Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 6 година
пре 8 година
пре 8 година
пре 11 година
пре 11 година
пре 8 година
пре 11 година
пре 8 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "usb_dev.h"
  31. #include "usb_keyboard.h"
  32. #include "core_pins.h" // for yield()
  33. #include "keylayouts.h"
  34. //#include "HardwareSerial.h"
  35. #include <string.h> // for memcpy()
  36. #ifdef KEYBOARD_INTERFACE // defined by usb_dev.h -> usb_desc.h
  37. #if F_CPU >= 20000000
  38. // which modifier keys are currently pressed
  39. // 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
  40. // 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
  41. uint8_t keyboard_modifier_keys=0;
  42. // which keys are currently pressed, up to 6 keys may be down at once
  43. uint8_t keyboard_keys[6]={0,0,0,0,0,0};
  44. #ifdef KEYMEDIA_INTERFACE
  45. uint16_t keymedia_consumer_keys[4];
  46. uint8_t keymedia_system_keys[3];
  47. #endif
  48. // protocol setting from the host. We use exactly the same report
  49. // either way, so this variable only stores the setting since we
  50. // are required to be able to report which setting is in use.
  51. uint8_t keyboard_protocol=1;
  52. // the idle configuration, how often we send the report to the
  53. // host (ms * 4) even when it hasn't changed
  54. uint8_t keyboard_idle_config=125;
  55. // count until idle timeout
  56. uint8_t keyboard_idle_count=0;
  57. // 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
  58. volatile uint8_t keyboard_leds=0;
  59. static KEYCODE_TYPE unicode_to_keycode(uint16_t cpoint);
  60. static void write_key(KEYCODE_TYPE keycode);
  61. static uint8_t keycode_to_modifier(KEYCODE_TYPE keycode);
  62. static uint8_t keycode_to_key(KEYCODE_TYPE keycode);
  63. static void usb_keyboard_press_key(uint8_t key, uint8_t modifier);
  64. static void usb_keyboard_release_key(uint8_t key, uint8_t modifier);
  65. #ifdef DEADKEYS_MASK
  66. static KEYCODE_TYPE deadkey_to_keycode(KEYCODE_TYPE keycode);
  67. #endif
  68. #ifdef KEYMEDIA_INTERFACE
  69. static void usb_keymedia_press_consumer_key(uint16_t key);
  70. static void usb_keymedia_release_consumer_key(uint16_t key);
  71. static void usb_keymedia_press_system_key(uint8_t key);
  72. static void usb_keymedia_release_system_key(uint8_t key);
  73. static int usb_keymedia_send(void);
  74. #endif
  75. // Step #1, decode UTF8 to Unicode code points
  76. //
  77. void usb_keyboard_write(uint8_t c)
  78. {
  79. static int utf8_state=0;
  80. static uint16_t unicode_wchar=0;
  81. if (c < 0x80) {
  82. // single byte encoded, 0x00 to 0x7F
  83. utf8_state = 0;
  84. usb_keyboard_write_unicode(c);
  85. } else if (c < 0xC0) {
  86. // 2nd, 3rd or 4th byte, 0x80 to 0xBF
  87. c &= 0x3F;
  88. if (utf8_state == 1) {
  89. utf8_state = 0;
  90. usb_keyboard_write_unicode(unicode_wchar | c);
  91. } else if (utf8_state == 2) {
  92. unicode_wchar |= ((uint16_t)c << 6);
  93. utf8_state = 1;
  94. }
  95. } else if (c < 0xE0) {
  96. // begin 2 byte sequence, 0xC2 to 0xDF
  97. // or illegal 2 byte sequence, 0xC0 to 0xC1
  98. unicode_wchar = (uint16_t)(c & 0x1F) << 6;
  99. utf8_state = 1;
  100. } else if (c < 0xF0) {
  101. // begin 3 byte sequence, 0xE0 to 0xEF
  102. unicode_wchar = (uint16_t)(c & 0x0F) << 12;
  103. utf8_state = 2;
  104. } else {
  105. // begin 4 byte sequence (not supported), 0xF0 to 0xF4
  106. // or illegal, 0xF5 to 0xFF
  107. utf8_state = 255;
  108. }
  109. }
  110. // Step #2: translate Unicode code point to keystroke sequence
  111. //
  112. static KEYCODE_TYPE unicode_to_keycode(uint16_t cpoint)
  113. {
  114. // Unicode code points beyond U+FFFF are not supported
  115. // technically this input should probably be called UCS-2
  116. if (cpoint < 32) {
  117. if (cpoint == 10) return KEY_ENTER & KEYCODE_MASK;
  118. if (cpoint == 11) return KEY_TAB & KEYCODE_MASK;
  119. return 0;
  120. }
  121. if (cpoint < 128) {
  122. return keycodes_ascii[cpoint - 0x20];
  123. }
  124. #ifdef ISO_8859_1_A0
  125. if (cpoint >= 0xA0 && cpoint < 0x100) {
  126. return keycodes_iso_8859_1[cpoint - 0xA0];
  127. }
  128. #endif
  129. //#ifdef UNICODE_20AC
  130. //if (cpoint == 0x20AC) return UNICODE_20AC & 0x3FFF;
  131. //#endif
  132. #ifdef KEYCODE_EXTRA00
  133. if (cpoint == UNICODE_EXTRA00) return (KEYCODE_EXTRA00) & 0x3FFF;
  134. #endif
  135. #ifdef KEYCODE_EXTRA01
  136. if (cpoint == UNICODE_EXTRA01) return (KEYCODE_EXTRA01) & 0x3FFF;
  137. #endif
  138. #ifdef KEYCODE_EXTRA02
  139. if (cpoint == UNICODE_EXTRA02) return (KEYCODE_EXTRA02) & 0x3FFF;
  140. #endif
  141. #ifdef KEYCODE_EXTRA03
  142. if (cpoint == UNICODE_EXTRA03) return (KEYCODE_EXTRA03) & 0x3FFF;
  143. #endif
  144. #ifdef KEYCODE_EXTRA04
  145. if (cpoint == UNICODE_EXTRA04) return (KEYCODE_EXTRA04) & 0x3FFF;
  146. #endif
  147. #ifdef KEYCODE_EXTRA05
  148. if (cpoint == UNICODE_EXTRA05) return (KEYCODE_EXTRA05) & 0x3FFF;
  149. #endif
  150. #ifdef KEYCODE_EXTRA06
  151. if (cpoint == UNICODE_EXTRA06) return (KEYCODE_EXTRA06) & 0x3FFF;
  152. #endif
  153. #ifdef KEYCODE_EXTRA07
  154. if (cpoint == UNICODE_EXTRA07) return (KEYCODE_EXTRA07) & 0x3FFF;
  155. #endif
  156. #ifdef KEYCODE_EXTRA08
  157. if (cpoint == UNICODE_EXTRA08) return (KEYCODE_EXTRA08) & 0x3FFF;
  158. #endif
  159. #ifdef KEYCODE_EXTRA09
  160. if (cpoint == UNICODE_EXTRA09) return (KEYCODE_EXTRA09) & 0x3FFF;
  161. #endif
  162. #ifdef KEYCODE_EXTRA0A
  163. if (cpoint == UNICODE_EXTRA0A) return (KEYCODE_EXTRA0A) & 0x3FFF;
  164. #endif
  165. return 0;
  166. }
  167. // Step #3: execute keystroke sequence
  168. //
  169. #ifdef DEADKEYS_MASK
  170. static KEYCODE_TYPE deadkey_to_keycode(KEYCODE_TYPE keycode)
  171. {
  172. keycode &= DEADKEYS_MASK;
  173. if (keycode == 0) return 0;
  174. #ifdef ACUTE_ACCENT_BITS
  175. if (keycode == ACUTE_ACCENT_BITS) return DEADKEY_ACUTE_ACCENT;
  176. #endif
  177. #ifdef CEDILLA_BITS
  178. if (keycode == CEDILLA_BITS) return DEADKEY_CEDILLA;
  179. #endif
  180. #ifdef CIRCUMFLEX_BITS
  181. if (keycode == CIRCUMFLEX_BITS) return DEADKEY_CIRCUMFLEX;
  182. #endif
  183. #ifdef DIAERESIS_BITS
  184. if (keycode == DIAERESIS_BITS) return DEADKEY_DIAERESIS;
  185. #endif
  186. #ifdef GRAVE_ACCENT_BITS
  187. if (keycode == GRAVE_ACCENT_BITS) return DEADKEY_GRAVE_ACCENT;
  188. #endif
  189. #ifdef TILDE_BITS
  190. if (keycode == TILDE_BITS) return DEADKEY_TILDE;
  191. #endif
  192. #ifdef RING_ABOVE_BITS
  193. if (keycode == RING_ABOVE_BITS) return DEADKEY_RING_ABOVE;
  194. #endif
  195. #ifdef DEGREE_SIGN_BITS
  196. if (keycode == DEGREE_SIGN_BITS) return DEADKEY_DEGREE_SIGN;
  197. #endif
  198. #ifdef CARON_BITS
  199. if (keycode == CARON_BITS) return DEADKEY_CARON;
  200. #endif
  201. #ifdef BREVE_BITS
  202. if (keycode == BREVE_BITS) return DEADKEY_BREVE;
  203. #endif
  204. #ifdef OGONEK_BITS
  205. if (keycode == OGONEK_BITS) return DEADKEY_OGONEK;
  206. #endif
  207. #ifdef DOT_ABOVE_BITS
  208. if (keycode == DOT_ABOVE_BITS) return DEADKEY_DOT_ABOVE;
  209. #endif
  210. #ifdef DOUBLE_ACUTE_BITS
  211. if (keycode == DOUBLE_ACUTE_BITS) return DEADKEY_DOUBLE_ACUTE;
  212. #endif
  213. return 0;
  214. }
  215. #endif
  216. void usb_keyboard_write_unicode(uint16_t cpoint)
  217. {
  218. KEYCODE_TYPE keycode;
  219. keycode = unicode_to_keycode(cpoint);
  220. if (keycode) {
  221. #ifdef DEADKEYS_MASK
  222. KEYCODE_TYPE deadkeycode = deadkey_to_keycode(keycode);
  223. if (deadkeycode) write_key(deadkeycode);
  224. #endif
  225. write_key(keycode);
  226. }
  227. }
  228. // Step #4: do each keystroke
  229. //
  230. static void write_key(KEYCODE_TYPE keycode)
  231. {
  232. /*
  233. uint8_t key, modifier=0;
  234. #ifdef SHIFT_MASK
  235. if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT;
  236. #endif
  237. #ifdef ALTGR_MASK
  238. if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT;
  239. #endif
  240. #ifdef RCTRL_MASK
  241. if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL;
  242. #endif
  243. key = keycode & 0x3F;
  244. #ifdef KEY_NON_US_100
  245. if (key == KEY_NON_US_100) key = 100;
  246. #endif
  247. usb_keyboard_press(key, modifier);
  248. */
  249. usb_keyboard_press(keycode_to_key(keycode), keycode_to_modifier(keycode));
  250. }
  251. static uint8_t keycode_to_modifier(KEYCODE_TYPE keycode)
  252. {
  253. uint8_t modifier=0;
  254. #ifdef SHIFT_MASK
  255. if (keycode & SHIFT_MASK) modifier |= MODIFIERKEY_SHIFT;
  256. #endif
  257. #ifdef ALTGR_MASK
  258. if (keycode & ALTGR_MASK) modifier |= MODIFIERKEY_RIGHT_ALT;
  259. #endif
  260. #ifdef RCTRL_MASK
  261. if (keycode & RCTRL_MASK) modifier |= MODIFIERKEY_RIGHT_CTRL;
  262. #endif
  263. return modifier;
  264. }
  265. static uint8_t keycode_to_key(KEYCODE_TYPE keycode)
  266. {
  267. uint8_t key = keycode & 0x3F;
  268. #ifdef KEY_NON_US_100
  269. if (key == KEY_NON_US_100) key = 100;
  270. #endif
  271. return key;
  272. }
  273. // Input can be:
  274. // 32 - 127 ASCII direct (U+0020 to U+007F) <-- uses layout
  275. // 128 - 0xC1FF Unicode direct (U+0080 to U+C1FF) <-- uses layout
  276. // 0xC200 - 0xDFFF Unicode UTF8 packed (U+0080 to U+07FF) <-- uses layout
  277. // 0xE000 - 0xE0FF Modifier key (bitmap, 8 keys, shift/ctrl/alt/gui)
  278. // 0xE200 - 0xE2FF System key (HID usage code, within usage page 1)
  279. // 0xE400 - 0xE7FF Media/Consumer key (HID usage code, within usage page 12)
  280. // 0xF000 - 0xFFFF Normal key (HID usage code, within usage page 7)
  281. void usb_keyboard_press_keycode(uint16_t n)
  282. {
  283. uint8_t key, mod, msb, modrestore=0;
  284. KEYCODE_TYPE keycode;
  285. #ifdef DEADKEYS_MASK
  286. KEYCODE_TYPE deadkeycode;
  287. #endif
  288. msb = n >> 8;
  289. if (msb >= 0xC2) {
  290. if (msb <= 0xDF) {
  291. n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6);
  292. } else if (msb == 0xF0) {
  293. usb_keyboard_press_key(n, 0);
  294. return;
  295. } else if (msb == 0xE0) {
  296. usb_keyboard_press_key(0, n);
  297. return;
  298. #ifdef KEYMEDIA_INTERFACE
  299. } else if (msb == 0xE2) {
  300. usb_keymedia_press_system_key(n);
  301. return;
  302. } else if (msb >= 0xE4 && msb <= 0xE7) {
  303. usb_keymedia_press_consumer_key(n & 0x3FF);
  304. return;
  305. #endif
  306. } else {
  307. return;
  308. }
  309. }
  310. keycode = unicode_to_keycode(n);
  311. if (!keycode) return;
  312. #ifdef DEADKEYS_MASK
  313. deadkeycode = deadkey_to_keycode(keycode);
  314. if (deadkeycode) {
  315. modrestore = keyboard_modifier_keys;
  316. if (modrestore) {
  317. keyboard_modifier_keys = 0;
  318. usb_keyboard_send();
  319. }
  320. // TODO: test if operating systems recognize
  321. // deadkey sequences when other keys are held
  322. mod = keycode_to_modifier(deadkeycode);
  323. key = keycode_to_key(deadkeycode);
  324. usb_keyboard_press_key(key, mod);
  325. usb_keyboard_release_key(key, mod);
  326. }
  327. #endif
  328. mod = keycode_to_modifier(keycode);
  329. key = keycode_to_key(keycode);
  330. usb_keyboard_press_key(key, mod | modrestore);
  331. }
  332. void usb_keyboard_release_keycode(uint16_t n)
  333. {
  334. uint8_t key, mod, msb;
  335. msb = n >> 8;
  336. if (msb >= 0xC2) {
  337. if (msb <= 0xDF) {
  338. n = (n & 0x3F) | ((uint16_t)(msb & 0x1F) << 6);
  339. } else if (msb == 0xF0) {
  340. usb_keyboard_release_key(n, 0);
  341. return;
  342. } else if (msb == 0xE0) {
  343. usb_keyboard_release_key(0, n);
  344. return;
  345. #ifdef KEYMEDIA_INTERFACE
  346. } else if (msb == 0xE2) {
  347. usb_keymedia_release_system_key(n);
  348. return;
  349. } else if (msb >= 0xE4 && msb <= 0xE7) {
  350. usb_keymedia_release_consumer_key(n & 0x3FF);
  351. return;
  352. #endif
  353. } else {
  354. return;
  355. }
  356. }
  357. KEYCODE_TYPE keycode = unicode_to_keycode(n);
  358. if (!keycode) return;
  359. mod = keycode_to_modifier(keycode);
  360. key = keycode_to_key(keycode);
  361. usb_keyboard_release_key(key, mod);
  362. }
  363. static void usb_keyboard_press_key(uint8_t key, uint8_t modifier)
  364. {
  365. int i, send_required = 0;
  366. if (modifier) {
  367. if ((keyboard_modifier_keys & modifier) != modifier) {
  368. keyboard_modifier_keys |= modifier;
  369. send_required = 1;
  370. }
  371. }
  372. if (key) {
  373. for (i=0; i < 6; i++) {
  374. if (keyboard_keys[i] == key) goto end;
  375. }
  376. for (i=0; i < 6; i++) {
  377. if (keyboard_keys[i] == 0) {
  378. keyboard_keys[i] = key;
  379. send_required = 1;
  380. goto end;
  381. }
  382. }
  383. }
  384. end:
  385. if (send_required) usb_keyboard_send();
  386. }
  387. static void usb_keyboard_release_key(uint8_t key, uint8_t modifier)
  388. {
  389. int i, send_required = 0;
  390. if (modifier) {
  391. if ((keyboard_modifier_keys & modifier) != 0) {
  392. keyboard_modifier_keys &= ~modifier;
  393. send_required = 1;
  394. }
  395. }
  396. if (key) {
  397. for (i=0; i < 6; i++) {
  398. if (keyboard_keys[i] == key) {
  399. keyboard_keys[i] = 0;
  400. send_required = 1;
  401. }
  402. }
  403. }
  404. if (send_required) usb_keyboard_send();
  405. }
  406. void usb_keyboard_release_all(void)
  407. {
  408. uint8_t i, anybits;
  409. anybits = keyboard_modifier_keys;
  410. keyboard_modifier_keys = 0;
  411. for (i=0; i < 6; i++) {
  412. anybits |= keyboard_keys[i];
  413. keyboard_keys[i] = 0;
  414. }
  415. if (anybits) usb_keyboard_send();
  416. #ifdef KEYMEDIA_INTERFACE
  417. anybits = 0;
  418. for (i=0; i < 4; i++) {
  419. if (keymedia_consumer_keys[i] != 0) anybits = 1;
  420. keymedia_consumer_keys[i] = 0;
  421. }
  422. for (i=0; i < 3; i++) {
  423. if (keymedia_system_keys[i] != 0) anybits = 1;
  424. keymedia_system_keys[i] = 0;
  425. }
  426. if (anybits) usb_keymedia_send();
  427. #endif
  428. }
  429. int usb_keyboard_press(uint8_t key, uint8_t modifier)
  430. {
  431. int r;
  432. keyboard_modifier_keys = modifier;
  433. keyboard_keys[0] = key;
  434. keyboard_keys[1] = 0;
  435. keyboard_keys[2] = 0;
  436. keyboard_keys[3] = 0;
  437. keyboard_keys[4] = 0;
  438. keyboard_keys[5] = 0;
  439. r = usb_keyboard_send();
  440. if (r) return r;
  441. keyboard_modifier_keys = 0;
  442. keyboard_keys[0] = 0;
  443. return usb_keyboard_send();
  444. }
  445. // Maximum number of transmit packets to queue so we don't starve other endpoints for memory
  446. #define TX_PACKET_LIMIT 4
  447. static uint8_t transmit_previous_timeout=0;
  448. // When the PC isn't listening, how long do we wait before discarding data?
  449. #define TX_TIMEOUT_MSEC 50
  450. #if F_CPU == 256000000
  451. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 1706)
  452. #elif F_CPU == 240000000
  453. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 1600)
  454. #elif F_CPU == 216000000
  455. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 1440)
  456. #elif F_CPU == 192000000
  457. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 1280)
  458. #elif F_CPU == 180000000
  459. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 1200)
  460. #elif F_CPU == 168000000
  461. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 1100)
  462. #elif F_CPU == 144000000
  463. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 932)
  464. #elif F_CPU == 120000000
  465. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 764)
  466. #elif F_CPU == 96000000
  467. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 596)
  468. #elif F_CPU == 72000000
  469. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 512)
  470. #elif F_CPU == 48000000
  471. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 428)
  472. #elif F_CPU == 24000000
  473. #define TX_TIMEOUT (TX_TIMEOUT_MSEC * 262)
  474. #endif
  475. // send the contents of keyboard_keys and keyboard_modifier_keys
  476. int usb_keyboard_send(void)
  477. {
  478. #if 0
  479. serial_print("Send:");
  480. serial_phex(keyboard_modifier_keys);
  481. serial_phex(keyboard_keys[0]);
  482. serial_phex(keyboard_keys[1]);
  483. serial_phex(keyboard_keys[2]);
  484. serial_phex(keyboard_keys[3]);
  485. serial_phex(keyboard_keys[4]);
  486. serial_phex(keyboard_keys[5]);
  487. serial_print("\n");
  488. #endif
  489. #if 1
  490. uint32_t wait_count=0;
  491. usb_packet_t *tx_packet;
  492. while (1) {
  493. if (!usb_configuration) {
  494. return -1;
  495. }
  496. if (usb_tx_packet_count(KEYBOARD_ENDPOINT) < TX_PACKET_LIMIT) {
  497. tx_packet = usb_malloc();
  498. if (tx_packet) break;
  499. }
  500. if (++wait_count > TX_TIMEOUT || transmit_previous_timeout) {
  501. transmit_previous_timeout = 1;
  502. return -1;
  503. }
  504. yield();
  505. }
  506. *(tx_packet->buf) = keyboard_modifier_keys;
  507. *(tx_packet->buf + 1) = 0;
  508. memcpy(tx_packet->buf + 2, keyboard_keys, 6);
  509. tx_packet->len = 8;
  510. usb_tx(KEYBOARD_ENDPOINT, tx_packet);
  511. #endif
  512. return 0;
  513. }
  514. #ifdef KEYMEDIA_INTERFACE
  515. static void usb_keymedia_press_consumer_key(uint16_t key)
  516. {
  517. int i;
  518. if (key == 0) return;
  519. for (i=0; i < 4; i++) {
  520. if (keymedia_consumer_keys[i] == key) return;
  521. }
  522. for (i=0; i < 4; i++) {
  523. if (keymedia_consumer_keys[i] == 0) {
  524. keymedia_consumer_keys[i] = key;
  525. usb_keymedia_send();
  526. return;
  527. }
  528. }
  529. }
  530. static void usb_keymedia_release_consumer_key(uint16_t key)
  531. {
  532. int i;
  533. if (key == 0) return;
  534. for (i=0; i < 4; i++) {
  535. if (keymedia_consumer_keys[i] == key) {
  536. keymedia_consumer_keys[i] = 0;
  537. usb_keymedia_send();
  538. return;
  539. }
  540. }
  541. }
  542. static void usb_keymedia_press_system_key(uint8_t key)
  543. {
  544. int i;
  545. if (key == 0) return;
  546. for (i=0; i < 3; i++) {
  547. if (keymedia_system_keys[i] == key) return;
  548. }
  549. for (i=0; i < 3; i++) {
  550. if (keymedia_system_keys[i] == 0) {
  551. keymedia_system_keys[i] = key;
  552. usb_keymedia_send();
  553. return;
  554. }
  555. }
  556. }
  557. static void usb_keymedia_release_system_key(uint8_t key)
  558. {
  559. int i;
  560. if (key == 0) return;
  561. for (i=0; i < 3; i++) {
  562. if (keymedia_system_keys[i] == key) {
  563. keymedia_system_keys[i] = 0;
  564. usb_keymedia_send();
  565. return;
  566. }
  567. }
  568. }
  569. void usb_keymedia_release_all(void)
  570. {
  571. uint8_t i, anybits;
  572. anybits = 0;
  573. for (i=0; i < 4; i++) {
  574. if (keymedia_consumer_keys[i] != 0) anybits = 1;
  575. keymedia_consumer_keys[i] = 0;
  576. }
  577. for (i=0; i < 3; i++) {
  578. if (keymedia_system_keys[i] != 0) anybits = 1;
  579. keymedia_system_keys[i] = 0;
  580. }
  581. if (anybits) usb_keymedia_send();
  582. }
  583. // send the contents of keyboard_keys and keyboard_modifier_keys
  584. static int usb_keymedia_send(void)
  585. {
  586. uint32_t wait_count=0;
  587. usb_packet_t *tx_packet;
  588. const uint16_t *consumer;
  589. while (1) {
  590. if (!usb_configuration) {
  591. return -1;
  592. }
  593. if (usb_tx_packet_count(KEYMEDIA_ENDPOINT) < TX_PACKET_LIMIT) {
  594. tx_packet = usb_malloc();
  595. if (tx_packet) break;
  596. }
  597. if (++wait_count > TX_TIMEOUT || transmit_previous_timeout) {
  598. transmit_previous_timeout = 1;
  599. return -1;
  600. }
  601. yield();
  602. }
  603. // 44444444 44333333 33332222 22222211 11111111
  604. // 98765432 10987654 32109876 54321098 76543210
  605. consumer = keymedia_consumer_keys;
  606. *(tx_packet->buf + 0) = consumer[0];
  607. *(tx_packet->buf + 1) = (consumer[1] << 2) | ((consumer[0] >> 8) & 0x03);
  608. *(tx_packet->buf + 2) = (consumer[2] << 4) | ((consumer[1] >> 6) & 0x0F);
  609. *(tx_packet->buf + 3) = (consumer[3] << 6) | ((consumer[2] >> 4) & 0x3F);
  610. *(tx_packet->buf + 4) = consumer[3] >> 2;
  611. *(tx_packet->buf + 5) = keymedia_system_keys[0];
  612. *(tx_packet->buf + 6) = keymedia_system_keys[1];
  613. *(tx_packet->buf + 7) = keymedia_system_keys[2];
  614. tx_packet->len = 8;
  615. usb_tx(KEYMEDIA_ENDPOINT, tx_packet);
  616. return 0;
  617. }
  618. #endif // KEYMEDIA_INTERFACE
  619. #endif // F_CPU
  620. #endif // KEYBOARD_INTERFACE