/* Audio Library for Teensy 3.X * Copyright (c) 2018, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "synth_waveform.h" #include "arm_math.h" #include "utility/dspinst.h" // uncomment for more accurate but more computationally expensive frequency modulation //#define IMPROVE_EXPONENTIAL_ACCURACY #define BASE_AMPLITUDE 0x6000 // 0x7fff won't work due to Gibb's phenomenon, so use 3/4 of full range. void AudioSynthWaveform::update(void) { audio_block_t *block; int16_t *bp, *end; int32_t val1, val2; int16_t magnitude15; uint32_t i, ph, index, index2, scale; const uint32_t inc = phase_increment; ph = phase_accumulator + phase_offset; if (magnitude == 0) { phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; return; } block = allocate(); if (!block) { phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; return; } bp = block->data; switch(tone_type) { case WAVEFORM_SINE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { index = ph >> 24; val1 = AudioWaveformSine[index]; val2 = AudioWaveformSine[index+1]; scale = (ph >> 8) & 0xFFFF; val2 *= scale; val1 *= 0x10000 - scale; *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); ph += inc; } break; case WAVEFORM_ARBITRARY: if (!arbdata) { release(block); phase_accumulator += inc * AUDIO_BLOCK_SAMPLES; return; } // len = 256 for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { index = ph >> 24; index2 = index + 1; if (index2 >= 256) index2 = 0; val1 = *(arbdata + index); val2 = *(arbdata + index2); scale = (ph >> 8) & 0xFFFF; val2 *= scale; val1 *= 0x10000 - scale; *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); ph += inc; } break; case WAVEFORM_SQUARE: magnitude15 = signed_saturate_rshift(magnitude, 16, 1); for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { if (ph & 0x80000000) { *bp++ = -magnitude15; } else { *bp++ = magnitude15; } ph += inc; } break; case WAVEFORM_BANDLIMIT_SQUARE: for (int i = 0 ; i < AUDIO_BLOCK_SAMPLES ; i++) { uint32_t new_ph = ph + inc ; int16_t val = band_limit_waveform.generate_square (new_ph, i) ; *bp++ = (val * magnitude) >> 16 ; ph = new_ph ; } break; case WAVEFORM_SAWTOOTH: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *bp++ = signed_multiply_32x16t(magnitude, ph); ph += inc; } break; case WAVEFORM_SAWTOOTH_REVERSE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, ph); ph += inc; } break; case WAVEFORM_BANDLIMIT_SAWTOOTH: case WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE: for (i = 0 ; i < AUDIO_BLOCK_SAMPLES; i++) { uint32_t new_ph = ph + inc ; int16_t val = band_limit_waveform.generate_sawtooth (new_ph, i) ; if (tone_type == WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE) *bp++ = (val * -magnitude) >> 16 ; else *bp++ = (val * magnitude) >> 16 ; ph = new_ph ; } break; case WAVEFORM_TRIANGLE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { uint32_t phtop = ph >> 30; if (phtop == 1 || phtop == 2) { *bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16; } else { *bp++ = (((int32_t)ph >> 15) * magnitude) >> 16; } ph += inc; } break; case WAVEFORM_TRIANGLE_VARIABLE: do { uint32_t rise = 0xFFFFFFFF / (pulse_width >> 16); uint32_t fall = 0xFFFFFFFF / (0xFFFF - (pulse_width >> 16)); for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { if (ph < pulse_width/2) { uint32_t n = (ph >> 16) * rise; *bp++ = ((n >> 16) * magnitude) >> 16; } else if (ph < 0xFFFFFFFF - pulse_width/2) { uint32_t n = 0x7FFFFFFF - (((ph - pulse_width/2) >> 16) * fall); *bp++ = (((int32_t)n >> 16) * magnitude) >> 16; } else { uint32_t n = ((ph + pulse_width/2) >> 16) * rise + 0x80000000; *bp++ = (((int32_t)n >> 16) * magnitude) >> 16; } ph += inc; } } while (0); break; case WAVEFORM_PULSE: magnitude15 = signed_saturate_rshift(magnitude, 16, 1); for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { if (ph < pulse_width) { *bp++ = magnitude15; } else { *bp++ = -magnitude15; } ph += inc; } break; case WAVEFORM_BANDLIMIT_PULSE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { int32_t new_ph = ph + inc ; int32_t val = band_limit_waveform.generate_pulse (new_ph, pulse_width, i) ; val += BASE_AMPLITUDE/2 - pulse_width / (0x100000000L / BASE_AMPLITUDE) ; // correct DC offset for duty cycle *bp++ = (int16_t) ((val * magnitude) >> 16) ; ph = new_ph ; } break; case WAVEFORM_SAMPLE_HOLD: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *bp++ = sample; uint32_t newph = ph + inc; if (newph < ph) { sample = random(magnitude) - (magnitude >> 1); } ph = newph; } break; } phase_accumulator = ph - phase_offset; if (tone_offset) { bp = block->data; end = bp + AUDIO_BLOCK_SAMPLES; do { val1 = *bp; *bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0); } while (bp < end); } transmit(block, 0); release(block); } //-------------------------------------------------------------------------------- void AudioSynthWaveformModulated::update(void) { audio_block_t *block, *moddata, *shapedata; int16_t *bp, *end; int32_t val1, val2; int16_t magnitude15; uint32_t i, ph, index, index2, scale, priorphase; const uint32_t inc = phase_increment; moddata = receiveReadOnly(0); shapedata = receiveReadOnly(1); // Pre-compute the phase angle for every output sample of this update ph = phase_accumulator; priorphase = phasedata[AUDIO_BLOCK_SAMPLES-1]; if (moddata && modulation_type == 0) { // Frequency Modulation bp = moddata->data; for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { int32_t n = (*bp++) * modulation_factor; // n is # of octaves to mod int32_t ipart = n >> 27; // 4 integer bits n &= 0x7FFFFFF; // 27 fractional bits #ifdef IMPROVE_EXPONENTIAL_ACCURACY // exp2 polynomial suggested by Stefan Stenzel on "music-dsp" // mail list, Wed, 3 Sep 2014 10:08:55 +0200 int32_t x = n << 3; n = multiply_accumulate_32x32_rshift32_rounded(536870912, x, 1494202713); int32_t sq = multiply_32x32_rshift32_rounded(x, x); n = multiply_accumulate_32x32_rshift32_rounded(n, sq, 1934101615); n = n + (multiply_32x32_rshift32_rounded(sq, multiply_32x32_rshift32_rounded(x, 1358044250)) << 1); n = n << 1; #else // exp2 algorithm by Laurent de Soras // https://www.musicdsp.org/en/latest/Other/106-fast-exp2-approximation.html n = (n + 134217728) << 3; n = multiply_32x32_rshift32_rounded(n, n); n = multiply_32x32_rshift32_rounded(n, 715827883) << 3; n = n + 715827882; #endif uint32_t scale = n >> (14 - ipart); uint64_t phstep = (uint64_t)inc * scale; uint32_t phstep_msw = phstep >> 32; if (phstep_msw < 0x7FFE) { ph += phstep >> 16; } else { ph += 0x7FFE0000; } phasedata[i] = ph; } release(moddata); } else if (moddata) { // Phase Modulation bp = moddata->data; for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { // more than +/- 180 deg shift by 32 bit overflow of "n" uint32_t n = (uint16_t)(*bp++) * modulation_factor; phasedata[i] = ph + n; ph += inc; } release(moddata); } else { // No Modulation Input for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { phasedata[i] = ph; ph += inc; } } phase_accumulator = ph; // If the amplitude is zero, no output, but phase still increments properly if (magnitude == 0) { if (shapedata) release(shapedata); return; } block = allocate(); if (!block) { if (shapedata) release(shapedata); return; } bp = block->data; // Now generate the output samples using the pre-computed phase angles switch(tone_type) { case WAVEFORM_SINE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { ph = phasedata[i]; index = ph >> 24; val1 = AudioWaveformSine[index]; val2 = AudioWaveformSine[index+1]; scale = (ph >> 8) & 0xFFFF; val2 *= scale; val1 *= 0x10000 - scale; *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); } break; case WAVEFORM_ARBITRARY: if (!arbdata) { release(block); if (shapedata) release(shapedata); return; } // len = 256 for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { ph = phasedata[i]; index = ph >> 24; index2 = index + 1; if (index2 >= 256) index2 = 0; val1 = *(arbdata + index); val2 = *(arbdata + index2); scale = (ph >> 8) & 0xFFFF; val2 *= scale; val1 *= 0x10000 - scale; *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude); } break; case WAVEFORM_PULSE: if (shapedata) { magnitude15 = signed_saturate_rshift(magnitude, 16, 1); for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16; if (phasedata[i] < width) { *bp++ = magnitude15; } else { *bp++ = -magnitude15; } } break; } // else fall through to orginary square without shape modulation case WAVEFORM_SQUARE: magnitude15 = signed_saturate_rshift(magnitude, 16, 1); for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { if (phasedata[i] & 0x80000000) { *bp++ = -magnitude15; } else { *bp++ = magnitude15; } } break; case WAVEFORM_BANDLIMIT_PULSE: if (shapedata) { for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16; int32_t val = band_limit_waveform.generate_pulse (phasedata[i], width, i) ; val += BASE_AMPLITUDE/2 - width / (0x100000000L / BASE_AMPLITUDE) ; // correct DC offset for duty cycle *bp++ = (int16_t) ((val * magnitude) >> 16) ; } break; } // else fall through to orginary square without shape modulation case WAVEFORM_BANDLIMIT_SQUARE: for (i = 0 ; i < AUDIO_BLOCK_SAMPLES ; i++) { int32_t val = band_limit_waveform.generate_square (phasedata[i], i) ; *bp++ = (int16_t) ((val * magnitude) >> 16) ; } break; case WAVEFORM_SAWTOOTH: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *bp++ = signed_multiply_32x16t(magnitude, phasedata[i]); } break; case WAVEFORM_SAWTOOTH_REVERSE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, phasedata[i]); } break; case WAVEFORM_BANDLIMIT_SAWTOOTH: case WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE: for (i = 0 ; i < AUDIO_BLOCK_SAMPLES ; i++) { int16_t val = band_limit_waveform.generate_sawtooth (phasedata[i], i) ; val = (int16_t) ((val * magnitude) >> 16) ; *bp++ = tone_type == WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE ? (int16_t) -val : (int16_t) +val ; } break; case WAVEFORM_TRIANGLE_VARIABLE: if (shapedata) { for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { uint32_t width = (shapedata->data[i] + 0x8000) & 0xFFFF; uint32_t rise = 0xFFFFFFFF / width; uint32_t fall = 0xFFFFFFFF / (0xFFFF - width); uint32_t halfwidth = width << 15; uint32_t n; ph = phasedata[i]; if (ph < halfwidth) { n = (ph >> 16) * rise; *bp++ = ((n >> 16) * magnitude) >> 16; } else if (ph < 0xFFFFFFFF - halfwidth) { n = 0x7FFFFFFF - (((ph - halfwidth) >> 16) * fall); *bp++ = (((int32_t)n >> 16) * magnitude) >> 16; } else { n = ((ph + halfwidth) >> 16) * rise + 0x80000000; *bp++ = (((int32_t)n >> 16) * magnitude) >> 16; } ph += inc; } break; } // else fall through to orginary triangle without shape modulation case WAVEFORM_TRIANGLE: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { ph = phasedata[i]; uint32_t phtop = ph >> 30; if (phtop == 1 || phtop == 2) { *bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16; } else { *bp++ = (((int32_t)ph >> 15) * magnitude) >> 16; } } break; case WAVEFORM_SAMPLE_HOLD: for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) { ph = phasedata[i]; if (ph < priorphase) { // does not work for phase modulation sample = random(magnitude) - (magnitude >> 1); } priorphase = ph; *bp++ = sample; } break; } if (tone_offset) { bp = block->data; end = bp + AUDIO_BLOCK_SAMPLES; do { val1 = *bp; *bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0); } while (bp < end); } if (shapedata) release(shapedata); transmit(block, 0); release(block); } // BandLimitedWaveform #define SUPPORT_SHIFT 4 #define SUPPORT (1 << SUPPORT_SHIFT) #define PTRMASK ((2 << SUPPORT_SHIFT) - 1) #define SCALE 16 #define SCALE_MASK (SCALE-1) #define N (SCALE * SUPPORT * 2) #define GUARD_BITS 8 #define GUARD (1 << GUARD_BITS) #define HALF_GUARD (1 << (GUARD_BITS-1)) #define DEG180 0x80000000u #define PHASE_SCALE (0x100000000L / (2 * BASE_AMPLITUDE)) extern "C" { extern const int16_t step_table [258] ; } int32_t BandLimitedWaveform::lookup (int offset) { int off = offset >> GUARD_BITS ; int frac = offset & (GUARD-1) ; int32_t a, b ; if (off < N/2) // handle odd symmetry by reflecting table { a = step_table [off+1] ; b = step_table [off+2] ; } else { a = - step_table [N-off] ; b = - step_table [N-off-1] ; } return BASE_AMPLITUDE + ((frac * b + (GUARD - frac) * a + HALF_GUARD) >> GUARD_BITS) ; // interpolated } void BandLimitedWaveform::insert_step (int offset, bool rising, int i) { while (offset <= (N/2-SCALE)<= 0) cyclic [i & 15] += rising ? lookup (offset) : -lookup (offset) ; offset += SCALE<= N< 0) // for any steps in-flight we sum in table entry and update its state { int i = newptr ; do { i = (i-1) & PTRMASK ; sample += process_step (i) ; } while (i != delptr) ; if (states[delptr].offset >= N<> 32) - BASE_AMPLITUDE) ; // generate the sloped part of the wave if (new_phase < DEG180 && phase_word >= DEG180) // detect wrap around, correct dc offset dc_offset += 2*BASE_AMPLITUDE ; return sample ; } void BandLimitedWaveform::new_step_check_square (uint32_t new_phase, int i) { if (new_phase >= DEG180 && phase_word < DEG180) // detect falling step { int32_t offset = (int32_t) ((uint64_t) (SCALE<= DEG180) // detect wrap around, rising step { int32_t offset = (int32_t) ((uint64_t) (SCALE< -phase_advance) sampled_width = -phase_advance ; if (new_phase < DEG180 && phase_word >= DEG180) // detect wrap around, rising step { // sample the pulse width value so its not changing under our feet later in cycle due to modulation sampled_width = pulse_width ; int32_t offset = (int32_t) ((uint64_t) (SCALE<= sampled_width) // detect falling step { int32_t offset = (int32_t) ((uint64_t) (SCALE<= DEG180 && phase_word < DEG180) // detect falling step { int32_t offset = (int32_t) ((uint64_t) (SCALE<> 1) ; // scale down to avoid overflow on narrow pulses, where the DC shift is big } void BandLimitedWaveform::init_sawtooth (uint32_t freq_word) { phase_word = 0 ; newptr = 0 ; delptr = 0 ; for (int i = 0 ; i < 2*SUPPORT ; i++) phase_word -= freq_word ; dc_offset = phase_word < DEG180 ? BASE_AMPLITUDE : -BASE_AMPLITUDE ; for (int i = 0 ; i < 2*SUPPORT ; i++) { uint32_t new_phase = phase_word + freq_word ; new_step_check_saw (new_phase, i) ; cyclic [i & 15] = (int16_t) process_active_steps_saw (new_phase) ; phase_word = new_phase ; } } void BandLimitedWaveform::init_square (uint32_t freq_word) { init_pulse (freq_word, DEG180) ; } void BandLimitedWaveform::init_pulse (uint32_t freq_word, uint32_t pulse_width) { phase_word = 0 ; sampled_width = pulse_width ; newptr = 0 ; delptr = 0 ; for (int i = 0 ; i < 2*SUPPORT ; i++) phase_word -= freq_word ; if (phase_word < pulse_width) { dc_offset = BASE_AMPLITUDE ; pulse_state = true ; } else { dc_offset = -BASE_AMPLITUDE ; pulse_state = false ; } for (int i = 0 ; i < 2*SUPPORT ; i++) { uint32_t new_phase = phase_word + freq_word ; new_step_check_pulse (new_phase, pulse_width, i) ; cyclic [i & 15] = (int16_t) process_active_steps (new_phase) ; phase_word = new_phase ; } } BandLimitedWaveform::BandLimitedWaveform() { newptr = 0 ; delptr = 0 ; dc_offset = BASE_AMPLITUDE ; phase_word = 0 ; }