/* SPDIF for Teensy 3.X * Copyright (c) 2015, Frank Bösing, f.boesing@gmx.de, * Thanks to KPC & Paul Stoffregen! * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // 2015/08/23: (FB) added mute_PCM() - sets or unsets VALID in VUCP (and adjusts PARITY) #include #include "output_spdif.h" #include "utility/imxrt_hw.h" audio_block_t * AudioOutputSPDIF::block_left_1st = NULL; audio_block_t * AudioOutputSPDIF::block_right_1st = NULL; audio_block_t * AudioOutputSPDIF::block_left_2nd = NULL; audio_block_t * AudioOutputSPDIF::block_right_2nd = NULL; uint16_t AudioOutputSPDIF::block_left_offset = 0; uint16_t AudioOutputSPDIF::block_right_offset = 0; bool AudioOutputSPDIF::update_responsibility = false; DMAChannel AudioOutputSPDIF::dma(false); extern uint16_t spdif_bmclookup[256]; DMAMEM __attribute__((aligned(32))) static uint32_t SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4]; //2 KB #if defined(KINETISK) || defined(__IMXRT1062__) #define PREAMBLE_B (0xE8) //11101000 #define PREAMBLE_M (0xE2) //11100010 #define PREAMBLE_W (0xE4) //11100100 #define VUCP_VALID ((0xCC) << 24) #define VUCP_INVALID ((0xD4) << 24)// To mute PCM, set VUCP = invalid. uint32_t AudioOutputSPDIF::vucp = VUCP_VALID; FLASHMEM void AudioOutputSPDIF::begin(void) { dma.begin(true); // Allocate the DMA channel first block_left_1st = NULL; block_right_1st = NULL; // TODO: should we set & clear the I2S_TCSR_SR bit here? config_SPDIF(); #if defined(KINETISK) CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 const int nbytes_mlno = 2 * 4; // 8 Bytes per minor loop dma.TCD->SADDR = SPDIF_tx_buffer; dma.TCD->SOFF = 4; dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2); dma.TCD->NBYTES_MLNO = nbytes_mlno; dma.TCD->SLAST = -sizeof(SPDIF_tx_buffer); dma.TCD->DADDR = &I2S0_TDR0; dma.TCD->DOFF = 0; dma.TCD->CITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno; dma.TCD->DLASTSGA = 0; dma.TCD->BITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno; dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); update_responsibility = update_setup(); dma.enable(); I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE | I2S_TCSR_FR; dma.attachInterrupt(isr); #elif defined(__IMXRT1062__) CORE_PIN7_CONFIG = 3; //1:TX_DATA0 const int nbytes_mlno = 2 * 4; // 8 Bytes per minor loop dma.TCD->SADDR = SPDIF_tx_buffer; dma.TCD->SOFF = 4; dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2); dma.TCD->NBYTES_MLNO = nbytes_mlno; dma.TCD->SLAST = -sizeof(SPDIF_tx_buffer); dma.TCD->DADDR = &I2S1_TDR0; dma.TCD->DOFF = 0; dma.TCD->CITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno; dma.TCD->DLASTSGA = 0; dma.TCD->BITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno; dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX); update_responsibility = update_setup(); dma.enable(); I2S1_RCSR |= I2S_RCSR_RE; I2S1_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE | I2S_TCSR_FR; dma.attachInterrupt(isr); #endif } /* http://www.hardwarebook.info/S/PDIF 1. To make it easier and a bit faster, the parity-bit is always the same. - With a alternating parity we had to adjust the next subframe. Instead, use a bit from the aux-info as parity. 2. The buffer is filled with an offset of 1 byte, so the last parity (which is always 0 now (see 1.) ) is written as first byte. -> A bit easier and faster to construct both subframes. */ void AudioOutputSPDIF::isr(void) { static uint16_t frame = 0; const int16_t *src; int32_t *end, *dest; audio_block_t *block; uint32_t saddr, offset; uint16_t sample, lo, hi, aux; #if defined(KINETISK) || defined(__IMXRT1062__) saddr = (uint32_t)(dma.TCD->SADDR); #endif dma.clearInterrupt(); if (saddr < (uint32_t)SPDIF_tx_buffer + sizeof(SPDIF_tx_buffer) / 2) { // DMA is transmitting the first half of the buffer // so we must fill the second half dest = (int32_t *)&SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4/2]; end = (int32_t *)&SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4]; if (AudioOutputSPDIF::update_responsibility) AudioStream::update_all(); } else { // DMA is transmitting the second half of the buffer // so we must fill the first half dest = (int32_t *)SPDIF_tx_buffer; end = (int32_t *)&SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4/2]; } block = AudioOutputSPDIF::block_left_1st; if (block) { offset = AudioOutputSPDIF::block_left_offset; src = &block->data[offset]; do { sample = *src++; //Subframe Channel 1 hi = spdif_bmclookup[(uint8_t)(sample >> 8)]; lo = spdif_bmclookup[(uint8_t) sample]; lo ^= (~((int16_t)hi) >> 16); // 16 Bit sample: *(dest+1) = ((uint32_t)lo << 16) | hi; // 4 Bit Auxillary-audio-databits, the first used as parity aux = (0xB333 ^ (((uint32_t)((int16_t)lo)) >> 17)); if (++frame > 191) { // VUCP-Bits ("Valid, Subcode, Channelstatus, Parity) = 0 (0xcc) | Preamble (depends on Framno.) | Auxillary *(dest+0) = vucp | (PREAMBLE_B << 16 ) | aux; //special preamble for one of 192 frames frame = 0; } else { *(dest+0) = vucp | (PREAMBLE_M << 16 ) | aux; } dest += 4; } while (dest < end); offset += AUDIO_BLOCK_SAMPLES/2; if (offset < AUDIO_BLOCK_SAMPLES) { AudioOutputSPDIF::block_left_offset = offset; } else { AudioOutputSPDIF::block_left_offset = 0; AudioStream::release(block); AudioOutputSPDIF::block_left_1st = AudioOutputSPDIF::block_left_2nd; AudioOutputSPDIF::block_left_2nd = NULL; } } else { do { if ( ++frame > 191 ) { *(dest+0) = vucp | 0x00e8cccc; frame = 0; } else { *(dest+0) = vucp | 0x00e2cccc; } *(dest+1) = 0xccccccccUL; dest +=4; } while (dest < end); } dest -= AUDIO_BLOCK_SAMPLES * 4/2 - 4/2; block = AudioOutputSPDIF::block_right_1st; if (block) { offset = AudioOutputSPDIF::block_right_offset; src = &block->data[offset]; do { sample = *src++; //Subframe Channel 2 hi = spdif_bmclookup[(uint8_t)(sample >> 8)]; lo = spdif_bmclookup[(uint8_t)sample]; lo ^= (~((int16_t)hi) >> 16); *(dest+1) = ( ((uint32_t)lo << 16) | hi ); aux = (0xB333 ^ (((uint32_t)((int16_t)lo)) >> 17)); *(dest+0) = vucp | (PREAMBLE_W << 16 ) | aux; dest += 4; } while (dest < end); offset += AUDIO_BLOCK_SAMPLES/2; if (offset < AUDIO_BLOCK_SAMPLES) { AudioOutputSPDIF::block_right_offset = offset; } else { AudioOutputSPDIF::block_right_offset = 0; AudioStream::release(block); AudioOutputSPDIF::block_right_1st = AudioOutputSPDIF::block_right_2nd; AudioOutputSPDIF::block_right_2nd = NULL; } } else { do { *dest = vucp | 0x00e4ccccUL; *(dest+1) = 0xccccccccUL; dest += 4 ; } while (dest < end); } #if IMXRT_CACHE_ENABLED >= 2 dest -= AUDIO_BLOCK_SAMPLES * 4/2 + 4/2; arm_dcache_flush_delete(dest, sizeof(SPDIF_tx_buffer) / 2 ); #endif } void AudioOutputSPDIF::mute_PCM(const bool mute) { vucp = mute?VUCP_INVALID:VUCP_VALID; } void AudioOutputSPDIF::update(void) { audio_block_t *block; block = receiveReadOnly(0); // input 0 = left channel if (block) { __disable_irq(); if (block_left_1st == NULL) { block_left_1st = block; block_left_offset = 0; __enable_irq(); } else if (block_left_2nd == NULL) { block_left_2nd = block; __enable_irq(); } else { audio_block_t *tmp = block_left_1st; block_left_1st = block_left_2nd; block_left_2nd = block; block_left_offset = 0; __enable_irq(); release(tmp); } } block = receiveReadOnly(1); // input 1 = right channel if (block) { __disable_irq(); if (block_right_1st == NULL) { block_right_1st = block; block_right_offset = 0; __enable_irq(); } else if (block_right_2nd == NULL) { block_right_2nd = block; __enable_irq(); } else { audio_block_t *tmp = block_right_1st; block_right_1st = block_right_2nd; block_right_2nd = block; block_right_offset = 0; __enable_irq(); release(tmp); } } } #if defined(KINETISK) #if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000 // PLL is at 96 MHz in these modes #define MCLK_MULT 2 #define MCLK_DIV 17 #elif F_CPU == 72000000 #define MCLK_MULT 8 #define MCLK_DIV 51 #elif F_CPU == 120000000 #define MCLK_MULT 8 #define MCLK_DIV 85 #elif F_CPU == 144000000 #define MCLK_MULT 4 #define MCLK_DIV 51 #elif F_CPU == 168000000 #define MCLK_MULT 8 #define MCLK_DIV 119 #elif F_CPU == 180000000 #define MCLK_MULT 16 #define MCLK_DIV 255 #define MCLK_SRC 0 #elif F_CPU == 192000000 #define MCLK_MULT 1 #define MCLK_DIV 17 #elif F_CPU == 216000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #define MCLK_SRC 1 #elif F_CPU == 240000000 #define MCLK_MULT 2 #define MCLK_DIV 85 #define MCLK_SRC 0 #elif F_CPU == 256000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #define MCLK_SRC 1 #elif F_CPU == 16000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #else #error "This CPU Clock Speed is not supported by the Audio library"; #endif #ifndef MCLK_SRC #if F_CPU >= 20000000 #define MCLK_SRC 3 // the PLL #else #define MCLK_SRC 0 // system clock #endif #endif #endif FLASHMEM void AudioOutputSPDIF::config_SPDIF(void) { #if defined(KINETISK) SIM_SCGC6 |= SIM_SCGC6_I2S; SIM_SCGC7 |= SIM_SCGC7_DMA; SIM_SCGC6 |= SIM_SCGC6_DMAMUX; // enable MCLK output I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE; while (I2S0_MCR & I2S_MCR_DUF) ; I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1)); // configure transmitter I2S0_TMR = 0; I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0); I2S0_TCR3 = I2S_TCR3_TCE; //4 Words per Frame 32 Bit Word-Length -> 128 Bit Frame-Length, MSB First: I2S0_TCR4 = I2S_TCR4_FRSZ(3) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF | I2S_TCR4_FSP | I2S_TCR4_FSD; I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); I2S0_RCSR = 0; #if 0 // configure pin mux for 3 clock signals (debug only) CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) 44.1kHz CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK 5.6 MHz CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK 11.43MHz #endif #elif defined(__IMXRT1062__) CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON); //PLL: int fs = AUDIO_SAMPLE_RATE_EXACT; // PLL between 27*24 = 648MHz und 54*24=1296MHz int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4 int n2 = 1 + (24000000 * 27) / (fs * 256 * n1); double C = ((double)fs * 256 * n1 * n2) / 24000000; int c0 = C; int c2 = 10000; int c1 = C * c2 - (c0 * c2); set_audioClock(c0, c1, c2); CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK)) | CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4 CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK)) | CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07 | CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 & ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK)) | (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0)); //Select MCLK int rsync = 0; int tsync = 1; // configure transmitter I2S1_TMR = 0; I2S1_TCR1 = I2S_TCR1_RFW(0); // watermark I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0); I2S1_TCR3 = I2S_TCR3_TCE; //4 Words per Frame 32 Bit Word-Length -> 128 Bit Frame-Length, MSB First: I2S1_TCR4 = I2S_TCR4_FRSZ(3) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF | I2S_TCR4_FSP | I2S_TCR4_FSD; I2S1_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); //I2S1_RCSR = 0; I2S1_RMR = 0; //I2S1_RCSR = (1<<25); //Reset I2S1_RCR1 = I2S_RCR1_RFW(0); I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0); I2S1_RCR3 = I2S_RCR3_RCE; I2S1_RCR4 = I2S_TCR4_FRSZ(3) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF | I2S_TCR4_FSP | I2S_TCR4_FSD; I2S1_RCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); #if 0 //debug only: CORE_PIN23_CONFIG = 3; //1:MCLK 11.43MHz CORE_PIN21_CONFIG = 3; //1:RX_BCLK 5.6 MHz CORE_PIN20_CONFIG = 3; //1:RX_SYNC 44.1 KHz // CORE_PIN6_CONFIG = 3; //1:TX_DATA0 // CORE_PIN7_CONFIG = 3; //1:RX_DATA0 #endif #endif } #endif // KINETISK || __IMXRT1062__ #if defined(KINETISL) void AudioOutputSPDIF::update(void) { audio_block_t *block; block = receiveReadOnly(0); // input 0 = left channel if (block) release(block); block = receiveReadOnly(1); // input 1 = right channel if (block) release(block); } #endif