|
- /* Audio Library for Teensy 3.X
- * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
- *
- * Development of this audio library was funded by PJRC.COM, LLC by sales of
- * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
- * open source software by purchasing Teensy or other PJRC products.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice, development funding notice, and this permission
- * notice shall be included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #if defined(KINETISK)
-
- #include <Arduino.h>
- #include "input_adc.h"
- #include "utility/pdb.h"
- #include "utility/dspinst.h"
-
- #define COEF_HPF_DCBLOCK (1048300<<10) // DC Removal filter coefficient in S1.30
-
- DMAMEM __attribute__((aligned(32))) static uint16_t analog_rx_buffer[AUDIO_BLOCK_SAMPLES];
- audio_block_t * AudioInputAnalog::block_left = NULL;
- uint16_t AudioInputAnalog::block_offset = 0;
- int32_t AudioInputAnalog::hpf_y1 = 0;
- int32_t AudioInputAnalog::hpf_x1 = 0;
-
- bool AudioInputAnalog::update_responsibility = false;
- DMAChannel AudioInputAnalog::dma(false);
-
- void AudioInputAnalog::init(uint8_t pin)
- {
- int32_t tmp;
-
- // Configure the ADC and run at least one software-triggered
- // conversion. This completes the self calibration stuff and
- // leaves the ADC in a state that's mostly ready to use
- analogReadRes(16);
- analogReference(INTERNAL); // range 0 to 1.2 volts
- #if F_BUS == 96000000 || F_BUS == 48000000 || F_BUS == 24000000
- analogReadAveraging(8);
- #else
- analogReadAveraging(4);
- #endif
- // Note for review:
- // Probably not useful to spin cycles here stabilizing
- // since DC blocking is similar to te external analog filters
- tmp = (uint16_t) analogRead(pin);
- tmp = ( ((int32_t) tmp) << 14);
- hpf_x1 = tmp; // With constant DC level x1 would be x0
- hpf_y1 = 0; // Output will settle here when stable
-
- // set the programmable delay block to trigger the ADC at 44.1 kHz
- if (!(SIM_SCGC6 & SIM_SCGC6_PDB)
- || (PDB0_SC & PDB_CONFIG) != PDB_CONFIG
- || PDB0_MOD != PDB_PERIOD
- || PDB0_IDLY != 1
- || PDB0_CH0C1 != 0x0101) {
- SIM_SCGC6 |= SIM_SCGC6_PDB;
- PDB0_IDLY = 1;
- PDB0_MOD = PDB_PERIOD;
- PDB0_SC = PDB_CONFIG | PDB_SC_LDOK;
- PDB0_SC = PDB_CONFIG | PDB_SC_SWTRIG;
- PDB0_CH0C1 = 0x0101;
- }
- // enable the ADC for hardware trigger and DMA
- ADC0_SC2 |= ADC_SC2_ADTRG | ADC_SC2_DMAEN;
-
- // set up a DMA channel to store the ADC data
- dma.begin(true);
- dma.TCD->SADDR = &ADC0_RA;
- dma.TCD->SOFF = 0;
- dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
- dma.TCD->NBYTES_MLNO = 2;
- dma.TCD->SLAST = 0;
- dma.TCD->DADDR = analog_rx_buffer;
- dma.TCD->DOFF = 2;
- dma.TCD->CITER_ELINKNO = sizeof(analog_rx_buffer) / 2;
- dma.TCD->DLASTSGA = -sizeof(analog_rx_buffer);
- dma.TCD->BITER_ELINKNO = sizeof(analog_rx_buffer) / 2;
- dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
- dma.triggerAtHardwareEvent(DMAMUX_SOURCE_ADC0);
- update_responsibility = update_setup();
- dma.enable();
- dma.attachInterrupt(isr);
- }
-
-
- void AudioInputAnalog::isr(void)
- {
- uint32_t daddr, offset;
- const uint16_t *src, *end;
- uint16_t *dest_left;
- audio_block_t *left;
-
- daddr = (uint32_t)(dma.TCD->DADDR);
- dma.clearInterrupt();
-
- if (daddr < (uint32_t)analog_rx_buffer + sizeof(analog_rx_buffer) / 2) {
- // DMA is receiving to the first half of the buffer
- // need to remove data from the second half
- src = (uint16_t *)&analog_rx_buffer[AUDIO_BLOCK_SAMPLES/2];
- end = (uint16_t *)&analog_rx_buffer[AUDIO_BLOCK_SAMPLES];
- if (update_responsibility) AudioStream::update_all();
- } else {
- // DMA is receiving to the second half of the buffer
- // need to remove data from the first half
- src = (uint16_t *)&analog_rx_buffer[0];
- end = (uint16_t *)&analog_rx_buffer[AUDIO_BLOCK_SAMPLES/2];
- }
- left = block_left;
- if (left != NULL) {
- offset = block_offset;
- if (offset > AUDIO_BLOCK_SAMPLES/2) offset = AUDIO_BLOCK_SAMPLES/2;
- dest_left = (uint16_t *)&(left->data[offset]);
- block_offset = offset + AUDIO_BLOCK_SAMPLES/2;
- do {
- *dest_left++ = *src++;
- } while (src < end);
- }
- }
-
- void AudioInputAnalog::update(void)
- {
- audio_block_t *new_left=NULL, *out_left=NULL;
- uint32_t offset;
- int32_t tmp;
- int16_t s, *p, *end;
-
- //Serial.println("update");
-
- // allocate new block (ok if NULL)
- new_left = allocate();
-
- __disable_irq();
- offset = block_offset;
- if (offset < AUDIO_BLOCK_SAMPLES) {
- // the DMA didn't fill a block
- if (new_left != NULL) {
- // but we allocated a block
- if (block_left == NULL) {
- // the DMA doesn't have any blocks to fill, so
- // give it the one we just allocated
- block_left = new_left;
- block_offset = 0;
- __enable_irq();
- //Serial.println("fail1");
- } else {
- // the DMA already has blocks, doesn't need this
- __enable_irq();
- release(new_left);
- //Serial.print("fail2, offset=");
- //Serial.println(offset);
- }
- } else {
- // The DMA didn't fill a block, and we could not allocate
- // memory... the system is likely starving for memory!
- // Sadly, there's nothing we can do.
- __enable_irq();
- //Serial.println("fail3");
- }
- return;
- }
- // the DMA filled a block, so grab it and get the
- // new block to the DMA, as quickly as possible
- out_left = block_left;
- block_left = new_left;
- block_offset = 0;
- __enable_irq();
-
- //
- // DC Offset Removal Filter
- // 1-pole digital high-pass filter implementation
- // y = a*(x[n] - x[n-1] + y[n-1])
- // The coefficient "a" is as follows:
- // a = UNITY*e^(-2*pi*fc/fs)
- // fc = 2 @ fs = 44100
- //
- p = out_left->data;
- end = p + AUDIO_BLOCK_SAMPLES;
- do {
- tmp = (uint16_t)(*p);
- tmp = ( ((int32_t) tmp) << 14);
- int32_t acc = hpf_y1 - hpf_x1;
- acc += tmp;
- hpf_y1 = FRACMUL_SHL(acc, COEF_HPF_DCBLOCK, 1);
- hpf_x1 = tmp;
- s = signed_saturate_rshift(hpf_y1, 16, 14);
- *p++ = s;
- } while (p < end);
-
- // then transmit the AC data
- transmit(out_left);
- release(out_left);
- }
- #endif
-
-
-
- #if defined(__IMXRT1062__)
-
- #include <Arduino.h>
- #include "input_adc.h"
-
- extern "C" void xbar_connect(unsigned int input, unsigned int output);
-
- #define FILTERLEN 15
-
- DMAChannel AudioInputAnalog::dma(false);
- // TODO: how much extra space is needed to avoid wrap-around timing? 200 seems a safe guess
- static __attribute__((aligned(32))) uint16_t adc_buffer[AUDIO_BLOCK_SAMPLES*4+200];
- static int16_t capture_buffer[AUDIO_BLOCK_SAMPLES*4+FILTERLEN];
- // TODO: these big buffers should be in DMAMEM, rather than consuming precious DTCM
-
- PROGMEM static const uint8_t adc2_pin_to_channel[] = {
- 7, // 0/A0 AD_B1_02
- 8, // 1/A1 AD_B1_03
- 12, // 2/A2 AD_B1_07
- 11, // 3/A3 AD_B1_06
- 6, // 4/A4 AD_B1_01
- 5, // 5/A5 AD_B1_00
- 15, // 6/A6 AD_B1_10
- 0, // 7/A7 AD_B1_11
- 13, // 8/A8 AD_B1_08
- 14, // 9/A9 AD_B1_09
- 255, // 10/A10 AD_B0_12 - only on ADC1, 1 - can't use for audio
- 255, // 11/A11 AD_B0_13 - only on ADC1, 2 - can't use for audio
- 3, // 12/A12 AD_B1_14
- 4, // 13/A13 AD_B1_15
- 7, // 14/A0 AD_B1_02
- 8, // 15/A1 AD_B1_03
- 12, // 16/A2 AD_B1_07
- 11, // 17/A3 AD_B1_06
- 6, // 18/A4 AD_B1_01
- 5, // 19/A5 AD_B1_00
- 15, // 20/A6 AD_B1_10
- 0, // 21/A7 AD_B1_11
- 13, // 22/A8 AD_B1_08
- 14, // 23/A9 AD_B1_09
- 255, // 24/A10 AD_B0_12 - only on ADC1, 1 - can't use for audio
- 255, // 25/A11 AD_B0_13 - only on ADC1, 2 - can't use for audio
- 3, // 26/A12 AD_B1_14 - only on ADC2, do not use analogRead()
- 4, // 27/A13 AD_B1_15 - only on ADC2, do not use analogRead()
- #ifdef ARDUINO_TEENSY41
- 255, // 28
- 255, // 29
- 255, // 30
- 255, // 31
- 255, // 32
- 255, // 33
- 255, // 34
- 255, // 35
- 255, // 36
- 255, // 37
- 1, // 38/A14 AD_B1_12 - only on ADC2, do not use analogRead()
- 2, // 39/A15 AD_B1_13 - only on ADC2, do not use analogRead()
- 9, // 40/A16 AD_B1_04
- 10, // 41/A17 AD_B1_05
- #endif
- };
-
- static const int16_t filter[FILTERLEN] = {
- 1449,
- 3676,
- 6137,
- 9966,
- 13387,
- 16896,
- 18951,
- 19957,
- 18951,
- 16896,
- 13387,
- 9966,
- 6137,
- 3676,
- 1449
- };
-
-
- void AudioInputAnalog::init(uint8_t pin)
- {
- if (pin >= sizeof(adc2_pin_to_channel)) return;
- const uint8_t adc_channel = adc2_pin_to_channel[pin];
- if (adc_channel == 255) return;
-
- // configure a timer to trigger ADC
- // TODO: sample rate should be slightly lower than 4X AUDIO_SAMPLE_RATE_EXACT
- // linear interpolation is supposed to resample it to exactly 4X
- // the sample rate, so we avoid artifacts boundaries between captures
- const int comp1 = ((float)F_BUS_ACTUAL) / (AUDIO_SAMPLE_RATE_EXACT * 4.0f) / 2.0f + 0.5f;
- TMR4_ENBL &= ~(1<<3);
- TMR4_SCTRL3 = TMR_SCTRL_OEN | TMR_SCTRL_FORCE;
- TMR4_CSCTRL3 = TMR_CSCTRL_CL1(1) | TMR_CSCTRL_TCF1EN;
- TMR4_CNTR3 = 0;
- TMR4_LOAD3 = 0;
- TMR4_COMP13 = comp1;
- TMR4_CMPLD13 = comp1;
- TMR4_CTRL3 = TMR_CTRL_CM(1) | TMR_CTRL_PCS(8) | TMR_CTRL_LENGTH | TMR_CTRL_OUTMODE(3);
- TMR4_DMA3 = TMR_DMA_CMPLD1DE;
- TMR4_CNTR3 = 0;
- TMR4_ENBL |= (1<<3);
-
- // connect the timer output the ADC_ETC input
- const int trigger = 4; // 0-3 for ADC1, 4-7 for ADC2
- CCM_CCGR2 |= CCM_CCGR2_XBAR1(CCM_CCGR_ON);
- xbar_connect(XBARA1_IN_QTIMER4_TIMER3, XBARA1_OUT_ADC_ETC_TRIG00 + trigger);
-
- // turn on ADC_ETC and configure to receive trigger
- if (ADC_ETC_CTRL & (ADC_ETC_CTRL_SOFTRST | ADC_ETC_CTRL_TSC_BYPASS)) {
- ADC_ETC_CTRL = 0; // clears SOFTRST only
- ADC_ETC_CTRL = 0; // clears TSC_BYPASS
- }
- ADC_ETC_CTRL |= ADC_ETC_CTRL_TRIG_ENABLE(1 << trigger) | ADC_ETC_CTRL_DMA_MODE_SEL;
- ADC_ETC_DMA_CTRL |= ADC_ETC_DMA_CTRL_TRIQ_ENABLE(trigger);
-
- // configure ADC_ETC trigger4 to make one ADC2 measurement on pin A2
- const int len = 1;
- IMXRT_ADC_ETC.TRIG[trigger].CTRL = ADC_ETC_TRIG_CTRL_TRIG_CHAIN(len - 1) |
- ADC_ETC_TRIG_CTRL_TRIG_PRIORITY(7);
- IMXRT_ADC_ETC.TRIG[trigger].CHAIN_1_0 = ADC_ETC_TRIG_CHAIN_HWTS0(1) |
- ADC_ETC_TRIG_CHAIN_CSEL0(adc2_pin_to_channel[pin]) | ADC_ETC_TRIG_CHAIN_B2B0;
-
- // set up ADC2 for 12 bit mode, hardware trigger
- Serial.printf("ADC2_CFG = %08X\n", ADC2_CFG);
- ADC2_CFG |= ADC_CFG_ADTRG;
- ADC2_CFG = ADC_CFG_MODE(2) | ADC_CFG_ADSTS(3) | ADC_CFG_ADLSMP | ADC_CFG_ADTRG |
- ADC_CFG_ADICLK(1) | ADC_CFG_ADIV(0) /*| ADC_CFG_ADHSC*/;
- ADC2_GC &= ~ADC_GC_AVGE; // single sample, no averaging
- ADC2_HC0 = ADC_HC_ADCH(16); // 16 = controlled by ADC_ETC
-
- // use a DMA channel to capture ADC_ETC output
- dma.begin();
- dma.TCD->SADDR = &(IMXRT_ADC_ETC.TRIG[4].RESULT_1_0);
- dma.TCD->SOFF = 0;
- dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
- dma.TCD->NBYTES_MLNO = 2;
- dma.TCD->SLAST = 0;
- dma.TCD->DADDR = adc_buffer;
- dma.TCD->DOFF = 2;
- dma.TCD->CITER_ELINKNO = sizeof(adc_buffer) / 2;
- dma.TCD->DLASTSGA = -sizeof(adc_buffer);
- dma.TCD->BITER_ELINKNO = sizeof(adc_buffer) / 2;
- dma.TCD->CSR = 0;
- dma.triggerAtHardwareEvent(DMAMUX_SOURCE_ADC_ETC);
- dma.enable();
-
- // TODO: configure I2S1 to interrupt every 128 audio samples
- }
-
- static int16_t fir(const int16_t *data, const int16_t *impulse, int len)
- {
- int64_t sum=0;
-
- while (len > 0) {
- sum += *data++ * *impulse++; // TODO: optimize with DSP inst and filter symmetry
- len --;
- }
- sum = sum >> 15; // TODO: adjust filter coefficients for proper gain, 12 to 16 bits
- if (sum > 32767) return 32767;
- if (sum < -32768) return -32768;
- return sum;
- }
-
- void AudioInputAnalog::update(void)
- {
- audio_block_t *output=NULL;
- output = allocate();
- if (output == NULL) return;
-
- uint16_t *p = (uint16_t *)dma.TCD->DADDR;
- //int offset = p - adc_buffer;
- //if (--offset < 0) offset = sizeof(adc_buffer) / 2 - 1;
- //Serial.printf("offset = %4d, val = %4d\n", offset + 1, adc_buffer[offset]);
-
- // copy adc buffer to capture buffer
- // FIXME: this should be done from the I2S interrupt, for precise capture timing
- const unsigned int capture_len = sizeof(capture_buffer) / 2;
- for (unsigned int i=0; i < capture_len; i++) {
- // TODO: linear interpolate to exactly 4X sample rate
- if (--p < adc_buffer) p = adc_buffer + (sizeof(adc_buffer) / 2 - 1);
-
- // remove DC offset
- // TODO: very slow low pass filter for DC offset
- int dc_offset = 550; // FIXME: quick kludge for testing!!
-
- int n = (int)*p - dc_offset;
- if (n > 4095) n = 4095;
- if (n < -4095) n = -4095;
-
- capture_buffer[i] = n;
- }
- //printbuf(capture_buffer, 8);
-
- // low pass filter and subsample (this part belongs here)
- int16_t *dest = output->data + AUDIO_BLOCK_SAMPLES - 1;
- for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
- #if 1
- // proper low-pass filter sounds pretty good
- *dest-- = fir(capture_buffer + i * 4, filter, sizeof(filter)/2);
- #else
- // just averge 4 samples together, lower quality but much faster
- *dest-- = capture_buffer[i * 4] + capture_buffer[i * 4 + 1]
- + capture_buffer[i * 4 + 2] + capture_buffer[i * 4 + 3];
- #endif
- }
- transmit(output);
- release(output);
- }
-
-
-
- #endif
|