|
- /* Audio Library for Teensy 3.X
- * Copyright (c) 2018, Paul Stoffregen, paul@pjrc.com
- *
- * Development of this audio library was funded by PJRC.COM, LLC by sales of
- * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
- * open source software by purchasing Teensy or other PJRC products.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice, development funding notice, and this permission
- * notice shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include <Arduino.h>
- #include "synth_waveform.h"
- #include "arm_math.h"
- #include "utility/dspinst.h"
-
-
- // uncomment for more accurate but more computationally expensive frequency modulation
- //#define IMPROVE_EXPONENTIAL_ACCURACY
-
-
- void AudioSynthWaveform::update(void)
- {
- audio_block_t *block;
- int16_t *bp, *end;
- int32_t val1, val2;
- int16_t magnitude15;
- uint32_t i, ph, index, index2, scale;
- const uint32_t inc = phase_increment;
-
- ph = phase_accumulator + phase_offset;
- if (magnitude == 0) {
- phase_accumulator += inc * AUDIO_BLOCK_SAMPLES;
- return;
- }
- block = allocate();
- if (!block) {
- phase_accumulator += inc * AUDIO_BLOCK_SAMPLES;
- return;
- }
- bp = block->data;
-
- switch(tone_type) {
- case WAVEFORM_SINE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- val1 = AudioWaveformSine[index];
- val2 = AudioWaveformSine[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- ph += inc;
- }
- break;
-
- case WAVEFORM_ARBITRARY:
- if (!arbdata) {
- release(block);
- phase_accumulator += inc * AUDIO_BLOCK_SAMPLES;
- return;
- }
- // len = 256
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- index = ph >> 24;
- index2 = index + 1;
- if (index2 >= 256) index2 = 0;
- val1 = *(arbdata + index);
- val2 = *(arbdata + index2);
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- ph += inc;
- }
- break;
-
- case WAVEFORM_SQUARE:
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (ph & 0x80000000) {
- *bp++ = -magnitude15;
- } else {
- *bp++ = magnitude15;
- }
- ph += inc;
- }
- break;
-
- case WAVEFORM_BANDLIMIT_SQUARE:
- for (int i = 0 ; i < AUDIO_BLOCK_SAMPLES ; i++)
- {
- uint32_t new_ph = ph + inc ;
- int16_t val = band_limit_waveform.generate_square (new_ph, i) ;
- *bp++ = (val * magnitude) >> 16 ;
- ph = new_ph ;
- }
- break;
-
- case WAVEFORM_SAWTOOTH:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(magnitude, ph);
- ph += inc;
- }
- break;
-
- case WAVEFORM_SAWTOOTH_REVERSE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, ph);
- ph += inc;
- }
- break;
-
- case WAVEFORM_BANDLIMIT_SAWTOOTH:
- case WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE:
- for (i = 0 ; i < AUDIO_BLOCK_SAMPLES; i++)
- {
- uint32_t new_ph = ph + inc ;
- int16_t val = band_limit_waveform.generate_sawtooth (new_ph, i) ;
- if (tone_type == WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE)
- *bp++ = (val * -magnitude) >> 16 ;
- else
- *bp++ = (val * magnitude) >> 16 ;
- ph = new_ph ;
- }
- break;
-
- case WAVEFORM_TRIANGLE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- uint32_t phtop = ph >> 30;
- if (phtop == 1 || phtop == 2) {
- *bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16;
- } else {
- *bp++ = (((int32_t)ph >> 15) * magnitude) >> 16;
- }
- ph += inc;
- }
- break;
-
- case WAVEFORM_TRIANGLE_VARIABLE:
- do {
- uint32_t rise = 0xFFFFFFFF / (pulse_width >> 16);
- uint32_t fall = 0xFFFFFFFF / (0xFFFF - (pulse_width >> 16));
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (ph < pulse_width/2) {
- uint32_t n = (ph >> 16) * rise;
- *bp++ = ((n >> 16) * magnitude) >> 16;
- } else if (ph < 0xFFFFFFFF - pulse_width/2) {
- uint32_t n = 0x7FFFFFFF - (((ph - pulse_width/2) >> 16) * fall);
- *bp++ = (((int32_t)n >> 16) * magnitude) >> 16;
- } else {
- uint32_t n = ((ph + pulse_width/2) >> 16) * rise + 0x80000000;
- *bp++ = (((int32_t)n >> 16) * magnitude) >> 16;
- }
- ph += inc;
- }
- } while (0);
- break;
-
- case WAVEFORM_PULSE:
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (ph < pulse_width) {
- *bp++ = magnitude15;
- } else {
- *bp++ = -magnitude15;
- }
- ph += inc;
- }
- break;
-
- case WAVEFORM_BANDLIMIT_PULSE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++)
- {
- int32_t new_ph = ph + inc ;
- int32_t val = band_limit_waveform.generate_pulse (new_ph, pulse_width, i) ;
- *bp++ = (int16_t) ((val * magnitude) >> 16) ;
- ph = new_ph ;
- }
- break;
-
- case WAVEFORM_SAMPLE_HOLD:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = sample;
- uint32_t newph = ph + inc;
- if (newph < ph) {
- sample = random(magnitude) - (magnitude >> 1);
- }
- ph = newph;
- }
- break;
- }
- phase_accumulator = ph - phase_offset;
-
- if (tone_offset) {
- bp = block->data;
- end = bp + AUDIO_BLOCK_SAMPLES;
- do {
- val1 = *bp;
- *bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0);
- } while (bp < end);
- }
- transmit(block, 0);
- release(block);
- }
-
- //--------------------------------------------------------------------------------
-
- void AudioSynthWaveformModulated::update(void)
- {
- audio_block_t *block, *moddata, *shapedata;
- int16_t *bp, *end;
- int32_t val1, val2;
- int16_t magnitude15;
- uint32_t i, ph, index, index2, scale, priorphase;
- const uint32_t inc = phase_increment;
-
- moddata = receiveReadOnly(0);
- shapedata = receiveReadOnly(1);
-
- // Pre-compute the phase angle for every output sample of this update
- ph = phase_accumulator;
- priorphase = phasedata[AUDIO_BLOCK_SAMPLES-1];
- if (moddata && modulation_type == 0) {
- // Frequency Modulation
- bp = moddata->data;
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- int32_t n = (*bp++) * modulation_factor; // n is # of octaves to mod
- int32_t ipart = n >> 27; // 4 integer bits
- n &= 0x7FFFFFF; // 27 fractional bits
- #ifdef IMPROVE_EXPONENTIAL_ACCURACY
- // exp2 polynomial suggested by Stefan Stenzel on "music-dsp"
- // mail list, Wed, 3 Sep 2014 10:08:55 +0200
- int32_t x = n << 3;
- n = multiply_accumulate_32x32_rshift32_rounded(536870912, x, 1494202713);
- int32_t sq = multiply_32x32_rshift32_rounded(x, x);
- n = multiply_accumulate_32x32_rshift32_rounded(n, sq, 1934101615);
- n = n + (multiply_32x32_rshift32_rounded(sq,
- multiply_32x32_rshift32_rounded(x, 1358044250)) << 1);
- n = n << 1;
- #else
- // exp2 algorithm by Laurent de Soras
- // https://www.musicdsp.org/en/latest/Other/106-fast-exp2-approximation.html
- n = (n + 134217728) << 3;
-
- n = multiply_32x32_rshift32_rounded(n, n);
- n = multiply_32x32_rshift32_rounded(n, 715827883) << 3;
- n = n + 715827882;
- #endif
- uint32_t scale = n >> (14 - ipart);
- uint64_t phstep = (uint64_t)inc * scale;
- uint32_t phstep_msw = phstep >> 32;
- if (phstep_msw < 0x7FFE) {
- ph += phstep >> 16;
- } else {
- ph += 0x7FFE0000;
- }
- phasedata[i] = ph;
- }
- release(moddata);
- } else if (moddata) {
- // Phase Modulation
- bp = moddata->data;
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- // more than +/- 180 deg shift by 32 bit overflow of "n"
- uint32_t n = (uint16_t)(*bp++) * modulation_factor;
- phasedata[i] = ph + n;
- ph += inc;
- }
- release(moddata);
- } else {
- // No Modulation Input
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- phasedata[i] = ph;
- ph += inc;
- }
- }
- phase_accumulator = ph;
-
- // If the amplitude is zero, no output, but phase still increments properly
- if (magnitude == 0) {
- if (shapedata) release(shapedata);
- return;
- }
- block = allocate();
- if (!block) {
- if (shapedata) release(shapedata);
- return;
- }
- bp = block->data;
-
- // Now generate the output samples using the pre-computed phase angles
- switch(tone_type) {
- case WAVEFORM_SINE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- index = ph >> 24;
- val1 = AudioWaveformSine[index];
- val2 = AudioWaveformSine[index+1];
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- }
- break;
-
- case WAVEFORM_ARBITRARY:
- if (!arbdata) {
- release(block);
- if (shapedata) release(shapedata);
- return;
- }
- // len = 256
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- index = ph >> 24;
- index2 = index + 1;
- if (index2 >= 256) index2 = 0;
- val1 = *(arbdata + index);
- val2 = *(arbdata + index2);
- scale = (ph >> 8) & 0xFFFF;
- val2 *= scale;
- val1 *= 0x10000 - scale;
- *bp++ = multiply_32x32_rshift32(val1 + val2, magnitude);
- }
- break;
-
- case WAVEFORM_PULSE:
- if (shapedata) {
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16;
- if (phasedata[i] < width) {
- *bp++ = magnitude15;
- } else {
- *bp++ = -magnitude15;
- }
- }
- break;
- } // else fall through to orginary square without shape modulation
-
- case WAVEFORM_SQUARE:
- magnitude15 = signed_saturate_rshift(magnitude, 16, 1);
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- if (phasedata[i] & 0x80000000) {
- *bp++ = -magnitude15;
- } else {
- *bp++ = magnitude15;
- }
- }
- break;
-
- case WAVEFORM_BANDLIMIT_PULSE:
- if (shapedata)
- {
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++)
- {
- uint32_t width = ((shapedata->data[i] + 0x8000) & 0xFFFF) << 16;
- int32_t val = band_limit_waveform.generate_pulse (phasedata[i], width, i) ;
- *bp++ = (int16_t) ((val * magnitude) >> 16) ;
- }
- break;
- } // else fall through to orginary square without shape modulation
-
- case WAVEFORM_BANDLIMIT_SQUARE:
- for (i = 0 ; i < AUDIO_BLOCK_SAMPLES ; i++)
- {
- int32_t val = band_limit_waveform.generate_square (phasedata[i], i) ;
- *bp++ = (int16_t) ((val * magnitude) >> 16) ;
- }
- break;
-
- case WAVEFORM_SAWTOOTH:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(magnitude, phasedata[i]);
- }
- break;
-
- case WAVEFORM_SAWTOOTH_REVERSE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- *bp++ = signed_multiply_32x16t(0xFFFFFFFFu - magnitude, phasedata[i]);
- }
- break;
-
- case WAVEFORM_BANDLIMIT_SAWTOOTH:
- case WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE:
- for (i = 0 ; i < AUDIO_BLOCK_SAMPLES ; i++)
- {
- int16_t val = band_limit_waveform.generate_sawtooth (phasedata[i], i) ;
- val = (int16_t) ((val * magnitude) >> 16) ;
- *bp++ = tone_type == WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE ? (int16_t) -val : (int16_t) +val ;
- }
- break;
-
- case WAVEFORM_TRIANGLE_VARIABLE:
- if (shapedata) {
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- uint32_t width = (shapedata->data[i] + 0x8000) & 0xFFFF;
- uint32_t rise = 0xFFFFFFFF / width;
- uint32_t fall = 0xFFFFFFFF / (0xFFFF - width);
- uint32_t halfwidth = width << 15;
- uint32_t n;
- ph = phasedata[i];
- if (ph < halfwidth) {
- n = (ph >> 16) * rise;
- *bp++ = ((n >> 16) * magnitude) >> 16;
- } else if (ph < 0xFFFFFFFF - halfwidth) {
- n = 0x7FFFFFFF - (((ph - halfwidth) >> 16) * fall);
- *bp++ = (((int32_t)n >> 16) * magnitude) >> 16;
- } else {
- n = ((ph + halfwidth) >> 16) * rise + 0x80000000;
- *bp++ = (((int32_t)n >> 16) * magnitude) >> 16;
- }
- ph += inc;
- }
- break;
- } // else fall through to orginary triangle without shape modulation
-
- case WAVEFORM_TRIANGLE:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- uint32_t phtop = ph >> 30;
- if (phtop == 1 || phtop == 2) {
- *bp++ = ((0xFFFF - (ph >> 15)) * magnitude) >> 16;
- } else {
- *bp++ = (((int32_t)ph >> 15) * magnitude) >> 16;
- }
- }
- break;
- case WAVEFORM_SAMPLE_HOLD:
- for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- ph = phasedata[i];
- if (ph < priorphase) { // does not work for phase modulation
- sample = random(magnitude) - (magnitude >> 1);
- }
- priorphase = ph;
- *bp++ = sample;
- }
- break;
- }
-
- if (tone_offset) {
- bp = block->data;
- end = bp + AUDIO_BLOCK_SAMPLES;
- do {
- val1 = *bp;
- *bp++ = signed_saturate_rshift(val1 + tone_offset, 16, 0);
- } while (bp < end);
- }
- if (shapedata) release(shapedata);
- transmit(block, 0);
- release(block);
- }
-
-
- // BandLimitedWaveform
-
-
- #define SUPPORT_SHIFT 4
- #define SUPPORT (1 << SUPPORT_SHIFT)
- #define PTRMASK ((2 << SUPPORT_SHIFT) - 1)
-
- #define SCALE 16
- #define SCALE_MASK (SCALE-1)
- #define N (SCALE * SUPPORT * 2)
-
- #define GUARD_BITS 8
- #define GUARD (1 << GUARD_BITS)
- #define HALF_GUARD (1 << (GUARD_BITS-1))
-
-
- #define BASE_AMPLITUDE 0x6000 // 0x7fff won't work due to Gibb's phenomenon, so use 3/4 of full range.
-
- #define DEG180 0x80000000u
-
- #define PHASE_SCALE (0x100000000L / (2 * BASE_AMPLITUDE))
-
-
- extern "C"
- {
- extern const int16_t step_table [258] ;
- }
-
- int32_t BandLimitedWaveform::lookup (int offset)
- {
- int off = offset >> GUARD_BITS ;
- int frac = offset & (GUARD-1) ;
-
- int32_t a, b ;
- if (off < N/2) // handle odd symmetry by reflecting table
- {
- a = step_table [off+1] ;
- b = step_table [off+2] ;
- }
- else
- {
- a = - step_table [N-off] ;
- b = - step_table [N-off-1] ;
- }
- return BASE_AMPLITUDE + ((frac * b + (GUARD - frac) * a + HALF_GUARD) >> GUARD_BITS) ; // interpolated
- }
-
- void BandLimitedWaveform::insert_step (int offset, bool rising, int i)
- {
- while (offset <= (N/2-SCALE)<<GUARD_BITS)
- {
- if (offset >= 0)
- cyclic [i & 15] += rising ? lookup (offset) : -lookup (offset) ;
- offset += SCALE<<GUARD_BITS ;
- i ++ ;
- }
-
- states[newptr].offset = offset ;
- states[newptr].positive = rising ;
- newptr = (newptr+1) & PTRMASK ;
- }
-
- int32_t BandLimitedWaveform::process_step (int i)
- {
- int off = states[i].offset ;
- bool positive = states[i].positive ;
-
- int32_t entry = lookup (off) ;
- off += SCALE<<GUARD_BITS ;
- states[i].offset = off ; // update offset in table for next sample
- if (off >= N<<GUARD_BITS) // at end of step table we alter dc_offset to extend the step into future
- dc_offset += positive ? 2*BASE_AMPLITUDE : -2*BASE_AMPLITUDE ;
-
- return positive ? entry : -entry ;
- }
-
-
- int32_t BandLimitedWaveform::process_active_steps (uint32_t new_phase)
- {
- int32_t sample = dc_offset ;
-
- int step_count = (newptr - delptr) & PTRMASK ;
- if (step_count > 0) // for any steps in-flight we sum in table entry and update its state
- {
- int i = newptr ;
- do
- {
- i = (i-1) & PTRMASK ;
- sample += process_step (i) ;
- } while (i != delptr) ;
- if (states[delptr].offset >= N<<GUARD_BITS)
- delptr = (delptr+1) & PTRMASK ;
- }
- return sample ;
- }
-
- int32_t BandLimitedWaveform::process_active_steps_saw (uint32_t new_phase)
- {
- int32_t sample = process_active_steps (new_phase) ;
-
- sample += (int16_t) ((((uint64_t)phase_word * (2*BASE_AMPLITUDE)) >> 32) - BASE_AMPLITUDE) ; // generate the sloped part of the wave
-
- if (new_phase < DEG180 && phase_word >= DEG180) // detect wrap around, correct dc offset
- dc_offset += 2*BASE_AMPLITUDE ;
-
- return sample ;
- }
-
- void BandLimitedWaveform::new_step_check_pulse (uint32_t new_phase, uint32_t pulse_width, int i)
- {
- if (new_phase >= pulse_width && phase_word < pulse_width) // detect rising step
- {
- int32_t offset = (int32_t) ((uint64_t) (SCALE<<GUARD_BITS) * (pulse_width - phase_word) / (new_phase - phase_word)) ;
- if (offset == SCALE<<GUARD_BITS)
- offset -- ;
- insert_step (- offset, true, i) ;
- }
- if (new_phase < pulse_width && phase_word >= pulse_width) // detect wrap around, falling step
- {
- int32_t offset = (int32_t) ((uint64_t) (SCALE<<GUARD_BITS) * (- phase_word) / (new_phase - phase_word)) ;
- if (offset == SCALE<<GUARD_BITS)
- offset -- ;
- insert_step (- offset, false, i) ;
- }
- }
-
-
- void BandLimitedWaveform::new_step_check_saw (uint32_t new_phase, int i)
- {
- if (new_phase >= DEG180 && phase_word < DEG180) // detect falling step
- {
- int32_t offset = (int32_t) ((uint64_t) (SCALE<<GUARD_BITS) * (DEG180 - phase_word) / (new_phase - phase_word)) ;
- if (offset == SCALE<<GUARD_BITS)
- offset -- ;
- insert_step (- offset, false, i) ;
- }
- }
-
-
- int16_t BandLimitedWaveform::generate_sawtooth (uint32_t new_phase, int i)
- {
- new_step_check_saw (new_phase, i) ;
- int32_t val = process_active_steps_saw (new_phase) ;
- int16_t sample = (int16_t) cyclic [i&15] ;
- cyclic [i&15] = val ;
- phase_word = new_phase ;
- return sample ;
- }
-
- int16_t BandLimitedWaveform::generate_square (uint32_t new_phase, int i)
- {
- new_step_check_pulse (new_phase, DEG180, i) ;
- int32_t val = process_active_steps (new_phase) ;
- int16_t sample = (int16_t) cyclic [i&15] ;
- cyclic [i&15] = val ;
- phase_word = new_phase ;
- return sample ;
- }
-
- int16_t BandLimitedWaveform::generate_pulse (uint32_t new_phase, uint32_t pulse_width, int i)
- {
- new_step_check_pulse (new_phase, pulse_width, i) ;
- int32_t val = process_active_steps (new_phase) ;
- int32_t sample = cyclic [i&15] ;
- cyclic [i&15] = val ;
- phase_word = new_phase ;
- return (int16_t) (sample - (sample >> 2)) ; // scale down a bit to avoid overflow on narrow pulses
- }
-
- void BandLimitedWaveform::init_sawtooth (uint32_t freq_word)
- {
- phase_word = 0 ;
- newptr = 0 ;
- delptr = 0 ;
- for (int i = 0 ; i < 2*SUPPORT ; i++)
- phase_word -= freq_word ;
- dc_offset = phase_word < DEG180 ? BASE_AMPLITUDE : -BASE_AMPLITUDE ;
- for (int i = 0 ; i < 2*SUPPORT ; i++)
- {
- uint32_t new_phase = phase_word + freq_word ;
- new_step_check_saw (new_phase, i) ;
- cyclic [i & 15] = (int16_t) process_active_steps_saw (new_phase) ;
- phase_word = new_phase ;
- }
- }
-
-
- void BandLimitedWaveform::init_square (uint32_t freq_word)
- {
- init_pulse (freq_word, DEG180) ;
- }
-
- void BandLimitedWaveform::init_pulse (uint32_t freq_word, uint32_t pulse_width)
- {
- phase_word = 0 ;
- newptr = 0 ;
- delptr = 0 ;
- for (int i = 0 ; i < 2*SUPPORT ; i++)
- phase_word -= freq_word ;
-
- dc_offset = phase_word < DEG180 ? -BASE_AMPLITUDE : BASE_AMPLITUDE ;
-
- for (int i = 0 ; i < 2*SUPPORT ; i++)
- {
- uint32_t new_phase = phase_word + freq_word ;
- new_step_check_pulse (new_phase, pulse_width, i) ;
- cyclic [i & 15] = (int16_t) process_active_steps (new_phase) ;
- phase_word = new_phase ;
- }
- }
-
- BandLimitedWaveform::BandLimitedWaveform()
- {
- newptr = 0 ;
- delptr = 0 ;
- dc_offset = BASE_AMPLITUDE ;
- phase_word = 0 ;
- }
|