/* Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "control_sgtl5000.h" #include "Wire.h" #define CHIP_ID 0x0000 // 15:8 PARTID 0xA0 - 8 bit identifier for SGTL5000 // 7:0 REVID 0x00 - revision number for SGTL5000. #define CHIP_DIG_POWER 0x0002 // 6 ADC_POWERUP 1=Enable, 0=disable the ADC block, both digital & analog, // 5 DAC_POWERUP 1=Enable, 0=disable the DAC block, both analog and digital // 4 DAP_POWERUP 1=Enable, 0=disable the DAP block // 1 I2S_OUT_POWERUP 1=Enable, 0=disable the I2S data output // 0 I2S_IN_POWERUP 1=Enable, 0=disable the I2S data input #define CHIP_CLK_CTRL 0x0004 // 5:4 RATE_MODE Sets the sample rate mode. MCLK_FREQ is still specified // relative to the rate in SYS_FS // 0x0 = SYS_FS specifies the rate // 0x1 = Rate is 1/2 of the SYS_FS rate // 0x2 = Rate is 1/4 of the SYS_FS rate // 0x3 = Rate is 1/6 of the SYS_FS rate // 3:2 SYS_FS Sets the internal system sample rate (default=2) // 0x0 = 32 kHz // 0x1 = 44.1 kHz // 0x2 = 48 kHz // 0x3 = 96 kHz // 1:0 MCLK_FREQ Identifies incoming SYS_MCLK frequency and if the PLL should be used // 0x0 = 256*Fs // 0x1 = 384*Fs // 0x2 = 512*Fs // 0x3 = Use PLL // The 0x3 (Use PLL) setting must be used if the SYS_MCLK is not // a standard multiple of Fs (256, 384, or 512). This setting can // also be used if SYS_MCLK is a standard multiple of Fs. // Before this field is set to 0x3 (Use PLL), the PLL must be // powered up by setting CHIP_ANA_POWER->PLL_POWERUP and // CHIP_ANA_POWER->VCOAMP_POWERUP. Also, the PLL dividers must // be calculated based on the external MCLK rate and // CHIP_PLL_CTRL register must be set (see CHIP_PLL_CTRL register // description details on how to calculate the divisors). #define CHIP_I2S_CTRL 0x0006 // 8 SCLKFREQ Sets frequency of I2S_SCLK when in master mode (MS=1). When in slave // mode (MS=0), this field must be set appropriately to match SCLK input // rate. // 0x0 = 64Fs // 0x1 = 32Fs - Not supported for RJ mode (I2S_MODE = 1) // 7 MS Configures master or slave of I2S_LRCLK and I2S_SCLK. // 0x0 = Slave: I2S_LRCLK an I2S_SCLK are inputs // 0x1 = Master: I2S_LRCLK and I2S_SCLK are outputs // NOTE: If the PLL is used (CHIP_CLK_CTRL->MCLK_FREQ==0x3), // the SGTL5000 must be a master of the I2S port (MS==1) // 6 SCLK_INV Sets the edge that data (input and output) is clocked in on for I2S_SCLK // 0x0 = data is valid on rising edge of I2S_SCLK // 0x1 = data is valid on falling edge of I2S_SCLK // 5:4 DLEN I2S data length (default=1) // 0x0 = 32 bits (only valid when SCLKFREQ=0), // not valid for Right Justified Mode // 0x1 = 24 bits (only valid when SCLKFREQ=0) // 0x2 = 20 bits // 0x3 = 16 bits // 3:2 I2S_MODE Sets the mode for the I2S port // 0x0 = I2S mode or Left Justified (Use LRALIGN to select) // 0x1 = Right Justified Mode // 0x2 = PCM Format A/B // 0x3 = RESERVED // 1 LRALIGN I2S_LRCLK Alignment to data word. Not used for Right Justified mode // 0x0 = Data word starts 1 I2S_SCLK delay after I2S_LRCLK // transition (I2S format, PCM format A) // 0x1 = Data word starts after I2S_LRCLK transition (left // justified format, PCM format B) // 0 LRPOL I2S_LRCLK Polarity when data is presented. // 0x0 = I2S_LRCLK = 0 - Left, 1 - Right // 1x0 = I2S_LRCLK = 0 - Right, 1 - Left // The left subframe should be presented first regardless of // the setting of LRPOL. #define CHIP_SSS_CTRL 0x000A // 14 DAP_MIX_LRSWAP DAP Mixer Input Swap // 0x0 = Normal Operation // 0x1 = Left and Right channels for the DAP MIXER Input are swapped. // 13 DAP_LRSWAP DAP Mixer Input Swap // 0x0 = Normal Operation // 0x1 = Left and Right channels for the DAP Input are swapped // 12 DAC_LRSWAP DAC Input Swap // 0x0 = Normal Operation // 0x1 = Left and Right channels for the DAC are swapped // 10 I2S_LRSWAP I2S_DOUT Swap // 0x0 = Normal Operation // 0x1 = Left and Right channels for the I2S_DOUT are swapped // 9:8 DAP_MIX_SELECT Select data source for DAP mixer // 0x0 = ADC // 0x1 = I2S_IN // 0x2 = Reserved // 0x3 = Reserved // 7:6 DAP_SELECT Select data source for DAP // 0x0 = ADC // 0x1 = I2S_IN // 0x2 = Reserved // 0x3 = Reserved // 5:4 DAC_SELECT Select data source for DAC (default=1) // 0x0 = ADC // 0x1 = I2S_IN // 0x2 = Reserved // 0x3 = DAP // 1:0 I2S_SELECT Select data source for I2S_DOUT // 0x0 = ADC // 0x1 = I2S_IN // 0x2 = Reserved // 0x3 = DAP #define CHIP_ADCDAC_CTRL 0x000E // 13 VOL_BUSY_DAC_RIGHT Volume Busy DAC Right // 0x0 = Ready // 0x1 = Busy - This indicates the channel has not reached its // programmed volume/mute level // 12 VOL_BUSY_DAC_LEFT Volume Busy DAC Left // 0x0 = Ready // 0x1 = Busy - This indicates the channel has not reached its // programmed volume/mute level // 9 VOL_RAMP_EN Volume Ramp Enable (default=1) // 0x0 = Disables volume ramp. New volume settings take immediate // effect without a ramp // 0x1 = Enables volume ramp // This field affects DAC_VOL. The volume ramp effects both // volume settings and mute When set to 1 a soft mute is enabled. // 8 VOL_EXPO_RAMP Exponential Volume Ramp Enable // 0x0 = Linear ramp over top 4 volume octaves // 0x1 = Exponential ramp over full volume range // This bit only takes effect if VOL_RAMP_EN is 1. // 3 DAC_MUTE_RIGHT DAC Right Mute (default=1) // 0x0 = Unmute // 0x1 = Muted // If VOL_RAMP_EN = 1, this is a soft mute. // 2 DAC_MUTE_LEFT DAC Left Mute (default=1) // 0x0 = Unmute // 0x1 = Muted // If VOL_RAMP_EN = 1, this is a soft mute. // 1 ADC_HPF_FREEZE ADC High Pass Filter Freeze // 0x0 = Normal operation // 0x1 = Freeze the ADC high-pass filter offset register. The // offset continues to be subtracted from the ADC data stream. // 0 ADC_HPF_BYPASS ADC High Pass Filter Bypass // 0x0 = Normal operation // 0x1 = Bypassed and offset not updated #define CHIP_DAC_VOL 0x0010 // 15:8 DAC_VOL_RIGHT DAC Right Channel Volume. Set the Right channel DAC volume // with 0.5017 dB steps from 0 to -90 dB // 0x3B and less = Reserved // 0x3C = 0 dB // 0x3D = -0.5 dB // 0xF0 = -90 dB // 0xFC and greater = Muted // If VOL_RAMP_EN = 1, there is an automatic ramp to the // new volume setting. // 7:0 DAC_VOL_LEFT DAC Left Channel Volume. Set the Left channel DAC volume // with 0.5017 dB steps from 0 to -90 dB // 0x3B and less = Reserved // 0x3C = 0 dB // 0x3D = -0.5 dB // 0xF0 = -90 dB // 0xFC and greater = Muted // If VOL_RAMP_EN = 1, there is an automatic ramp to the // new volume setting. #define CHIP_PAD_STRENGTH 0x0014 // 9:8 I2S_LRCLK I2S LRCLK Pad Drive Strength (default=1) // Sets drive strength for output pads per the table below. // VDDIO 1.8 V 2.5 V 3.3 V // 0x0 = Disable // 0x1 = 1.66 mA 2.87 mA 4.02 mA // 0x2 = 3.33 mA 5.74 mA 8.03 mA // 0x3 = 4.99 mA 8.61 mA 12.05 mA // 7:6 I2S_SCLK I2S SCLK Pad Drive Strength (default=1) // 5:4 I2S_DOUT I2S DOUT Pad Drive Strength (default=1) // 3:2 CTRL_DATA I2C DATA Pad Drive Strength (default=3) // 1:0 CTRL_CLK I2C CLK Pad Drive Strength (default=3) // (all use same table as I2S_LRCLK) #define CHIP_ANA_ADC_CTRL 0x0020 // 8 ADC_VOL_M6DB ADC Volume Range Reduction // This bit shifts both right and left analog ADC volume // range down by 6.0 dB. // 0x0 = No change in ADC range // 0x1 = ADC range reduced by 6.0 dB // 7:4 ADC_VOL_RIGHT ADC Right Channel Volume // Right channel analog ADC volume control in 1.5 dB steps. // 0x0 = 0 dB // 0x1 = +1.5 dB // ... // 0xF = +22.5 dB // This range is -6.0 dB to +16.5 dB if ADC_VOL_M6DB is set to 1. // 3:0 ADC_VOL_LEFT ADC Left Channel Volume // (same scale as ADC_VOL_RIGHT) #define CHIP_ANA_HP_CTRL 0x0022 // 14:8 HP_VOL_RIGHT Headphone Right Channel Volume (default 0x18) // Right channel headphone volume control with 0.5 dB steps. // 0x00 = +12 dB // 0x01 = +11.5 dB // 0x18 = 0 dB // ... // 0x7F = -51.5 dB // 6:0 HP_VOL_LEFT Headphone Left Channel Volume (default 0x18) // (same scale as HP_VOL_RIGHT) #define CHIP_ANA_CTRL 0x0024 // 8 MUTE_LO LINEOUT Mute, 0 = Unmute, 1 = Mute (default 1) // 6 SELECT_HP Select the headphone input, 0 = DAC, 1 = LINEIN // 5 EN_ZCD_HP Enable the headphone zero cross detector (ZCD) // 0x0 = HP ZCD disabled // 0x1 = HP ZCD enabled // 4 MUTE_HP Mute the headphone outputs, 0 = Unmute, 1 = Mute (default) // 2 SELECT_ADC Select the ADC input, 0 = Microphone, 1 = LINEIN // 1 EN_ZCD_ADC Enable the ADC analog zero cross detector (ZCD) // 0x0 = ADC ZCD disabled // 0x1 = ADC ZCD enabled // 0 MUTE_ADC Mute the ADC analog volume, 0 = Unmute, 1 = Mute (default) #define CHIP_LINREG_CTRL 0x0026 // 6 VDDC_MAN_ASSN Determines chargepump source when VDDC_ASSN_OVRD is set. // 0x0 = VDDA // 0x1 = VDDIO // 5 VDDC_ASSN_OVRD Charge pump Source Assignment Override // 0x0 = Charge pump source is automatically assigned based // on higher of VDDA and VDDIO // 0x1 = the source of charge pump is manually assigned by // VDDC_MAN_ASSN If VDDIO and VDDA are both the same // and greater than 3.1 V, VDDC_ASSN_OVRD and // VDDC_MAN_ASSN should be used to manually assign // VDDIO as the source for charge pump. // 3:0 D_PROGRAMMING Sets the VDDD linear regulator output voltage in 50 mV steps. // Must clear the LINREG_SIMPLE_POWERUP and STARTUP_POWERUP bits // in the 0x0030 (CHIP_ANA_POWER) register after power-up, for // this setting to produce the proper VDDD voltage. // 0x0 = 1.60 // 0xF = 0.85 #define CHIP_REF_CTRL 0x0028 // bandgap reference bias voltage and currents // 8:4 VAG_VAL Analog Ground Voltage Control // These bits control the analog ground voltage in 25 mV steps. // This should usually be set to VDDA/2 or lower for best // performance (maximum output swing at minimum THD). This VAG // reference is also used for the DAC and ADC voltage reference. // So changing this voltage scales the output swing of the DAC // and the output signal of the ADC. // 0x00 = 0.800 V // 0x1F = 1.575 V // 3:1 BIAS_CTRL Bias control // These bits adjust the bias currents for all of the analog // blocks. By lowering the bias current a lower quiescent power // is achieved. It should be noted that this mode can affect // performance by 3-4 dB. // 0x0 = Nominal // 0x1-0x3=+12.5% // 0x4=-12.5% // 0x5=-25% // 0x6=-37.5% // 0x7=-50% // 0 SMALL_POP VAG Ramp Control // Setting this bit slows down the VAG ramp from ~200 to ~400 ms // to reduce the startup pop, but increases the turn on/off time. // 0x0 = Normal VAG ramp // 0x1 = Slow down VAG ramp #define CHIP_MIC_CTRL 0x002A // microphone gain & internal microphone bias // 9:8 BIAS_RESISTOR MIC Bias Output Impedance Adjustment // Controls an adjustable output impedance for the microphone bias. // If this is set to zero the micbias block is powered off and // the output is highZ. // 0x0 = Powered off // 0x1 = 2.0 kohm // 0x2 = 4.0 kohm // 0x3 = 8.0 kohm // 6:4 BIAS_VOLT MIC Bias Voltage Adjustment // Controls an adjustable bias voltage for the microphone bias // amp in 250 mV steps. This bias voltage setting should be no // more than VDDA-200 mV for adequate power supply rejection. // 0x0 = 1.25 V // ... // 0x7 = 3.00 V // 1:0 GAIN MIC Amplifier Gain // Sets the microphone amplifier gain. At 0 dB setting the THD // can be slightly higher than other paths- typically around // ~65 dB. At other gain settings the THD are better. // 0x0 = 0 dB // 0x1 = +20 dB // 0x2 = +30 dB // 0x3 = +40 dB #define CHIP_LINE_OUT_CTRL 0x002C // 11:8 OUT_CURRENT Controls the output bias current for the LINEOUT amplifiers. The // nominal recommended setting for a 10 kohm load with 1.0 nF load cap // is 0x3. There are only 5 valid settings. // 0x0=0.18 mA // 0x1=0.27 mA // 0x3=0.36 mA // 0x7=0.45 mA // 0xF=0.54 mA // 5:0 LO_VAGCNTRL LINEOUT Amplifier Analog Ground Voltage // Controls the analog ground voltage for the LINEOUT amplifiers // in 25 mV steps. This should usually be set to VDDIO/2. // 0x00 = 0.800 V // ... // 0x1F = 1.575 V // ... // 0x23 = 1.675 V // 0x24-0x3F are invalid #define CHIP_LINE_OUT_VOL 0x002E // 12:8 LO_VOL_RIGHT LINEOUT Right Channel Volume (default=4) // Controls the right channel LINEOUT volume in 0.5 dB steps. // Higher codes have more attenuation. // 4:0 LO_VOL_LEFT LINEOUT Left Channel Output Level (default=4) // Used to normalize the output level of the left line output // to full scale based on the values used to set // LINE_OUT_CTRL->LO_VAGCNTRL and CHIP_REF_CTRL->VAG_VAL. // In general this field should be set to: // 40*log((VAG_VAL)/(LO_VAGCNTRL)) + 15 // Suggested values based on typical VDDIO and VDDA voltages. // VDDA VAG_VAL VDDIO LO_VAGCNTRL LO_VOL_* // 1.8 V 0.9 3.3 V 1.55 0x06 // 1.8 V 0.9 1.8 V 0.9 0x0F // 3.3 V 1.55 1.8 V 0.9 0x19 // 3.3 V 1.55 3.3 V 1.55 0x0F // After setting to the nominal voltage, this field can be used // to adjust the output level in +/-0.5 dB increments by using // values higher or lower than the nominal setting. #define CHIP_ANA_POWER 0x0030 // power down controls for the analog blocks. // The only other power-down controls are BIAS_RESISTOR in the MIC_CTRL register // and the EN_ZCD control bits in ANA_CTRL. // 14 DAC_MONO While DAC_POWERUP is set, this allows the DAC to be put into left only // mono operation for power savings. 0=mono, 1=stereo (default) // 13 LINREG_SIMPLE_POWERUP Power up the simple (low power) digital supply regulator. // After reset, this bit can be cleared IF VDDD is driven // externally OR the primary digital linreg is enabled with // LINREG_D_POWERUP // 12 STARTUP_POWERUP Power up the circuitry needed during the power up ramp and reset. // After reset this bit can be cleared if VDDD is coming from // an external source. // 11 VDDC_CHRGPMP_POWERUP Power up the VDDC charge pump block. If neither VDDA or VDDIO // is 3.0 V or larger this bit should be cleared before analog // blocks are powered up. // 10 PLL_POWERUP PLL Power Up, 0 = Power down, 1 = Power up // When cleared, the PLL is turned off. This must be set before // CHIP_CLK_CTRL->MCLK_FREQ is programmed to 0x3. The // CHIP_PLL_CTRL register must be configured correctly before // setting this bit. // 9 LINREG_D_POWERUP Power up the primary VDDD linear regulator, 0 = Power down, 1 = Power up // 8 VCOAMP_POWERUP Power up the PLL VCO amplifier, 0 = Power down, 1 = Power up // 7 VAG_POWERUP Power up the VAG reference buffer. // Setting this bit starts the power up ramp for the headphone // and LINEOUT. The headphone (and/or LINEOUT) powerup should // be set BEFORE clearing this bit. When this bit is cleared // the power-down ramp is started. The headphone (and/or LINEOUT) // powerup should stay set until the VAG is fully ramped down // (200 to 400 ms after clearing this bit). // 0x0 = Power down, 0x1 = Power up // 6 ADC_MONO While ADC_POWERUP is set, this allows the ADC to be put into left only // mono operation for power savings. This mode is useful when // only using the microphone input. // 0x0 = Mono (left only), 0x1 = Stereo // 5 REFTOP_POWERUP Power up the reference bias currents // 0x0 = Power down, 0x1 = Power up // This bit can be cleared when the part is a sleep state // to minimize analog power. // 4 HEADPHONE_POWERUP Power up the headphone amplifiers // 0x0 = Power down, 0x1 = Power up // 3 DAC_POWERUP Power up the DACs // 0x0 = Power down, 0x1 = Power up // 2 CAPLESS_HEADPHONE_POWERUP Power up the capless headphone mode // 0x0 = Power down, 0x1 = Power up // 1 ADC_POWERUP Power up the ADCs // 0x0 = Power down, 0x1 = Power up // 0 LINEOUT_POWERUP Power up the LINEOUT amplifiers // 0x0 = Power down, 0x1 = Power up #define CHIP_PLL_CTRL 0x0032 // 15:11 INT_DIVISOR // 10:0 FRAC_DIVISOR #define CHIP_CLK_TOP_CTRL 0x0034 // 11 ENABLE_INT_OSC Setting this bit enables an internal oscillator to be used for the // zero cross detectors, the short detect recovery, and the // charge pump. This allows the I2S clock to be shut off while // still operating an analog signal path. This bit can be kept // on when the I2S clock is enabled, but the I2S clock is more // accurate so it is preferred to clear this bit when I2S is present. // 3 INPUT_FREQ_DIV2 SYS_MCLK divider before PLL input // 0x0 = pass through // 0x1 = SYS_MCLK is divided by 2 before entering PLL // This must be set when the input clock is above 17 Mhz. This // has no effect when the PLL is powered down. #define CHIP_ANA_STATUS 0x0036 // 9 LRSHORT_STS This bit is high whenever a short is detected on the left or right // channel headphone drivers. // 8 CSHORT_STS This bit is high whenever a short is detected on the capless headphone // common/center channel driver. // 4 PLL_IS_LOCKED This bit goes high after the PLL is locked. #define CHIP_ANA_TEST1 0x0038 // intended only for debug. #define CHIP_ANA_TEST2 0x003A // intended only for debug. #define CHIP_SHORT_CTRL 0x003C // 14:12 LVLADJR Right channel headphone short detector in 25 mA steps. // 0x3=25 mA // 0x2=50 mA // 0x1=75 mA // 0x0=100 mA // 0x4=125 mA // 0x5=150 mA // 0x6=175 mA // 0x7=200 mA // This trip point can vary by ~30% over process so leave plenty // of guard band to avoid false trips. This short detect trip // point is also effected by the bias current adjustments made // by CHIP_REF_CTRL->BIAS_CTRL and by CHIP_ANA_TEST1->HP_IALL_ADJ. // 10:8 LVLADJL Left channel headphone short detector in 25 mA steps. // (same scale as LVLADJR) // 6:4 LVLADJC Capless headphone center channel short detector in 50 mA steps. // 0x3=50 mA // 0x2=100 mA // 0x1=150 mA // 0x0=200 mA // 0x4=250 mA // 0x5=300 mA // 0x6=350 mA // 0x7=400 mA // 3:2 MODE_LR Behavior of left/right short detection // 0x0 = Disable short detector, reset short detect latch, // software view non-latched short signal // 0x1 = Enable short detector and reset the latch at timeout // (every ~50 ms) // 0x2 = This mode is not used/invalid // 0x3 = Enable short detector with only manual reset (have // to return to 0x0 to reset the latch) // 1:0 MODE_CM Behavior of capless headphone central short detection // (same settings as MODE_LR) #define DAP_CONTROL 0x0100 #define DAP_PEQ 0x0102 #define DAP_BASS_ENHANCE 0x0104 #define DAP_BASS_ENHANCE_CTRL 0x0106 #define DAP_AUDIO_EQ 0x0108 #define DAP_SGTL_SURROUND 0x010A #define DAP_FILTER_COEF_ACCESS 0x010C #define DAP_COEF_WR_B0_MSB 0x010E #define DAP_COEF_WR_B0_LSB 0x0110 #define DAP_AUDIO_EQ_BASS_BAND0 0x0116 // 115 Hz #define DAP_AUDIO_EQ_BAND1 0x0118 // 330 Hz #define DAP_AUDIO_EQ_BAND2 0x011A // 990 Hz #define DAP_AUDIO_EQ_BAND3 0x011C // 3000 Hz #define DAP_AUDIO_EQ_TREBLE_BAND4 0x011E // 9900 Hz #define DAP_MAIN_CHAN 0x0120 #define DAP_MIX_CHAN 0x0122 #define DAP_AVC_CTRL 0x0124 #define DAP_AVC_THRESHOLD 0x0126 #define DAP_AVC_ATTACK 0x0128 #define DAP_AVC_DECAY 0x012A #define DAP_COEF_WR_B1_MSB 0x012C #define DAP_COEF_WR_B1_LSB 0x012E #define DAP_COEF_WR_B2_MSB 0x0130 #define DAP_COEF_WR_B2_LSB 0x0132 #define DAP_COEF_WR_A1_MSB 0x0134 #define DAP_COEF_WR_A1_LSB 0x0136 #define DAP_COEF_WR_A2_MSB 0x0138 #define DAP_COEF_WR_A2_LSB 0x013A #define SGTL5000_I2C_ADDR 0x0A // CTRL_ADR0_CS pin low (normal configuration) //#define SGTL5000_I2C_ADDR 0x2A // CTRL_ADR0_CS pin high bool AudioControlSGTL5000::enable(void) { muted = true; Wire.begin(); delay(5); //Serial.print("chip ID = "); //delay(5); //unsigned int n = read(CHIP_ID); //Serial.println(n, HEX); write(CHIP_ANA_POWER, 0x4060); // VDDD is externally driven with 1.8V write(CHIP_LINREG_CTRL, 0x006C); // VDDA & VDDIO both over 3.1V write(CHIP_REF_CTRL, 0x01F2); // VAG=1.575, normal ramp, +12.5% bias current write(CHIP_LINE_OUT_CTRL, 0x0F22); // LO_VAGCNTRL=1.65V, OUT_CURRENT=0.54mA write(CHIP_SHORT_CTRL, 0x4446); // allow up to 125mA write(CHIP_ANA_CTRL, 0x0137); // enable zero cross detectors write(CHIP_ANA_POWER, 0x40FF); // power up: lineout, hp, adc, dac write(CHIP_DIG_POWER, 0x0073); // power up all digital stuff delay(400); write(CHIP_LINE_OUT_VOL, 0x1D1D); // default approx 1.3 volts peak-to-peak write(CHIP_CLK_CTRL, 0x0004); // 44.1 kHz, 256*Fs write(CHIP_I2S_CTRL, 0x0130); // SCLK=32*Fs, 16bit, I2S format // default signal routing is ok? write(CHIP_SSS_CTRL, 0x0010); // ADC->I2S, I2S->DAC write(CHIP_ADCDAC_CTRL, 0x0000); // disable dac mute write(CHIP_DAC_VOL, 0x3C3C); // digital gain, 0dB write(CHIP_ANA_HP_CTRL, 0x7F7F); // set volume (lowest level) write(CHIP_ANA_CTRL, 0x0036); // enable zero cross detectors //mute = false; semi_automated = true; return true; } unsigned int AudioControlSGTL5000::read(unsigned int reg) { unsigned int val; Wire.beginTransmission(SGTL5000_I2C_ADDR); Wire.write(reg >> 8); Wire.write(reg); if (Wire.endTransmission(false) != 0) return 0; if (Wire.requestFrom(SGTL5000_I2C_ADDR, 2) < 2) return 0; val = Wire.read() << 8; val |= Wire.read(); return val; } bool AudioControlSGTL5000::write(unsigned int reg, unsigned int val) { if (reg == CHIP_ANA_CTRL) ana_ctrl = val; Wire.beginTransmission(SGTL5000_I2C_ADDR); Wire.write(reg >> 8); Wire.write(reg); Wire.write(val >> 8); Wire.write(val); if (Wire.endTransmission() == 0) return true; return false; } unsigned int AudioControlSGTL5000::modify(unsigned int reg, unsigned int val, unsigned int iMask) { unsigned int val1 = (read(reg)&(~iMask))|val; if(!write(reg,val1)) return 0; return val1; } bool AudioControlSGTL5000::volumeInteger(unsigned int n) { if (n == 0) { muted = true; write(CHIP_ANA_HP_CTRL, 0x7F7F); return muteHeadphone(); } else if (n > 0x80) { n = 0; } else { n = 0x80 - n; } if (muted) { muted = false; unmuteHeadphone(); } n = n | (n << 8); return write(CHIP_ANA_HP_CTRL, n); // set volume } bool AudioControlSGTL5000::volume(float left, float right) { unsigned short m=((0x7F-calcVol(right,0x7F))<<8)|(0x7F-calcVol(left,0x7F)); return write(CHIP_ANA_HP_CTRL, m); } bool AudioControlSGTL5000::micGain(unsigned int dB) { unsigned int preamp_gain, input_gain; if (dB >= 40) { preamp_gain = 3; dB -= 40; } else if (dB >= 30) { preamp_gain = 2; dB -= 30; } else if (dB >= 20) { preamp_gain = 1; dB -= 20; } else { preamp_gain = 0; } input_gain = (dB * 2) / 3; if (input_gain > 15) input_gain = 15; return write(CHIP_MIC_CTRL, 0x0170 | preamp_gain) && write(CHIP_ANA_ADC_CTRL, (input_gain << 4) | input_gain); } // CHIP_ANA_ADC_CTRL // Actual measured full-scale peak-to-peak sine wave input for max signal // 0: 3.12 Volts p-p // 1: 2.63 Volts p-p // 2: 2.22 Volts p-p // 3: 1.87 Volts p-p // 4: 1.58 Volts p-p // 5: 1.33 Volts p-p // 6: 1.11 Volts p-p // 7: 0.94 Volts p-p // 8: 0.79 Volts p-p // 9: 0.67 Volts p-p // 10: 0.56 Volts p-p // 11: 0.48 Volts p-p // 12: 0.40 Volts p-p // 13: 0.34 Volts p-p // 14: 0.29 Volts p-p // 15: 0.24 Volts p-p bool AudioControlSGTL5000::lineInLevel(uint8_t left, uint8_t right) { if (left > 15) left = 15; if (right > 15) right = 15; return write(CHIP_ANA_ADC_CTRL, (left << 4) | right); } // CHIP_LINE_OUT_VOL // Actual measured full-scale peak-to-peak sine wave output voltage: // 0-12: output has clipping // 13: 3.16 Volts p-p // 14: 2.98 Volts p-p // 15: 2.83 Volts p-p // 16: 2.67 Volts p-p // 17: 2.53 Volts p-p // 18: 2.39 Volts p-p // 19: 2.26 Volts p-p // 20: 2.14 Volts p-p // 21: 2.02 Volts p-p // 22: 1.91 Volts p-p // 23: 1.80 Volts p-p // 24: 1.71 Volts p-p // 25: 1.62 Volts p-p // 26: 1.53 Volts p-p // 27: 1.44 Volts p-p // 28: 1.37 Volts p-p // 29: 1.29 Volts p-p // 30: 1.22 Volts p-p // 31: 1.16 Volts p-p unsigned short AudioControlSGTL5000::lineOutLevel(uint8_t n) { if (n > 31) n = 31; else if (n < 13) n = 13; return modify(CHIP_LINE_OUT_VOL,(n<<8)|n,(31<<8)|31); } unsigned short AudioControlSGTL5000::lineOutLevel(uint8_t left, uint8_t right) { if (left > 31) left = 31; else if (left < 13) left = 13; if (right > 31) right = 31; else if (right < 13) right = 13; return modify(CHIP_LINE_OUT_VOL,(right<<8)|left,(31<<8)|31); } unsigned short AudioControlSGTL5000::dacVolume(float n) // set both directly { if ((read(CHIP_ADCDAC_CTRL)&(3<<2)) != ((n>0 ? 0:3)<<2)) { modify(CHIP_ADCDAC_CTRL,(n>0 ? 0:3)<<2,3<<2); } unsigned char m=calcVol(n,0xC0); return modify(CHIP_DAC_VOL,((0xFC-m)<<8)|(0xFC-m),65535); } unsigned short AudioControlSGTL5000::dacVolume(float left, float right) { unsigned short adcdac=((right>0 ? 0:2)|(left>0 ? 0:1))<<2; if ((read(CHIP_ADCDAC_CTRL)&(3<<2)) != adcdac) { modify(CHIP_ADCDAC_CTRL,adcdac,1<<2); } unsigned short m=(0xFC-calcVol(right,0xC0))<<8|(0xFC-calcVol(left,0xC0)); return modify(CHIP_DAC_VOL,m,65535); } unsigned short AudioControlSGTL5000::adcHighPassFilterEnable(void) { return modify(CHIP_ADCDAC_CTRL, 0, 3); } unsigned short AudioControlSGTL5000::adcHighPassFilterFreeze(void) { return modify(CHIP_ADCDAC_CTRL, 2, 3); } unsigned short AudioControlSGTL5000::adcHighPassFilterDisable(void) { return modify(CHIP_ADCDAC_CTRL, 1, 3); } // DAP_CONTROL unsigned short AudioControlSGTL5000::audioPreProcessorEnable(void) { // audio processor used to pre-process analog input before Teensy return write(DAP_CONTROL, 1) && write(CHIP_SSS_CTRL, 0x0013); } unsigned short AudioControlSGTL5000::audioPostProcessorEnable(void) { // audio processor used to post-process Teensy output before headphones/lineout return write(DAP_CONTROL, 1) && write(CHIP_SSS_CTRL, 0x0070); } unsigned short AudioControlSGTL5000::audioProcessorDisable(void) { return write(CHIP_SSS_CTRL, 0x0010) && write(DAP_CONTROL, 0); } // DAP_PEQ unsigned short AudioControlSGTL5000::eqFilterCount(uint8_t n) // valid to n&7, 0 thru 7 filters enabled. { return modify(DAP_PEQ,(n&7),7); } // DAP_AUDIO_EQ unsigned short AudioControlSGTL5000::eqSelect(uint8_t n) // 0=NONE, 1=PEQ (7 IIR Biquad filters), 2=TONE (tone), 3=GEQ (5 band EQ) { return modify(DAP_AUDIO_EQ,n&3,3); } unsigned short AudioControlSGTL5000::eqBand(uint8_t bandNum, float n) { if(semi_automated) automate(1,3); return dap_audio_eq_band(bandNum, n); } void AudioControlSGTL5000::eqBands(float bass, float mid_bass, float midrange, float mid_treble, float treble) { if(semi_automated) automate(1,3); dap_audio_eq_band(0,bass); dap_audio_eq_band(1,mid_bass); dap_audio_eq_band(2,midrange); dap_audio_eq_band(3,mid_treble); dap_audio_eq_band(4,treble); } void AudioControlSGTL5000::eqBands(float bass, float treble) // dap_audio_eq(2); { if(semi_automated) automate(1,2); dap_audio_eq_band(0,bass); dap_audio_eq_band(4,treble); } // SGTL5000 PEQ Coefficient loader void AudioControlSGTL5000::eqFilter(uint8_t filterNum, int *filterParameters) { // TODO: add the part that selects 7 PEQ filters. if(semi_automated) automate(1,1,filterNum+1); modify(DAP_FILTER_COEF_ACCESS,(uint16_t)filterNum,15); write(DAP_COEF_WR_B0_MSB,(*filterParameters>>4)&65535); write(DAP_COEF_WR_B0_LSB,(*filterParameters++)&15); write(DAP_COEF_WR_B1_MSB,(*filterParameters>>4)&65535); write(DAP_COEF_WR_B1_LSB,(*filterParameters++)&15); write(DAP_COEF_WR_B2_MSB,(*filterParameters>>4)&65535); write(DAP_COEF_WR_B2_LSB,(*filterParameters++)&15); write(DAP_COEF_WR_A1_MSB,(*filterParameters>>4)&65535); write(DAP_COEF_WR_A1_LSB,(*filterParameters++)&15); write(DAP_COEF_WR_A2_MSB,(*filterParameters>>4)&65535); write(DAP_COEF_WR_A2_LSB,(*filterParameters++)&15); write(DAP_FILTER_COEF_ACCESS,(uint16_t)0x100|filterNum); } /* Valid values for dap_avc parameters maxGain; Maximum gain that can be applied 0 - 0 dB 1 - 6.0 dB 2 - 12 dB lbiResponse; Integrator Response 0 - 0 mS 1 - 25 mS 2 - 50 mS 3 - 100 mS hardLimit 0 - Hard limit disabled. AVC Compressor/Expander enabled. 1 - Hard limit enabled. The signal is limited to the programmed threshold (signal saturates at the threshold) threshold floating point in range 0 to -96 dB attack floating point figure is dB/s rate at which gain is increased decay floating point figure is dB/s rate at which gain is reduced */ unsigned short AudioControlSGTL5000::autoVolumeControl(uint8_t maxGain, uint8_t lbiResponse, uint8_t hardLimit, float threshold, float attack, float decay) { //if(semi_automated&&(!read(DAP_CONTROL)&1)) audioProcessorEnable(); if(maxGain>2) maxGain=2; lbiResponse&=3; hardLimit&=1; uint8_t thresh=(pow(10,threshold/20)*0.636)*pow(2,15); uint8_t att=(1-pow(10,-(attack/(20*44100))))*pow(2,19); uint8_t dec=(1-pow(10,-(decay/(20*44100))))*pow(2,23); write(DAP_AVC_THRESHOLD,thresh); write(DAP_AVC_ATTACK,att); write(DAP_AVC_DECAY,dec); return modify(DAP_AVC_CTRL,maxGain<<12|lbiResponse<<8|hardLimit<<5,3<<12|3<<8|1<<5); } unsigned short AudioControlSGTL5000::autoVolumeEnable(void) { return modify(DAP_AVC_CTRL, 1, 1); } unsigned short AudioControlSGTL5000::autoVolumeDisable(void) { return modify(DAP_AVC_CTRL, 0, 1); } unsigned short AudioControlSGTL5000::enhanceBass(float lr_lev, float bass_lev) { return modify(DAP_BASS_ENHANCE_CTRL,((0x3F-calcVol(lr_lev,0x3F))<<8) | (0x7F-calcVol(bass_lev,0x7F)), (0x3F<<8) | 0x7F); } unsigned short AudioControlSGTL5000::enhanceBass(float lr_lev, float bass_lev, uint8_t hpf_bypass, uint8_t cutoff) { modify(DAP_BASS_ENHANCE,(hpf_bypass&1)<<8|(cutoff&7)<<4,1<<8|7<<4); return enhanceBass(lr_lev,bass_lev); } unsigned short AudioControlSGTL5000::enhanceBassEnable(void) { return modify(DAP_BASS_ENHANCE, 1, 1); } unsigned short AudioControlSGTL5000::enhanceBassDisable(void) { return modify(DAP_BASS_ENHANCE, 0, 1); } unsigned short AudioControlSGTL5000::surroundSound(uint8_t width) { return modify(DAP_SGTL_SURROUND,(width&7)<<4,7<<4); } unsigned short AudioControlSGTL5000::surroundSound(uint8_t width, uint8_t select) { return modify(DAP_SGTL_SURROUND,((width&7)<<4)|(select&3), (7<<4)|3); } unsigned short AudioControlSGTL5000::surroundSoundEnable(void) { return modify(DAP_SGTL_SURROUND, 3, 3); } unsigned short AudioControlSGTL5000::surroundSoundDisable(void) { return modify(DAP_SGTL_SURROUND, 0, 3); } unsigned char AudioControlSGTL5000::calcVol(float n, unsigned char range) { // n=(n*(((float)range)/100))+0.499; n=(n*(float)range)+0.499; if ((unsigned char)n>range) n=range; return (unsigned char)n; } // DAP_AUDIO_EQ_BASS_BAND0 & DAP_AUDIO_EQ_BAND1 & DAP_AUDIO_EQ_BAND2 etc etc unsigned short AudioControlSGTL5000::dap_audio_eq_band(uint8_t bandNum, float n) // by signed percentage -100/+100; dap_audio_eq(3); { n=(n*48)+0.499; if(n<-47) n=-47; if(n>48) n=48; n+=47; return modify(DAP_AUDIO_EQ_BASS_BAND0+(bandNum*2),(unsigned int)n,127); } void AudioControlSGTL5000::automate(uint8_t dap, uint8_t eq) { //if((dap!=0)&&(!(read(DAP_CONTROL)&1))) audioProcessorEnable(); if((read(DAP_AUDIO_EQ)&3) != eq) eqSelect(eq); } void AudioControlSGTL5000::automate(uint8_t dap, uint8_t eq, uint8_t filterCount) { automate(dap,eq); if (filterCount > (read(DAP_PEQ)&7)) eqFilterCount(filterCount); } // if(SGTL5000_PEQ) quantization_unit=524288; if(AudioFilterBiquad) quantization_unit=2147483648; void calcBiquad(uint8_t filtertype, float fC, float dB_Gain, float Q, uint32_t quantization_unit, uint32_t fS, int *coef) { // I used resources like http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt // to make this routine, I tested most of the filter types and they worked. Such filters have limits and // before calling this routine with varying values the end user should check that those values are limited // to valid results. float A; if(filtertype