Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

475 lines
15KB

  1. /* SPDIF for Teensy 3.X
  2. * Copyright (c) 2015, Frank Bösing, f.boesing@gmx.de,
  3. * Thanks to KPC & Paul Stoffregen!
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a copy
  6. * of this software and associated documentation files (the "Software"), to deal
  7. * in the Software without restriction, including without limitation the rights
  8. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. * copies of the Software, and to permit persons to whom the Software is
  10. * furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice, development funding notice, and this permission
  13. * notice shall be included in all copies or substantial portions of the Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. * THE SOFTWARE.
  22. */
  23. // 2015/08/23: (FB) added mute_PCM() - sets or unsets VALID in VUCP (and adjusts PARITY)
  24. #include <Arduino.h>
  25. #include "output_spdif.h"
  26. #include "utility/imxrt_hw.h"
  27. audio_block_t * AudioOutputSPDIF::block_left_1st = NULL;
  28. audio_block_t * AudioOutputSPDIF::block_right_1st = NULL;
  29. audio_block_t * AudioOutputSPDIF::block_left_2nd = NULL;
  30. audio_block_t * AudioOutputSPDIF::block_right_2nd = NULL;
  31. uint16_t AudioOutputSPDIF::block_left_offset = 0;
  32. uint16_t AudioOutputSPDIF::block_right_offset = 0;
  33. bool AudioOutputSPDIF::update_responsibility = false;
  34. /* DMAMEM */ static uint32_t SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4]; //2 KB
  35. DMAChannel AudioOutputSPDIF::dma(false);
  36. #if defined(KINETISK) || defined(__IMXRT1052__) || defined(__IMXRT1062__)
  37. #define PREAMBLE_B (0xE8) //11101000
  38. #define PREAMBLE_M (0xE2) //11100010
  39. #define PREAMBLE_W (0xE4) //11100100
  40. #define VUCP_VALID ((0xCC) << 24)
  41. #define VUCP_INVALID ((0xD4) << 24)// To mute PCM, set VUCP = invalid.
  42. uint32_t AudioOutputSPDIF::vucp = VUCP_VALID;
  43. static const
  44. uint16_t bmclookup[256] = { //biphase mark encoded values (least significant bit first)
  45. 0xcccc, 0x4ccc, 0x2ccc, 0xaccc, 0x34cc, 0xb4cc, 0xd4cc, 0x54cc,
  46. 0x32cc, 0xb2cc, 0xd2cc, 0x52cc, 0xcacc, 0x4acc, 0x2acc, 0xaacc,
  47. 0x334c, 0xb34c, 0xd34c, 0x534c, 0xcb4c, 0x4b4c, 0x2b4c, 0xab4c,
  48. 0xcd4c, 0x4d4c, 0x2d4c, 0xad4c, 0x354c, 0xb54c, 0xd54c, 0x554c,
  49. 0x332c, 0xb32c, 0xd32c, 0x532c, 0xcb2c, 0x4b2c, 0x2b2c, 0xab2c,
  50. 0xcd2c, 0x4d2c, 0x2d2c, 0xad2c, 0x352c, 0xb52c, 0xd52c, 0x552c,
  51. 0xccac, 0x4cac, 0x2cac, 0xacac, 0x34ac, 0xb4ac, 0xd4ac, 0x54ac,
  52. 0x32ac, 0xb2ac, 0xd2ac, 0x52ac, 0xcaac, 0x4aac, 0x2aac, 0xaaac,
  53. 0x3334, 0xb334, 0xd334, 0x5334, 0xcb34, 0x4b34, 0x2b34, 0xab34,
  54. 0xcd34, 0x4d34, 0x2d34, 0xad34, 0x3534, 0xb534, 0xd534, 0x5534,
  55. 0xccb4, 0x4cb4, 0x2cb4, 0xacb4, 0x34b4, 0xb4b4, 0xd4b4, 0x54b4,
  56. 0x32b4, 0xb2b4, 0xd2b4, 0x52b4, 0xcab4, 0x4ab4, 0x2ab4, 0xaab4,
  57. 0xccd4, 0x4cd4, 0x2cd4, 0xacd4, 0x34d4, 0xb4d4, 0xd4d4, 0x54d4,
  58. 0x32d4, 0xb2d4, 0xd2d4, 0x52d4, 0xcad4, 0x4ad4, 0x2ad4, 0xaad4,
  59. 0x3354, 0xb354, 0xd354, 0x5354, 0xcb54, 0x4b54, 0x2b54, 0xab54,
  60. 0xcd54, 0x4d54, 0x2d54, 0xad54, 0x3554, 0xb554, 0xd554, 0x5554,
  61. 0x3332, 0xb332, 0xd332, 0x5332, 0xcb32, 0x4b32, 0x2b32, 0xab32,
  62. 0xcd32, 0x4d32, 0x2d32, 0xad32, 0x3532, 0xb532, 0xd532, 0x5532,
  63. 0xccb2, 0x4cb2, 0x2cb2, 0xacb2, 0x34b2, 0xb4b2, 0xd4b2, 0x54b2,
  64. 0x32b2, 0xb2b2, 0xd2b2, 0x52b2, 0xcab2, 0x4ab2, 0x2ab2, 0xaab2,
  65. 0xccd2, 0x4cd2, 0x2cd2, 0xacd2, 0x34d2, 0xb4d2, 0xd4d2, 0x54d2,
  66. 0x32d2, 0xb2d2, 0xd2d2, 0x52d2, 0xcad2, 0x4ad2, 0x2ad2, 0xaad2,
  67. 0x3352, 0xb352, 0xd352, 0x5352, 0xcb52, 0x4b52, 0x2b52, 0xab52,
  68. 0xcd52, 0x4d52, 0x2d52, 0xad52, 0x3552, 0xb552, 0xd552, 0x5552,
  69. 0xccca, 0x4cca, 0x2cca, 0xacca, 0x34ca, 0xb4ca, 0xd4ca, 0x54ca,
  70. 0x32ca, 0xb2ca, 0xd2ca, 0x52ca, 0xcaca, 0x4aca, 0x2aca, 0xaaca,
  71. 0x334a, 0xb34a, 0xd34a, 0x534a, 0xcb4a, 0x4b4a, 0x2b4a, 0xab4a,
  72. 0xcd4a, 0x4d4a, 0x2d4a, 0xad4a, 0x354a, 0xb54a, 0xd54a, 0x554a,
  73. 0x332a, 0xb32a, 0xd32a, 0x532a, 0xcb2a, 0x4b2a, 0x2b2a, 0xab2a,
  74. 0xcd2a, 0x4d2a, 0x2d2a, 0xad2a, 0x352a, 0xb52a, 0xd52a, 0x552a,
  75. 0xccaa, 0x4caa, 0x2caa, 0xacaa, 0x34aa, 0xb4aa, 0xd4aa, 0x54aa,
  76. 0x32aa, 0xb2aa, 0xd2aa, 0x52aa, 0xcaaa, 0x4aaa, 0x2aaa, 0xaaaa
  77. };
  78. #endif
  79. void AudioOutputSPDIF::begin(void)
  80. {
  81. dma.begin(true); // Allocate the DMA channel first
  82. block_left_1st = NULL;
  83. block_right_1st = NULL;
  84. // TODO: should we set & clear the I2S_TCSR_SR bit here?
  85. config_SPDIF();
  86. #if defined(KINETISK)
  87. CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
  88. const int nbytes_mlno = 2 * 4; // 8 Bytes per minor loop
  89. dma.TCD->SADDR = SPDIF_tx_buffer;
  90. dma.TCD->SOFF = 4;
  91. dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
  92. dma.TCD->NBYTES_MLNO = nbytes_mlno;
  93. dma.TCD->SLAST = -sizeof(SPDIF_tx_buffer);
  94. dma.TCD->DADDR = &I2S0_TDR0;
  95. dma.TCD->DOFF = 0;
  96. dma.TCD->CITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno;
  97. dma.TCD->DLASTSGA = 0;
  98. dma.TCD->BITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno;
  99. dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  100. dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
  101. update_responsibility = update_setup();
  102. dma.enable();
  103. I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE | I2S_TCSR_FR;
  104. dma.attachInterrupt(isr);
  105. #elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
  106. CORE_PIN6_CONFIG = 3; //1:TX_DATA0
  107. const int nbytes_mlno = 2 * 4; // 8 Bytes per minor loop
  108. dma.TCD->SADDR = SPDIF_tx_buffer;
  109. dma.TCD->SOFF = 4;
  110. dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
  111. dma.TCD->NBYTES_MLNO = nbytes_mlno;
  112. dma.TCD->SLAST = -sizeof(SPDIF_tx_buffer);
  113. dma.TCD->DADDR = &I2S1_TDR0;
  114. dma.TCD->DOFF = 0;
  115. dma.TCD->CITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno;
  116. dma.TCD->DLASTSGA = 0;
  117. dma.TCD->BITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno;
  118. dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  119. dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX);
  120. update_responsibility = update_setup();
  121. dma.enable();
  122. I2S1_RCSR |= I2S_RCSR_RE;
  123. I2S1_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE | I2S_TCSR_FR;
  124. dma.attachInterrupt(isr);
  125. #endif
  126. }
  127. /*
  128. http://www.hardwarebook.info/S/PDIF
  129. 1. To make it easier and a bit faster, the parity-bit is always the same.
  130. - With a alternating parity we had to adjust the next subframe. Instead, use a bit from the aux-info as parity.
  131. 2. The buffer is filled with an offset of 1 byte, so the last parity (which is always 0 now (see 1.) ) is written as first byte.
  132. -> A bit easier and faster to construct both subframes.
  133. */
  134. void AudioOutputSPDIF::isr(void)
  135. {
  136. static uint16_t frame = 0;
  137. const int16_t *src;
  138. int32_t *end, *dest;
  139. audio_block_t *block;
  140. uint32_t saddr, offset;
  141. uint16_t sample, lo, hi, aux;
  142. saddr = (uint32_t)(dma.TCD->SADDR);
  143. dma.clearInterrupt();
  144. if (saddr < (uint32_t)SPDIF_tx_buffer + sizeof(SPDIF_tx_buffer) / 2) {
  145. // DMA is transmitting the first half of the buffer
  146. // so we must fill the second half
  147. dest = (int32_t *)&SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4/2];
  148. end = (int32_t *)&SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4];
  149. if (AudioOutputSPDIF::update_responsibility) AudioStream::update_all();
  150. } else {
  151. // DMA is transmitting the second half of the buffer
  152. // so we must fill the first half
  153. dest = (int32_t *)SPDIF_tx_buffer;
  154. end = (int32_t *)&SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4/2];
  155. }
  156. block = AudioOutputSPDIF::block_left_1st;
  157. if (block) {
  158. offset = AudioOutputSPDIF::block_left_offset;
  159. src = &block->data[offset];
  160. do {
  161. sample = *src++;
  162. //Subframe Channel 1
  163. hi = bmclookup[(uint8_t)(sample >> 8)];
  164. lo = bmclookup[(uint8_t) sample];
  165. lo ^= (~((int16_t)hi) >> 16);
  166. // 16 Bit sample:
  167. *(dest+1) = ((uint32_t)lo << 16) | hi;
  168. // 4 Bit Auxillary-audio-databits, the first used as parity
  169. aux = (0xB333 ^ (((uint32_t)((int16_t)lo)) >> 17));
  170. if (++frame > 191) {
  171. // VUCP-Bits ("Valid, Subcode, Channelstatus, Parity) = 0 (0xcc) | Preamble (depends on Framno.) | Auxillary
  172. *(dest+0) = vucp | (PREAMBLE_B << 16 ) | aux; //special preamble for one of 192 frames
  173. frame = 0;
  174. } else {
  175. *(dest+0) = vucp | (PREAMBLE_M << 16 ) | aux;
  176. }
  177. dest += 4;
  178. } while (dest < end);
  179. offset += AUDIO_BLOCK_SAMPLES/2;
  180. if (offset < AUDIO_BLOCK_SAMPLES) {
  181. AudioOutputSPDIF::block_left_offset = offset;
  182. } else {
  183. AudioOutputSPDIF::block_left_offset = 0;
  184. AudioStream::release(block);
  185. AudioOutputSPDIF::block_left_1st = AudioOutputSPDIF::block_left_2nd;
  186. AudioOutputSPDIF::block_left_2nd = NULL;
  187. }
  188. } else {
  189. do {
  190. if ( ++frame > 191 ) {
  191. *(dest+0) = vucp | 0x00e8cccc;
  192. frame = 0;
  193. } else {
  194. *(dest+0) = vucp | 0x00e2cccc;
  195. }
  196. *(dest+1) = 0xccccccccUL;
  197. dest +=4;
  198. } while (dest < end);
  199. }
  200. dest -= AUDIO_BLOCK_SAMPLES * 4/2 - 4/2;
  201. block = AudioOutputSPDIF::block_right_1st;
  202. if (block) {
  203. offset = AudioOutputSPDIF::block_right_offset;
  204. src = &block->data[offset];
  205. do {
  206. sample = *src++;
  207. //Subframe Channel 2
  208. hi = bmclookup[(uint8_t)(sample >> 8)];
  209. lo = bmclookup[(uint8_t)sample];
  210. lo ^= (~((int16_t)hi) >> 16);
  211. *(dest+1) = ( ((uint32_t)lo << 16) | hi );
  212. aux = (0xB333 ^ (((uint32_t)((int16_t)lo)) >> 17));
  213. *(dest+0) = vucp | (PREAMBLE_W << 16 ) | aux;
  214. dest += 4;
  215. } while (dest < end);
  216. offset += AUDIO_BLOCK_SAMPLES/2;
  217. if (offset < AUDIO_BLOCK_SAMPLES) {
  218. AudioOutputSPDIF::block_right_offset = offset;
  219. } else {
  220. AudioOutputSPDIF::block_right_offset = 0;
  221. AudioStream::release(block);
  222. AudioOutputSPDIF::block_right_1st = AudioOutputSPDIF::block_right_2nd;
  223. AudioOutputSPDIF::block_right_2nd = NULL;
  224. }
  225. } else {
  226. do {
  227. *dest = vucp | 0x00e4ccccUL;
  228. *(dest+1) = 0xccccccccUL;
  229. dest += 4 ;
  230. } while (dest < end);
  231. }
  232. }
  233. void AudioOutputSPDIF::mute_PCM(const bool mute)
  234. {
  235. vucp = mute?VUCP_INVALID:VUCP_VALID;
  236. }
  237. void AudioOutputSPDIF::update(void)
  238. {
  239. audio_block_t *block;
  240. block = receiveReadOnly(0); // input 0 = left channel
  241. if (block) {
  242. __disable_irq();
  243. if (block_left_1st == NULL) {
  244. block_left_1st = block;
  245. block_left_offset = 0;
  246. __enable_irq();
  247. } else if (block_left_2nd == NULL) {
  248. block_left_2nd = block;
  249. __enable_irq();
  250. } else {
  251. audio_block_t *tmp = block_left_1st;
  252. block_left_1st = block_left_2nd;
  253. block_left_2nd = block;
  254. block_left_offset = 0;
  255. __enable_irq();
  256. release(tmp);
  257. }
  258. }
  259. block = receiveReadOnly(1); // input 1 = right channel
  260. if (block) {
  261. __disable_irq();
  262. if (block_right_1st == NULL) {
  263. block_right_1st = block;
  264. block_right_offset = 0;
  265. __enable_irq();
  266. } else if (block_right_2nd == NULL) {
  267. block_right_2nd = block;
  268. __enable_irq();
  269. } else {
  270. audio_block_t *tmp = block_right_1st;
  271. block_right_1st = block_right_2nd;
  272. block_right_2nd = block;
  273. block_right_offset = 0;
  274. __enable_irq();
  275. release(tmp);
  276. }
  277. }
  278. }
  279. #if defined(KINETISK)
  280. #if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000
  281. // PLL is at 96 MHz in these modes
  282. #define MCLK_MULT 2
  283. #define MCLK_DIV 17
  284. #elif F_CPU == 72000000
  285. #define MCLK_MULT 8
  286. #define MCLK_DIV 51
  287. #elif F_CPU == 120000000
  288. #define MCLK_MULT 8
  289. #define MCLK_DIV 85
  290. #elif F_CPU == 144000000
  291. #define MCLK_MULT 4
  292. #define MCLK_DIV 51
  293. #elif F_CPU == 168000000
  294. #define MCLK_MULT 8
  295. #define MCLK_DIV 119
  296. #elif F_CPU == 180000000
  297. #define MCLK_MULT 16
  298. #define MCLK_DIV 255
  299. #define MCLK_SRC 0
  300. #elif F_CPU == 192000000
  301. #define MCLK_MULT 1
  302. #define MCLK_DIV 17
  303. #elif F_CPU == 216000000
  304. #define MCLK_MULT 8
  305. #define MCLK_DIV 153
  306. #define MCLK_SRC 0
  307. #elif F_CPU == 240000000
  308. #define MCLK_MULT 4
  309. #define MCLK_DIV 85
  310. #elif F_CPU == 16000000
  311. #define MCLK_MULT 12
  312. #define MCLK_DIV 17
  313. #else
  314. #error "This CPU Clock Speed is not supported by the Audio library";
  315. #endif
  316. #ifndef MCLK_SRC
  317. #if F_CPU >= 20000000
  318. #define MCLK_SRC 3 // the PLL
  319. #else
  320. #define MCLK_SRC 0 // system clock
  321. #endif
  322. #endif
  323. #endif
  324. void AudioOutputSPDIF::config_SPDIF(void)
  325. {
  326. #if defined(KINETISK)
  327. SIM_SCGC6 |= SIM_SCGC6_I2S;
  328. SIM_SCGC7 |= SIM_SCGC7_DMA;
  329. SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
  330. // enable MCLK output
  331. I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE;
  332. while (I2S0_MCR & I2S_MCR_DUF) ;
  333. I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1));
  334. // configure transmitter
  335. I2S0_TMR = 0;
  336. I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark
  337. I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0);
  338. I2S0_TCR3 = I2S_TCR3_TCE;
  339. //4 Words per Frame 32 Bit Word-Length -> 128 Bit Frame-Length, MSB First:
  340. I2S0_TCR4 = I2S_TCR4_FRSZ(3) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF | I2S_TCR4_FSP | I2S_TCR4_FSD;
  341. I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
  342. I2S0_RCSR = 0;
  343. #if 0
  344. // configure pin mux for 3 clock signals (debug only)
  345. CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) 44.1kHz
  346. CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK 5.6 MHz
  347. CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK 11.43MHz
  348. #endif
  349. #elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
  350. CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON);
  351. //PLL:
  352. int fs = AUDIO_SAMPLE_RATE_EXACT;
  353. // PLL between 27*24 = 648MHz und 54*24=1296MHz
  354. int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4
  355. int n2 = 1 + (24000000 * 27) / (fs * 256 * n1);
  356. double C = ((double)fs * 256 * n1 * n2) / 24000000;
  357. int c0 = C;
  358. int c2 = 10000;
  359. int c1 = C * c2 - (c0 * c2);
  360. set_audioClock(c0, c1, c2);
  361. CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK))
  362. | CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4
  363. CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK))
  364. | CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07
  365. | CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f
  366. IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 & ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK))
  367. | (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0)); //Select MCLK
  368. int rsync = 0;
  369. int tsync = 1;
  370. // configure transmitter
  371. I2S1_TMR = 0;
  372. I2S1_TCR1 = I2S_TCR1_RFW(0); // watermark
  373. I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0);
  374. I2S1_TCR3 = I2S_TCR3_TCE;
  375. //4 Words per Frame 32 Bit Word-Length -> 128 Bit Frame-Length, MSB First:
  376. I2S1_TCR4 = I2S_TCR4_FRSZ(3) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF | I2S_TCR4_FSP | I2S_TCR4_FSD;
  377. I2S1_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
  378. //I2S1_RCSR = 0;
  379. I2S1_RMR = 0;
  380. //I2S1_RCSR = (1<<25); //Reset
  381. I2S1_RCR1 = I2S_RCR1_RFW(0);
  382. I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_TCR2_MSEL(1) | I2S_TCR2_BCD | I2S_TCR2_DIV(0);
  383. I2S1_RCR3 = I2S_RCR3_RCE;
  384. I2S1_RCR4 = I2S_TCR4_FRSZ(3) | I2S_TCR4_SYWD(0) | I2S_TCR4_MF | I2S_TCR4_FSP | I2S_TCR4_FSD;
  385. I2S1_RCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31);
  386. #if 0
  387. //debug only:
  388. CORE_PIN23_CONFIG = 3; //1:MCLK 11.43MHz
  389. CORE_PIN21_CONFIG = 3; //1:RX_BCLK 5.6 MHz
  390. CORE_PIN20_CONFIG = 3; //1:RX_SYNC 44.1 KHz
  391. // CORE_PIN6_CONFIG = 3; //1:TX_DATA0
  392. // CORE_PIN7_CONFIG = 3; //1:RX_DATA0
  393. #endif
  394. #endif
  395. }
  396. #if defined(KINETISL)
  397. void AudioOutputSPDIF::update(void)
  398. {
  399. audio_block_t *block;
  400. block = receiveReadOnly(0); // input 0 = left channel
  401. if (block) release(block);
  402. block = receiveReadOnly(1); // input 1 = right channel
  403. if (block) release(block);
  404. }
  405. #endif