->SADDR = &ADC0_RA; |
|
|
|
dma0.TCD->SOFF = 0; |
|
|
|
dma0.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
dma0.TCD->NBYTES_MLNO = 2; |
|
|
|
dma0.TCD->SLAST = 0; |
|
|
|
dma0.TCD->DADDR = left_buffer; |
|
|
|
dma0.TCD->DOFF = 2; |
|
|
|
dma0.TCD->CITER_ELINKNO = sizeof(left_buffer) / 2; |
|
|
|
dma0.TCD->DLASTSGA = -sizeof(left_buffer); |
|
|
|
dma0.TCD->BITER_ELINKNO = sizeof(left_buffer) / 2; |
|
|
|
dma0.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
|
|
dma1.TCD->SADDR = &ADC1_RA; |
|
|
|
dma1.TCD->SOFF = 0; |
|
|
|
dma1.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
dma1.TCD->NBYTES_MLNO = 2; |
|
|
|
dma1.TCD->SLAST = 0; |
|
|
|
dma1.TCD->DADDR = right_buffer; |
|
|
|
dma1.TCD->DOFF = 2; |
|
|
|
dma1.TCD->CITER_ELINKNO = sizeof(right_buffer) / 2; |
|
|
|
dma1.TCD->DLASTSGA = -sizeof(right_buffer); |
|
|
|
dma1.TCD->BITER_ELINKNO = sizeof(right_buffer) / 2; |
|
|
|
dma1.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
|
|
dma0.triggerAtHardwareEvent(DMAMUX_SOURCE_ADC0); |
|
|
|
//dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_ADC1); |
|
|
|
dma1.triggerAtTransfersOf(dma0); |
|
|
|
dma1.triggerAtCompletionOf(dma0); |
|
|
|
update_responsibility = update_setup(); |
|
|
|
dma0.enable(); |
|
|
|
dma1.enable(); |
|
|
|
dma0.attachInterrupt(isr0); |
|
|
|
dma1.attachInterrupt(isr1); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void AudioInputAnalogStereo::isr0(void) |
|
|
|
{ |
|
|
|
uint32_t daddr, offset; |
|
|
|
const uint16_t *src, *end; |
|
|
|
uint16_t *dest; |
|
|
|
|
|
|
|
daddr = (uint32_t)(dma0.TCD->DADDR); |
|
|
|
dma0.clearInterrupt(); |
|
|
|
|
|
|
|
//digitalWriteFast(32, HIGH); |
|
|
|
if (daddr < (uint32_t)left_buffer + sizeof(left_buffer) / 2) { |
|
|
|
// DMA is receiving to the first half of the buffer |
|
|
|
// need to remove data from the second half |
|
|
|
src = (uint16_t *)&left_buffer[AUDIO_BLOCK_SAMPLES/2]; |
|
|
|
end = (uint16_t *)&left_buffer[AUDIO_BLOCK_SAMPLES]; |
|
|
|
} else { |
|
|
|
// DMA is receiving to the second half of the buffer |
|
|
|
// need to remove data from the first half |
|
|
|
src = (uint16_t *)&left_buffer[0]; |
|
|
|
end = (uint16_t *)&left_buffer[AUDIO_BLOCK_SAMPLES/2]; |
|
|
|
//if (update_responsibility) AudioStream::update_all(); |
|
|
|
} |
|
|
|
if (block_left != NULL) { |
|
|
|
offset = offset_left; |
|
|
|
if (offset > AUDIO_BLOCK_SAMPLES/2) offset = AUDIO_BLOCK_SAMPLES/2; |
|
|
|
offset_left = offset + AUDIO_BLOCK_SAMPLES/2; |
|
|
|
dest = (uint16_t *)&(block_left->data[offset]); |
|
|
|
do { |
|
|
|
*dest++ = *src++; |
|
|
|
} while (src < end); |
|
|
|
} |
|
|
|
//digitalWriteFast(32, LOW); |
|
|
|
} |
|
|
|
|
|
|
|
void AudioInputAnalogStereo::isr1(void) |
|
|
|
{ |
|
|
|
uint32_t daddr, offset; |
|
|
|
const uint16_t *src, *end; |
|
|
|
uint16_t *dest; |
|
|
|
|
|
|
|
daddr = (uint32_t)(dma1.TCD->DADDR); |
|
|
|
dma1.clearInterrupt(); |
|
|
|
|
|
|
|
//digitalWriteFast(33, HIGH); |
|
|
|
if (daddr < (uint32_t)right_buffer + sizeof(right_buffer) / 2) { |
|
|
|
// DMA is receiving to the first half of the buffer |
|
|
|
// need to remove data from the second half |
|
|
|
src = (uint16_t *)&right_buffer[AUDIO_BLOCK_SAMPLES/2]; |
|
|
|
end = (uint16_t *)&right_buffer[AUDIO_BLOCK_SAMPLES]; |
|
|
|
if (update_responsibility) AudioStream::update_all(); |
|
|
|
} else { |
|
|
|
// DMA is receiving to the second half of the buffer |
|
|
|
// need to remove data from the first half |
|
|
|
src = (uint16_t *)&right_buffer[0]; |
|
|
|
end = (uint16_t *)&right_buffer[AUDIO_BLOCK_SAMPLES/2]; |
|
|
|
} |
|
|
|
if (block_right != NULL) { |
|
|
|
offset = offset_right; |
|
|
|
if (offset > AUDIO_BLOCK_SAMPLES/2) offset = AUDIO_BLOCK_SAMPLES/2; |
|
|
|
offset_right = offset + AUDIO_BLOCK_SAMPLES/2; |
|
|
|
dest = (uint16_t *)&(block_right->data[offset]); |
|
|
|
do { |
|
|
|
*dest++ = *src++; |
|
|
|
} while (src < end); |
|
|
|
} |
|
|
|
//digitalWriteFast(33, LOW); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void AudioInputAnalogStereo::update(void) |
|
|
|
{ |
|
|
|
audio_block_t *new_left=NULL, *out_left=NULL; |
|
|
|
audio_block_t *new_right=NULL, *out_right=NULL; |
|
|
|
uint32_t i, dc; |
|
|
|
int32_t tmp; |
|
|
|
int16_t s, *p, *end; |
|
|
|
|
|
|
|
//Serial.println("update"); |
|
|
|
|
|
|
|
// allocate new block (ok if both NULL) |
|
|
|
new_left = allocate(); |
|
|
|
if (new_left == NULL) { |
|
|
|
new_right = NULL; |
|
|
|
} else { |
|
|
|
new_right = allocate(); |
|
|
|
if (new_right == NULL) { |
|
|
|
release(new_left); |
|
|
|
new_left = NULL; |
|
|
|
} |
|
|
|
} |
|
|
|
__disable_irq(); |
|
|
|
if (offset_left < AUDIO_BLOCK_SAMPLES || offset_right < AUDIO_BLOCK_SAMPLES) { |
|
|
|
// the DMA hasn't filled up both blocks |
|
|
|
if (block_left == NULL) { |
|
|
|
block_left = new_left; |
|
|
|
offset_left = 0; |
|
|
|
new_left = NULL; |
|
|
|
} |
|
|
|
if (block_right == NULL) { |
|
|
|
block_right = new_right; |
|
|
|
offset_right = 0; |
|
|
|
new_right = NULL; |
|
|
|
} |
|
|
|
__enable_irq(); |
|
|
|
if (new_left) release(new_left); |
|
|
|
if (new_right) release(new_right); |
|
|
|
return; |
|
|
|
} |
|
|
|
// the DMA filled blocks, so grab them and get the |
|
|
|
// new blocks to the DMA, as quickly as possible |
|
|
|
out_left = block_left; |
|
|
|
out_right = block_right; |
|
|
|
block_left = new_left; |
|
|
|
block_right = new_right; |
|
|
|
offset_left = 0; |
|
|
|
offset_right = 0; |
|
|
|
__enable_irq(); |
|
|
|
|
|
|
|
// Find and subtract DC offset... We use an average of the |
|
|
|
// last 16 * AUDIO_BLOCK_SAMPLES samples. |
|
|
|
dc = 0; |
|
|
|
for (i = 0; i < 16; i++) { |
|
|
|
dc += left_dc_average_hist[i]; |
|
|
|
} |
|
|
|
dc /= 16 * AUDIO_BLOCK_SAMPLES; |
|
|
|
left_dc_average_hist[current_dc_average_index] = 0; |
|
|
|
p = out_left->data; |
|
|
|
end = p + AUDIO_BLOCK_SAMPLES; |
|
|
|
do { |
|
|
|
left_dc_average_hist[current_dc_average_index] += (uint16_t)(*p); |
|
|
|
tmp = (uint16_t)(*p) - (int32_t)dc; |
|
|
|
s = signed_saturate_rshift(tmp, 16, 0); |
|
|
|
*p++ = s; |
|
|
|
} while (p < end); |
|
|
|
|
|
|
|
dc = 0; |
|
|
|
for (i = 0; i < 16; i++) { |
|
|
|
dc += right_dc_average_hist[i]; |
|
|
|
} |
|
|
|
dc /= 16 * AUDIO_BLOCK_SAMPLES; |
|
|
|
right_dc_average_hist[current_dc_average_index] = 0; |
|
|
|
p = out_right->data; |
|
|
|
end = p + AUDIO_BLOCK_SAMPLES; |
|
|
|
do { |
|
|
|
right_dc_average_hist[current_dc_average_index] += (uint16_t)(*p); |
|
|
|
tmp = (uint16_t)(*p) - (int32_t)dc; |
|
|
|
s = signed_saturate_rshift(tmp, 16, 0); |
|
|
|
*p++ = s; |
|
|
|
} while (p < end); |
|
|
|
current_dc_average_index = (current_dc_average_index + 1) % 16; |
|
|
|
|
|
|
|
// then transmit the AC data |
|
|
|
transmit(out_left, 0); |
|
|
|
release(out_left); |
|
|
|
transmit(out_right, 1); |
|
|
|
release(out_right); |
|
|
|
} |
|
|
|
|
|
|
|
#if defined(__MK20DX256__) |
|
|
|
static const uint8_t pin2sc1a[] = { |
|
|
|
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, 0, 19, 3, 19+128, // 0-13 -> A0-A13 |
|
|
|
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, // 14-23 are A0-A9 |
|
|
|
255, 255, // 24-25 are digital only |
|
|
|
5+192, 5+128, 4+128, 6+128, 7+128, 4+192, // 26-31 are A15-A20 |
|
|
|
255, 255, // 32-33 are digital only |
|
|
|
0, 19, 3, 19+128, // 34-37 are A10-A13 |
|
|
|
26, // 38 is temp sensor, |
|
|
|
18+128, // 39 is vref |
|
|
|
23 // 40 is A14 |
|
|
|
}; |
|
|
|
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__) |
|
|
|
static const uint8_t pin2sc1a[] = { |
|
|
|
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, 3, 19+128, 14+128, 15+128, // 0-13 -> A0-A13 |
|
|
|
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, // 14-23 are A0-A9 |
|
|
|
255, 255, 255, 255, 255, 255, 255, // 24-30 are digital only |
|
|
|
14+128, 15+128, 17, 18, 4+128, 5+128, 6+128, 7+128, 17+128, // 31-39 are A12-A20 |
|
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, // 40-48 are digital only |
|
|
|
10+128, 11+128, // 49-50 are A23-A24 |
|
|
|
255, 255, 255, 255, 255, 255, 255, // 51-57 are digital only |
|
|
|
255, 255, 255, 255, 255, 255, // 58-63 (sd card pins) are digital only |
|
|
|
3, 19+128, // 64-65 are A10-A11 |
|
|
|
23, 23+128,// 66-67 are A21-A22 (DAC pins) |
|
|
|
1, 1+128, // 68-69 are A25-A26 (unused USB host port on Teensy 3.5) |
|
|
|
26, // 70 is Temperature Sensor |
|
|
|
18+128 // 71 is Vref |
|
|
|
}; |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
static int analogReadADC1(uint8_t pin) |
|
|
|
{ |
|
|
|
ADC1_SC1A = 9; |
|
|
|
while (1) { |
|
|
|
if ((ADC1_SC1A & ADC_SC1_COCO)) { |
|
|
|
return ADC1_RA; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (pin >= sizeof(pin2sc1a)) return 0; |
|
|
|
uint8_t channel = pin2sc1a[pin]; |
|
|
|
if ((channel & 0x80) == 0) return 0; |
|
|
|
if (channel == 255) return 0; |
|
|
|
if (channel & 0x40) { |
|
|
|
ADC1_CFG2 &= ~ADC_CFG2_MUXSEL; |
|
|
|
} else { |
|
|
|
ADC1_CFG2 |= ADC_CFG2_MUXSEL; |
|
|
|
} |
|
|
|
ADC1_SC1A = channel & 0x3F; |
|
|
|
while (1) { |
|
|
|
if ((ADC1_SC1A & ADC_SC1_COCO)) { |
|
|
|
return ADC1_RA; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|