/* Audio Library for Teensy 3.X * Copyright (c) 2016, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ //Adapted to PT8211, Frank Bösing, Ben-Rheinland #include "output_pt8211.h" #if !defined(KINETISL) #include "memcpy_audio.h" #include "utility/imxrt_hw.h" audio_block_t * AudioOutputPT8211::block_left_1st = NULL; audio_block_t * AudioOutputPT8211::block_right_1st = NULL; audio_block_t * AudioOutputPT8211::block_left_2nd = NULL; audio_block_t * AudioOutputPT8211::block_right_2nd = NULL; uint16_t AudioOutputPT8211::block_left_offset = 0; uint16_t AudioOutputPT8211::block_right_offset = 0; bool AudioOutputPT8211::update_responsibility = false; #if defined(AUDIO_PT8211_OVERSAMPLING) DMAMEM __attribute__((aligned(32))) static uint32_t i2s_tx_buffer[AUDIO_BLOCK_SAMPLES*4]; #else DMAMEM __attribute__((aligned(32))) static uint32_t i2s_tx_buffer[AUDIO_BLOCK_SAMPLES]; #endif DMAChannel AudioOutputPT8211::dma(false); void AudioOutputPT8211::begin(void) { memset(i2s_tx_buffer, 0, sizeof(i2s_tx_buffer)); dma.begin(true); // Allocate the DMA channel first block_left_1st = NULL; block_right_1st = NULL; // TODO: should we set & clear the I2S_TCSR_SR bit here? config_i2s(); #if defined(KINETISK) CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 dma.TCD->SADDR = i2s_tx_buffer; dma.TCD->SOFF = 2; dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); dma.TCD->NBYTES_MLNO = 2; dma.TCD->SLAST = -sizeof(i2s_tx_buffer); dma.TCD->DADDR = &I2S0_TDR0; dma.TCD->DOFF = 0; dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; dma.TCD->DLASTSGA = 0; dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); update_responsibility = update_setup(); dma.attachInterrupt(isr); dma.enable(); I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE | I2S_TCSR_FR; return; #elif defined(__IMXRT1052__) || defined(__IMXRT1062__) #if defined(__IMXRT1052__) CORE_PIN6_CONFIG = 3; //1:TX_DATA0 #elif defined(__IMXRT1062__) arm_dcache_flush_delete(i2s_tx_buffer, sizeof(i2s_tx_buffer)); CORE_PIN7_CONFIG = 3; //1:TX_DATA0 #endif dma.TCD->SADDR = i2s_tx_buffer; dma.TCD->SOFF = 2; dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); dma.TCD->NBYTES_MLNO = 2; dma.TCD->SLAST = -sizeof(i2s_tx_buffer); dma.TCD->DOFF = 0; dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; dma.TCD->DLASTSGA = 0; dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0); dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX); I2S1_RCSR |= I2S_RCSR_RE; I2S1_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; update_responsibility = update_setup(); dma.attachInterrupt(isr); dma.enable(); return; #endif } void AudioOutputPT8211::isr(void) { int16_t *dest, *dest_copy; audio_block_t *blockL, *blockR; uint32_t saddr, offsetL, offsetR; #if defined(KINETISK) || defined(__IMXRT1062__) saddr = (uint32_t)(dma.TCD->SADDR); #endif dma.clearInterrupt(); if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { // DMA is transmitting the first half of the buffer // so we must fill the second half #if defined(AUDIO_PT8211_OVERSAMPLING) dest = (int16_t *)&i2s_tx_buffer[(AUDIO_BLOCK_SAMPLES/2)*4]; #else dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; #endif if (AudioOutputPT8211::update_responsibility) AudioStream::update_all(); } else { // DMA is transmitting the second half of the buffer // so we must fill the first half dest = (int16_t *)i2s_tx_buffer; } dest_copy = dest; blockL = AudioOutputPT8211::block_left_1st; blockR = AudioOutputPT8211::block_right_1st; offsetL = AudioOutputPT8211::block_left_offset; offsetR = AudioOutputPT8211::block_right_offset; #if defined(AUDIO_PT8211_OVERSAMPLING) static int32_t oldL = 0; static int32_t oldR = 0; #endif if (blockL && blockR) { #if defined(AUDIO_PT8211_OVERSAMPLING) #if defined(AUDIO_PT8211_INTERPOLATION_LINEAR) for (int i=0; i< AUDIO_BLOCK_SAMPLES / 2; i++, offsetL++, offsetR++) { int32_t valL = blockL->data[offsetL]; int32_t valR = blockR->data[offsetR]; int32_t nL = (oldL+valL) >> 1; int32_t nR = (oldR+valR) >> 1; *(dest+0) = (oldL+nL) >> 1; *(dest+1) = (oldR+nR) >> 1; *(dest+2) = nL; *(dest+3) = nR; *(dest+4) = (nL+valL) >> 1; *(dest+5) = (nR+valR) >> 1; *(dest+6) = valL; *(dest+7) = valR; dest+=8; oldL = valL; oldR = valR; } #elif defined(AUDIO_PT8211_INTERPOLATION_CIC) for (int i=0; i< AUDIO_BLOCK_SAMPLES / 2; i++, offsetL++, offsetR++) { int32_t valL = blockL->data[offsetL]; int32_t valR = blockR->data[offsetR]; int32_t combL[3] = {0}; static int32_t combLOld[2] = {0}; int32_t combR[3] = {0}; static int32_t combROld[2] = {0}; combL[0] = valL - oldL; combR[0] = valR - oldR; combL[1] = combL[0] - combLOld[0]; combR[1] = combR[0] - combROld[0]; combL[2] = combL[1] - combLOld[1]; combR[2] = combR[1] - combROld[1]; // combL[2] now holds input val // combR[2] now holds input val oldL = valL; oldR = valR; combLOld[0] = combL[0]; combROld[0] = combR[0]; combLOld[1] = combL[1]; combROld[1] = combR[1]; for (int j = 0; j < 4; j++) { int32_t integrateL[3]; int32_t integrateR[3]; static int32_t integrateLOld[3] = {0}; static int32_t integrateROld[3] = {0}; integrateL[0] = ( (j==0) ? (combL[2]) : (0) ) + integrateLOld[0]; integrateR[0] = ( (j==0) ? (combR[2]) : (0) ) + integrateROld[0]; integrateL[1] = integrateL[0] + integrateLOld[1]; integrateR[1] = integrateR[0] + integrateROld[1]; integrateL[2] = integrateL[1] + integrateLOld[2]; integrateR[2] = integrateR[1] + integrateROld[2]; // integrateL[2] now holds j'th upsampled value // integrateR[2] now holds j'th upsampled value *(dest+j*2) = integrateL[2] >> 4; *(dest+j*2+1) = integrateR[2] >> 4; integrateLOld[0] = integrateL[0]; integrateROld[0] = integrateR[0]; integrateLOld[1] = integrateL[1]; integrateROld[1] = integrateR[1]; integrateLOld[2] = integrateL[2]; integrateROld[2] = integrateR[2]; } dest+=8; } #else #error no interpolation method defined for oversampling. #endif //defined(AUDIO_PT8211_INTERPOLATION_LINEAR) #else memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); offsetL += AUDIO_BLOCK_SAMPLES / 2; offsetR += AUDIO_BLOCK_SAMPLES / 2; #endif //defined(AUDIO_PT8211_OVERSAMPLING) } else if (blockL) { #if defined(AUDIO_PT8211_OVERSAMPLING) #if defined(AUDIO_PT8211_INTERPOLATION_LINEAR) for (int i=0; i< AUDIO_BLOCK_SAMPLES / 2; i++, offsetL++) { int32_t val = blockL->data[offsetL]; int32_t n = (oldL+val) >> 1; *(dest+0) = (oldL+n) >> 1; *(dest+1) = 0; *(dest+2) = n; *(dest+3) = 0; *(dest+4) = (n+val) >> 1; *(dest+5) = 0; *(dest+6) = val; *(dest+7) = 0; dest+=8; oldL = val; } #elif defined(AUDIO_PT8211_INTERPOLATION_CIC) for (int i=0; i< AUDIO_BLOCK_SAMPLES / 2; i++, offsetL++) { int32_t valL = blockL->data[offsetL]; int32_t combL[3] = {0}; static int32_t combLOld[2] = {0}; combL[0] = valL - oldL; combL[1] = combL[0] - combLOld[0]; combL[2] = combL[1] - combLOld[1]; // combL[2] now holds input val combLOld[0] = combL[0]; combLOld[1] = combL[1]; for (int j = 0; j < 4; j++) { int32_t integrateL[3]; static int32_t integrateLOld[3] = {0}; integrateL[0] = ( (j==0) ? (combL[2]) : (0) ) + integrateLOld[0]; integrateL[1] = integrateL[0] + integrateLOld[1]; integrateL[2] = integrateL[1] + integrateLOld[2]; // integrateL[2] now holds j'th upsampled value *(dest+j*2) = integrateL[2] >> 4; integrateLOld[0] = integrateL[0]; integrateLOld[1] = integrateL[1]; integrateLOld[2] = integrateL[2]; } // fill right channel with zeros: *(dest+1) = 0; *(dest+3) = 0; *(dest+5) = 0; *(dest+7) = 0; dest+=8; oldL = valL; } #else #error no interpolation method defined for oversampling. #endif //defined(AUDIO_PT8211_INTERPOLATION_LINEAR) #else memcpy_tointerleaveL(dest, blockL->data + offsetL); offsetL += (AUDIO_BLOCK_SAMPLES / 2); #endif //defined(AUDIO_PT8211_OVERSAMPLING) } else if (blockR) { #if defined(AUDIO_PT8211_OVERSAMPLING) #if defined(AUDIO_PT8211_INTERPOLATION_LINEAR) for (int i=0; i< AUDIO_BLOCK_SAMPLES / 2; i++, offsetR++) { int32_t val = blockR->data[offsetR]; int32_t n = (oldR+val) >> 1; *(dest+0) = 0; *(dest+1) = ((oldR+n) >> 1); *(dest+2) = 0; *(dest+3) = n; *(dest+4) = 0; *(dest+5) = ((n+val) >> 1); *(dest+6) = 0; *(dest+7) = val; dest+=8; oldR = val; } #elif defined(AUDIO_PT8211_INTERPOLATION_CIC) for (int i=0; i< AUDIO_BLOCK_SAMPLES / 2; i++, offsetR++) { int32_t valR = blockR->data[offsetR]; int32_t combR[3] = {0}; static int32_t combROld[2] = {0}; combR[0] = valR - oldR; combR[1] = combR[0] - combROld[0]; combR[2] = combR[1] - combROld[1]; // combR[2] now holds input val combROld[0] = combR[0]; combROld[1] = combR[1]; for (int j = 0; j < 4; j++) { int32_t integrateR[3]; static int32_t integrateROld[3] = {0}; integrateR[0] = ( (j==0) ? (combR[2]) : (0) ) + integrateROld[0]; integrateR[1] = integrateR[0] + integrateROld[1]; integrateR[2] = integrateR[1] + integrateROld[2]; // integrateR[2] now holds j'th upsampled value *(dest+j*2+1) = integrateR[2] >> 4; integrateROld[0] = integrateR[0]; integrateROld[1] = integrateR[1]; integrateROld[2] = integrateR[2]; } // fill left channel with zeros: *(dest+0) = 0; *(dest+2) = 0; *(dest+4) = 0; *(dest+6) = 0; dest+=8; oldR = valR; } #else #error no interpolation method defined for oversampling. #endif //defined(AUDIO_PT8211_INTERPOLATION_LINEAR) #else memcpy_tointerleaveR(dest, blockR->data + offsetR); offsetR += AUDIO_BLOCK_SAMPLES / 2; #endif //defined(AUDIO_PT8211_OVERSAMPLING) } else { #if defined(AUDIO_PT8211_OVERSAMPLING) memset(dest,0,AUDIO_BLOCK_SAMPLES*8); #else memset(dest,0,AUDIO_BLOCK_SAMPLES*2); #endif return; } arm_dcache_flush_delete(dest_copy, sizeof(i2s_tx_buffer) / 2); if (offsetL < AUDIO_BLOCK_SAMPLES) { AudioOutputPT8211::block_left_offset = offsetL; } else { AudioOutputPT8211::block_left_offset = 0; AudioStream::release(blockL); AudioOutputPT8211::block_left_1st = AudioOutputPT8211::block_left_2nd; AudioOutputPT8211::block_left_2nd = NULL; } if (offsetR < AUDIO_BLOCK_SAMPLES) { AudioOutputPT8211::block_right_offset = offsetR; } else { AudioOutputPT8211::block_right_offset = 0; AudioStream::release(blockR); AudioOutputPT8211::block_right_1st = AudioOutputPT8211::block_right_2nd; AudioOutputPT8211::block_right_2nd = NULL; } } void AudioOutputPT8211::update(void) { audio_block_t *block; block = receiveReadOnly(0); // input 0 = left channel if (block) { __disable_irq(); if (block_left_1st == NULL) { block_left_1st = block; block_left_offset = 0; __enable_irq(); } else if (block_left_2nd == NULL) { block_left_2nd = block; __enable_irq(); } else { audio_block_t *tmp = block_left_1st; block_left_1st = block_left_2nd; block_left_2nd = block; block_left_offset = 0; __enable_irq(); release(tmp); } } block = receiveReadOnly(1); // input 1 = right channel if (block) { __disable_irq(); if (block_right_1st == NULL) { block_right_1st = block; block_right_offset = 0; __enable_irq(); } else if (block_right_2nd == NULL) { block_right_2nd = block; __enable_irq(); } else { audio_block_t *tmp = block_right_1st; block_right_1st = block_right_2nd; block_right_2nd = block; block_right_offset = 0; __enable_irq(); release(tmp); } } } #if defined(KINETISK) // MCLK needs to be 48e6 / 1088 * 256 = 11.29411765 MHz -> 44.117647 kHz sample rate // #if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000 // PLL is at 96 MHz in these modes #define MCLK_MULT 2 #define MCLK_DIV 17 #elif F_CPU == 72000000 #define MCLK_MULT 8 #define MCLK_DIV 51 #elif F_CPU == 120000000 #define MCLK_MULT 8 #define MCLK_DIV 85 #elif F_CPU == 144000000 #define MCLK_MULT 4 #define MCLK_DIV 51 #elif F_CPU == 168000000 #define MCLK_MULT 8 #define MCLK_DIV 119 #elif F_CPU == 180000000 #define MCLK_MULT 16 #define MCLK_DIV 255 #define MCLK_SRC 0 #elif F_CPU == 192000000 #define MCLK_MULT 1 #define MCLK_DIV 17 #elif F_CPU == 216000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #define MCLK_SRC 1 #elif F_CPU == 240000000 #define MCLK_MULT 2 #define MCLK_DIV 85 #define MCLK_SRC 0 #elif F_CPU == 256000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #define MCLK_SRC 1 #elif F_CPU == 16000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #else #error "This CPU Clock Speed is not supported by the Audio library"; #endif #ifndef MCLK_SRC #if F_CPU >= 20000000 #define MCLK_SRC 3 // the PLL #else #define MCLK_SRC 0 // system clock #endif #endif #endif void AudioOutputPT8211::config_i2s(void) { #if defined(KINETISK) SIM_SCGC6 |= SIM_SCGC6_I2S; SIM_SCGC7 |= SIM_SCGC7_DMA; SIM_SCGC6 |= SIM_SCGC6_DMAMUX; // if transmitter is enabled, do nothing if (I2S0_TCSR & I2S_TCSR_TE) return; // enable MCLK output I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE; while (I2S0_MCR & I2S_MCR_DUF) ; I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1)); // configure transmitter I2S0_TMR = 0; I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size #if defined(AUDIO_PT8211_OVERSAMPLING) I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0); #else I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(3); #endif I2S0_TCR3 = I2S_TCR3_TCE; // I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD; //TDA1543 I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF /*| I2S_TCR4_FSE*/ | I2S_TCR4_FSP | I2S_TCR4_FSD; //PT8211 I2S0_TCR5 = I2S_TCR5_WNW(15) | I2S_TCR5_W0W(15) | I2S_TCR5_FBT(15); // configure pin mux for 3 clock signals CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK //CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK #elif ( defined(__IMXRT1052__) || defined(__IMXRT1062__) ) CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON); //PLL: int fs = AUDIO_SAMPLE_RATE_EXACT; // PLL between 27*24 = 648MHz und 54*24=1296MHz int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4 int n2 = 1 + (24000000 * 27) / (fs * 256 * n1); double C = ((double)fs * 256 * n1 * n2) / 24000000; int c0 = C; int c2 = 10000; int c1 = C * c2 - (c0 * c2); set_audioClock(c0, c1, c2); // clear SAI1_CLK register locations CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK)) | CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4 CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK)) | CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07 | CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 & ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK)) | (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0)); //Select MCLK if (I2S1_TCSR & I2S_TCSR_TE) return; // CORE_PIN23_CONFIG = 3; //1:MCLK CORE_PIN21_CONFIG = 3; //1:RX_BCLK CORE_PIN20_CONFIG = 3; //1:RX_SYNC // CORE_PIN6_CONFIG = 3; //1:TX_DATA0 // CORE_PIN7_CONFIG = 3; //1:RX_DATA0 int rsync = 0; int tsync = 1; #if defined(AUDIO_PT8211_OVERSAMPLING) int div = 0; #else int div = 3; #endif // configure transmitter I2S1_TMR = 0; I2S1_TCR1 = I2S_TCR1_RFW(0); I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(div); I2S1_TCR3 = I2S_TCR3_TCE; // I2S1_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD; //TDA1543 I2S1_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF /*| I2S_TCR4_FSE*/ | I2S_TCR4_FSP | I2S_TCR4_FSD; //PT8211 I2S1_TCR5 = I2S_TCR5_WNW(15) | I2S_TCR5_W0W(15) | I2S_TCR5_FBT(15); I2S1_RMR = 0; //I2S1_RCSR = (1<<25); //Reset I2S1_RCR1 = I2S_RCR1_RFW(0); I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_RCR2_BCP | I2S_RCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(div); I2S1_RCR3 = I2S_RCR3_RCE; // I2S1_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD; //TDA1543 I2S1_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(15) | I2S_RCR4_MF /*| I2S_RCR4_FSE*/ | I2S_RCR4_FSP | I2S_RCR4_FSD; //PT8211 I2S1_RCR5 = I2S_RCR5_WNW(15) | I2S_RCR5_W0W(15) | I2S_RCR5_FBT(15); #endif } #elif defined(KINETISL) /************************************************************************************** * Teensy LC ***************************************************************************************/ // added jan 2021, Frank Bösing audio_block_t * AudioOutputPT8211::block_left = NULL; audio_block_t * AudioOutputPT8211::block_right = NULL; bool AudioOutputPT8211::update_responsibility = false; #define NUM_SAMPLES (AUDIO_BLOCK_SAMPLES / 2) DMAMEM static int16_t i2s_tx_buffer1[NUM_SAMPLES*2]; DMAMEM static int16_t i2s_tx_buffer2[NUM_SAMPLES*2]; DMAChannel AudioOutputPT8211::dma1(false); DMAChannel AudioOutputPT8211::dma2(false); void AudioOutputPT8211::begin(void) { memset(i2s_tx_buffer1, 0, sizeof( i2s_tx_buffer1 ) ); memset(i2s_tx_buffer2, 0, sizeof( i2s_tx_buffer2 ) ); dma1.begin(true); // Allocate the DMA channel first dma2.begin(true); SIM_SCGC6 |= SIM_SCGC6_I2S;//Enable I2S periphal // enable MCLK I2S0_MCR = I2S_MCR_MICS(0) | I2S_MCR_MOE; //MDR is not available on Teensy LC // configure transmitter I2S0_TMR = 0; I2S0_TCR1 = I2S_TCR1_TFW(0); I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(16); I2S0_TCR3 = I2S_TCR3_TCE; I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF /*| I2S_TCR4_FSE*/ | I2S_TCR4_FSP | I2S_TCR4_FSD; I2S0_TCR5 = I2S_TCR5_WNW(15) | I2S_TCR5_W0W(15) | I2S_TCR5_FBT(15); // configure pin mux CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK //5.6MHz(44117HZ) //CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK //configure both DMA channels dma1.sourceBuffer(i2s_tx_buffer1, sizeof(i2s_tx_buffer1)); dma1.destination(*(int16_t *)&I2S0_TDR0); dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); dma1.interruptAtCompletion(); dma1.disableOnCompletion(); dma1.attachInterrupt(isr1); dma2.destination(*(int16_t *)&I2S0_TDR0); dma2.sourceBuffer(i2s_tx_buffer2, sizeof(i2s_tx_buffer2)); dma2.interruptAtCompletion(); dma2.disableOnCompletion(); dma2.attachInterrupt(isr2); update_responsibility = update_setup(); dma1.enable(); I2S0_TCSR = I2S_TCSR_SR; I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FWDE; } void AudioOutputPT8211::update(void) { if (!block_left) block_left = receiveReadOnly(0);// input 0 = left channel if (!block_right) block_right = receiveReadOnly(1);// input 1 = right channel } inline __attribute__((always_inline, hot)) void interleave(const int16_t *dest,const audio_block_t *block_left, const audio_block_t *block_right, const size_t offset) { uint32_t *p = (uint32_t*)dest; uint32_t *end = p + NUM_SAMPLES; if (block_left != nullptr && block_right != nullptr) { uint16_t *l = (uint16_t*)&block_left->data[offset]; uint16_t *r = (uint16_t*)&block_right->data[offset]; do { *p++ = (((uint32_t)(*l++)) << 16) | (uint32_t)(*r++); *p++ = (((uint32_t)(*l++)) << 16) | (uint32_t)(*r++); *p++ = (((uint32_t)(*l++)) << 16) | (uint32_t)(*r++); *p++ = (((uint32_t)(*l++)) << 16) | (uint32_t)(*r++); } while (p < end); return; } if (block_left != nullptr) { uint16_t *l = (uint16_t*)&block_left->data[offset]; do { *p++ = (uint32_t)(*l++) << 16; *p++ = (uint32_t)(*l++) << 16; *p++ = (uint32_t)(*l++) << 16; *p++ = (uint32_t)(*l++) << 16; } while (p < end); return; } if (block_right != nullptr) { uint16_t *r = (uint16_t*)&block_right->data[offset]; do { *p++ =(uint32_t)(*r++); *p++ =(uint32_t)(*r++); *p++ =(uint32_t)(*r++); *p++ =(uint32_t)(*r++); } while (p < end); return; } do { *p++ = 0; *p++ = 0; } while (p < end); } void AudioOutputPT8211::isr1(void) { //DMA Channel 1 Interrupt //Start Channel 2: dma2.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); dma2.enable(); //Reset & Copy Data Channel 1 dma1.clearInterrupt(); dma1.sourceBuffer(i2s_tx_buffer1, sizeof(i2s_tx_buffer1)); interleave(&i2s_tx_buffer1[0], AudioOutputPT8211::block_left, AudioOutputPT8211::block_right, 0); } void AudioOutputPT8211::isr2(void) { //DMA Channel 2 Interrupt //Start Channel 1: dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); dma1.enable(); //Reset & Copy Data Channel 2 dma2.clearInterrupt(); dma2.sourceBuffer(i2s_tx_buffer2, sizeof(i2s_tx_buffer2)); audio_block_t *block_left = AudioOutputPT8211::block_left; audio_block_t *block_right = AudioOutputPT8211::block_right; interleave(&i2s_tx_buffer2[0], block_left, block_right, NUM_SAMPLES); if (block_left) AudioStream::release(block_left); if (block_right) AudioStream::release(block_right); AudioOutputPT8211::block_left = nullptr; AudioOutputPT8211::block_right = nullptr; if (AudioOutputPT8211::update_responsibility) AudioStream::update_all(); } #else //#error Output PT8211: No code for this CPU #endif