/* Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "output_i2s_quad.h" #include "memcpy_audio.h" #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) audio_block_t * AudioOutputI2SQuad::block_ch1_1st = NULL; audio_block_t * AudioOutputI2SQuad::block_ch2_1st = NULL; audio_block_t * AudioOutputI2SQuad::block_ch3_1st = NULL; audio_block_t * AudioOutputI2SQuad::block_ch4_1st = NULL; audio_block_t * AudioOutputI2SQuad::block_ch1_2nd = NULL; audio_block_t * AudioOutputI2SQuad::block_ch2_2nd = NULL; audio_block_t * AudioOutputI2SQuad::block_ch3_2nd = NULL; audio_block_t * AudioOutputI2SQuad::block_ch4_2nd = NULL; uint16_t AudioOutputI2SQuad::ch1_offset = 0; uint16_t AudioOutputI2SQuad::ch2_offset = 0; uint16_t AudioOutputI2SQuad::ch3_offset = 0; uint16_t AudioOutputI2SQuad::ch4_offset = 0; //audio_block_t * AudioOutputI2SQuad::inputQueueArray[4]; bool AudioOutputI2SQuad::update_responsibility = false; DMAMEM static uint32_t i2s_tx_buffer[AUDIO_BLOCK_SAMPLES*2]; DMAChannel AudioOutputI2SQuad::dma(false); static const uint32_t zerodata[AUDIO_BLOCK_SAMPLES/4] = {0}; void AudioOutputI2SQuad::begin(void) { #if 1 dma.begin(true); // Allocate the DMA channel first block_ch1_1st = NULL; block_ch2_1st = NULL; block_ch3_1st = NULL; block_ch4_1st = NULL; // TODO: can we call normal config_i2s, and then just enable the extra output? config_i2s(); CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 -> ch1 & ch2 CORE_PIN15_CONFIG = PORT_PCR_MUX(6); // pin 15, PTC0, I2S0_TXD1 -> ch3 & ch4 dma.TCD->SADDR = i2s_tx_buffer; dma.TCD->SOFF = 2; dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1) | DMA_TCD_ATTR_DMOD(3); dma.TCD->NBYTES_MLNO = 4; dma.TCD->SLAST = -sizeof(i2s_tx_buffer); dma.TCD->DADDR = &I2S0_TDR0; dma.TCD->DOFF = 4; dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 4; dma.TCD->DLASTSGA = 0; dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 4; dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); update_responsibility = update_setup(); dma.enable(); I2S0_TCSR = I2S_TCSR_SR; I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; dma.attachInterrupt(isr); #endif } void AudioOutputI2SQuad::isr(void) { uint32_t saddr; const int16_t *src1, *src2, *src3, *src4; const int16_t *zeros = (const int16_t *)zerodata; int16_t *dest; saddr = (uint32_t)(dma.TCD->SADDR); dma.clearInterrupt(); if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { // DMA is transmitting the first half of the buffer // so we must fill the second half dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES]; if (update_responsibility) update_all(); } else { dest = (int16_t *)i2s_tx_buffer; } src1 = (block_ch1_1st) ? block_ch1_1st->data + ch1_offset : zeros; src2 = (block_ch2_1st) ? block_ch2_1st->data + ch2_offset : zeros; src3 = (block_ch3_1st) ? block_ch3_1st->data + ch3_offset : zeros; src4 = (block_ch4_1st) ? block_ch4_1st->data + ch4_offset : zeros; // TODO: fast 4-way interleaved memcpy... #if 1 memcpy_tointerleaveQuad(dest, src1, src2, src3, src4); #else for (int i=0; i < AUDIO_BLOCK_SAMPLES/2; i++) { *dest++ = *src1++; *dest++ = *src3++; *dest++ = *src2++; *dest++ = *src4++; } #endif if (block_ch1_1st) { if (ch1_offset == 0) { ch1_offset = AUDIO_BLOCK_SAMPLES/2; } else { ch1_offset = 0; release(block_ch1_1st); block_ch1_1st = block_ch1_2nd; block_ch1_2nd = NULL; } } if (block_ch2_1st) { if (ch2_offset == 0) { ch2_offset = AUDIO_BLOCK_SAMPLES/2; } else { ch2_offset = 0; release(block_ch2_1st); block_ch2_1st = block_ch2_2nd; block_ch2_2nd = NULL; } } if (block_ch3_1st) { if (ch3_offset == 0) { ch3_offset = AUDIO_BLOCK_SAMPLES/2; } else { ch3_offset = 0; release(block_ch3_1st); block_ch3_1st = block_ch3_2nd; block_ch3_2nd = NULL; } } if (block_ch4_1st) { if (ch4_offset == 0) { ch4_offset = AUDIO_BLOCK_SAMPLES/2; } else { ch4_offset = 0; release(block_ch4_1st); block_ch4_1st = block_ch4_2nd; block_ch4_2nd = NULL; } } } void AudioOutputI2SQuad::update(void) { audio_block_t *block, *tmp; block = receiveReadOnly(0); // channel 1 if (block) { __disable_irq(); if (block_ch1_1st == NULL) { block_ch1_1st = block; ch1_offset = 0; __enable_irq(); } else if (block_ch1_2nd == NULL) { block_ch1_2nd = block; __enable_irq(); } else { tmp = block_ch1_1st; block_ch1_1st = block_ch1_2nd; block_ch1_2nd = block; ch1_offset = 0; __enable_irq(); release(tmp); } } block = receiveReadOnly(1); // channel 2 if (block) { __disable_irq(); if (block_ch2_1st == NULL) { block_ch2_1st = block; ch2_offset = 0; __enable_irq(); } else if (block_ch2_2nd == NULL) { block_ch2_2nd = block; __enable_irq(); } else { tmp = block_ch2_1st; block_ch2_1st = block_ch2_2nd; block_ch2_2nd = block; ch2_offset = 0; __enable_irq(); release(tmp); } } block = receiveReadOnly(2); // channel 3 if (block) { __disable_irq(); if (block_ch3_1st == NULL) { block_ch3_1st = block; ch3_offset = 0; __enable_irq(); } else if (block_ch3_2nd == NULL) { block_ch3_2nd = block; __enable_irq(); } else { tmp = block_ch3_1st; block_ch3_1st = block_ch3_2nd; block_ch3_2nd = block; ch3_offset = 0; __enable_irq(); release(tmp); } } block = receiveReadOnly(3); // channel 4 if (block) { __disable_irq(); if (block_ch4_1st == NULL) { block_ch4_1st = block; ch4_offset = 0; __enable_irq(); } else if (block_ch4_2nd == NULL) { block_ch4_2nd = block; __enable_irq(); } else { tmp = block_ch4_1st; block_ch4_1st = block_ch4_2nd; block_ch4_2nd = block; ch4_offset = 0; __enable_irq(); release(tmp); } } } // MCLK needs to be 48e6 / 1088 * 256 = 11.29411765 MHz -> 44.117647 kHz sample rate // #if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000 // PLL is at 96 MHz in these modes #define MCLK_MULT 2 #define MCLK_DIV 17 #elif F_CPU == 72000000 #define MCLK_MULT 8 #define MCLK_DIV 51 #elif F_CPU == 120000000 #define MCLK_MULT 8 #define MCLK_DIV 85 #elif F_CPU == 144000000 #define MCLK_MULT 4 #define MCLK_DIV 51 #elif F_CPU == 168000000 #define MCLK_MULT 8 #define MCLK_DIV 119 #elif F_CPU == 180000000 #define MCLK_MULT 16 #define MCLK_DIV 255 #define MCLK_SRC 0 #elif F_CPU == 192000000 #define MCLK_MULT 1 #define MCLK_DIV 17 #elif F_CPU == 216000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #define MCLK_SRC 1 #elif F_CPU == 240000000 #define MCLK_MULT 2 #define MCLK_DIV 85 #define MCLK_SRC 0 #elif F_CPU == 256000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #define MCLK_SRC 1 #elif F_CPU == 16000000 #define MCLK_MULT 12 #define MCLK_DIV 17 #else #error "This CPU Clock Speed is not supported by the Audio library"; #endif #ifndef MCLK_SRC #if F_CPU >= 20000000 #define MCLK_SRC 3 // the PLL #else #define MCLK_SRC 0 // system clock #endif #endif void AudioOutputI2SQuad::config_i2s(void) { SIM_SCGC6 |= SIM_SCGC6_I2S; SIM_SCGC7 |= SIM_SCGC7_DMA; SIM_SCGC6 |= SIM_SCGC6_DMAMUX; // if either transmitter or receiver is enabled, do nothing if (I2S0_TCSR & I2S_TCSR_TE) return; if (I2S0_RCSR & I2S_RCSR_RE) return; // enable MCLK output I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE; while (I2S0_MCR & I2S_MCR_DUF) ; I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1)); // configure transmitter I2S0_TMR = 0; I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(3); I2S0_TCR3 = I2S_TCR3_TCE_2CH; I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD; I2S0_TCR5 = I2S_TCR5_WNW(15) | I2S_TCR5_W0W(15) | I2S_TCR5_FBT(15); // configure receiver (sync'd to transmitter clocks) I2S0_RMR = 0; I2S0_RCR1 = I2S_RCR1_RFW(1); I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1) | I2S_RCR2_BCD | I2S_RCR2_DIV(3); I2S0_RCR3 = I2S_RCR3_RCE_2CH; I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(15) | I2S_RCR4_MF | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; I2S0_RCR5 = I2S_RCR5_WNW(15) | I2S_RCR5_W0W(15) | I2S_RCR5_FBT(15); // configure pin mux for 3 clock signals CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK } #else // not __MK20DX256__ void AudioOutputI2SQuad::begin(void) { } void AudioOutputI2SQuad::update(void) { audio_block_t *block; block = receiveReadOnly(0); if (block) release(block); block = receiveReadOnly(1); if (block) release(block); block = receiveReadOnly(2); if (block) release(block); block = receiveReadOnly(3); if (block) release(block); } #endif