#include "Audio.h" #include "arm_math.h" #include "utility/dspinst.h" /******************************************************************/ // A u d i o E f f e c t C h o r u s // Written by Pete (El Supremo) Jan 2014 // circular addressing indices for left and right channels short AudioEffectChorus::l_circ_idx; short AudioEffectChorus::r_circ_idx; short * AudioEffectChorus::l_delayline = NULL; short * AudioEffectChorus::r_delayline = NULL; int AudioEffectChorus::delay_length; // An initial value of zero indicates passthru int AudioEffectChorus::num_chorus = 0; // All three must be valid. boolean AudioEffectChorus::begin(short *delayline,int d_length,int n_chorus) { Serial.print("AudioEffectChorus.begin(Chorus delay line length = "); Serial.print(d_length); Serial.print(", n_chorus = "); Serial.print(n_chorus); Serial.println(")"); l_delayline = NULL; r_delayline = NULL; delay_length = 0; l_circ_idx = 0; r_circ_idx = 0; if(delayline == NULL) { return(false); } if(d_length < 10) { return(false); } if(n_chorus < 1) { return(false); } l_delayline = delayline; r_delayline = delayline + d_length/2; delay_length = d_length/2; num_chorus = n_chorus; return(true); } // This has the same effect as begin(NULL,0); void AudioEffectChorus::stop(void) { } void AudioEffectChorus::modify(int n_chorus) { num_chorus = n_chorus; } int iabs(int x) { if(x < 0)return(-x); return(x); } //static int d_count = 0; int last_idx = 0; void AudioEffectChorus::update(void) { audio_block_t *block; short *bp; int sum; int c_idx; if(l_delayline == NULL)return; if(r_delayline == NULL)return; // do passthru // It stores the unmodified data in the delay line so that // it isn't as likely to click if(num_chorus < 1) { // Just passthrough block = receiveWritable(0); if(block) { bp = block->data; for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { l_circ_idx++; if(l_circ_idx >= delay_length) { l_circ_idx = 0; } l_delayline[l_circ_idx] = *bp++; } transmit(block,0); release(block); } block = receiveWritable(1); if(block) { bp = block->data; for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { r_circ_idx++; if(r_circ_idx >= delay_length) { r_circ_idx = 0; } r_delayline[r_circ_idx] = *bp++; } transmit(block,1); release(block); } return; } // L E F T C H A N N E L block = receiveWritable(0); if(block) { bp = block->data; for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { l_circ_idx++; if(l_circ_idx >= delay_length) { l_circ_idx = 0; } l_delayline[l_circ_idx] = *bp; sum = 0; c_idx = l_circ_idx; for(int k = 0; k < num_chorus; k++) { sum += l_delayline[c_idx]; if(num_chorus > 1)c_idx -= delay_length/(num_chorus - 1) - 1; if(c_idx < 0) { c_idx += delay_length; } } *bp++ = sum/num_chorus; } // send the effect output to the left channel transmit(block,0); release(block); } // R I G H T C H A N N E L block = receiveWritable(1); if(block) { bp = block->data; for(int i = 0;i < AUDIO_BLOCK_SAMPLES;i++) { r_circ_idx++; if(r_circ_idx >= delay_length) { r_circ_idx = 0; } r_delayline[r_circ_idx] = *bp; sum = 0; c_idx = r_circ_idx; for(int k = 0; k < num_chorus; k++) { sum += r_delayline[c_idx]; if(num_chorus > 1)c_idx -= delay_length/(num_chorus - 1) - 1; if(c_idx < 0) { c_idx += delay_length; } } *bp++ = sum/num_chorus; } // send the effect output to the left channel transmit(block,1); release(block); } }