Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "usb_dev.h"
  31. #if F_CPU >= 20000000 && defined(NUM_ENDPOINTS)
  32. #include "kinetis.h"
  33. //#include "HardwareSerial.h"
  34. #include "usb_mem.h"
  35. // buffer descriptor table
  36. typedef struct {
  37. uint32_t desc;
  38. void * addr;
  39. } bdt_t;
  40. __attribute__ ((section(".usbdescriptortable"), used))
  41. static bdt_t table[(NUM_ENDPOINTS+1)*4];
  42. static usb_packet_t *rx_first[NUM_ENDPOINTS];
  43. static usb_packet_t *rx_last[NUM_ENDPOINTS];
  44. static usb_packet_t *tx_first[NUM_ENDPOINTS];
  45. static usb_packet_t *tx_last[NUM_ENDPOINTS];
  46. uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
  47. static uint8_t tx_state[NUM_ENDPOINTS];
  48. #define TX_STATE_BOTH_FREE_EVEN_FIRST 0
  49. #define TX_STATE_BOTH_FREE_ODD_FIRST 1
  50. #define TX_STATE_EVEN_FREE 2
  51. #define TX_STATE_ODD_FREE 3
  52. #define TX_STATE_NONE_FREE_EVEN_FIRST 4
  53. #define TX_STATE_NONE_FREE_ODD_FIRST 5
  54. #define BDT_OWN 0x80
  55. #define BDT_DATA1 0x40
  56. #define BDT_DATA0 0x00
  57. #define BDT_DTS 0x08
  58. #define BDT_STALL 0x04
  59. #define BDT_PID(n) (((n) >> 2) & 15)
  60. #define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
  61. | ((data) ? BDT_DATA1 : BDT_DATA0) \
  62. | ((count) << 16))
  63. #define TX 1
  64. #define RX 0
  65. #define ODD 1
  66. #define EVEN 0
  67. #define DATA0 0
  68. #define DATA1 1
  69. #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  70. #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  71. static union {
  72. struct {
  73. union {
  74. struct {
  75. uint8_t bmRequestType;
  76. uint8_t bRequest;
  77. };
  78. uint16_t wRequestAndType;
  79. };
  80. uint16_t wValue;
  81. uint16_t wIndex;
  82. uint16_t wLength;
  83. };
  84. struct {
  85. uint32_t word1;
  86. uint32_t word2;
  87. };
  88. } setup;
  89. #define GET_STATUS 0
  90. #define CLEAR_FEATURE 1
  91. #define SET_FEATURE 3
  92. #define SET_ADDRESS 5
  93. #define GET_DESCRIPTOR 6
  94. #define SET_DESCRIPTOR 7
  95. #define GET_CONFIGURATION 8
  96. #define SET_CONFIGURATION 9
  97. #define GET_INTERFACE 10
  98. #define SET_INTERFACE 11
  99. #define SYNCH_FRAME 12
  100. // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
  101. // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
  102. // Status stage uses a DATA1 PID.
  103. static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  104. static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
  105. static const uint8_t *ep0_tx_ptr = NULL;
  106. static uint16_t ep0_tx_len;
  107. static uint8_t ep0_tx_bdt_bank = 0;
  108. static uint8_t ep0_tx_data_toggle = 0;
  109. uint8_t usb_rx_memory_needed = 0;
  110. volatile uint8_t usb_configuration = 0;
  111. volatile uint8_t usb_reboot_timer = 0;
  112. static void endpoint0_stall(void)
  113. {
  114. USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  115. }
  116. static void endpoint0_transmit(const void *data, uint32_t len)
  117. {
  118. #if 0
  119. serial_print("tx0:");
  120. serial_phex32((uint32_t)data);
  121. serial_print(",");
  122. serial_phex16(len);
  123. serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
  124. serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
  125. #endif
  126. table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
  127. table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
  128. ep0_tx_data_toggle ^= 1;
  129. ep0_tx_bdt_bank ^= 1;
  130. }
  131. static uint8_t reply_buffer[8];
  132. static void usb_setup(void)
  133. {
  134. const uint8_t *data = NULL;
  135. uint32_t datalen = 0;
  136. const usb_descriptor_list_t *list;
  137. uint32_t size;
  138. volatile uint8_t *reg;
  139. uint8_t epconf;
  140. const uint8_t *cfg;
  141. int i;
  142. switch (setup.wRequestAndType) {
  143. case 0x0500: // SET_ADDRESS
  144. break;
  145. case 0x0900: // SET_CONFIGURATION
  146. //serial_print("configure\n");
  147. usb_configuration = setup.wValue;
  148. reg = &USB0_ENDPT1;
  149. cfg = usb_endpoint_config_table;
  150. // clear all BDT entries, free any allocated memory...
  151. for (i=4; i < (NUM_ENDPOINTS+1)*4; i++) {
  152. if (table[i].desc & BDT_OWN) {
  153. usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
  154. }
  155. }
  156. // free all queued packets
  157. for (i=0; i < NUM_ENDPOINTS; i++) {
  158. usb_packet_t *p, *n;
  159. p = rx_first[i];
  160. while (p) {
  161. n = p->next;
  162. usb_free(p);
  163. p = n;
  164. }
  165. rx_first[i] = NULL;
  166. rx_last[i] = NULL;
  167. p = tx_first[i];
  168. while (p) {
  169. n = p->next;
  170. usb_free(p);
  171. p = n;
  172. }
  173. tx_first[i] = NULL;
  174. tx_last[i] = NULL;
  175. usb_rx_byte_count_data[i] = 0;
  176. switch (tx_state[i]) {
  177. case TX_STATE_EVEN_FREE:
  178. case TX_STATE_NONE_FREE_EVEN_FIRST:
  179. tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  180. break;
  181. case TX_STATE_ODD_FREE:
  182. case TX_STATE_NONE_FREE_ODD_FIRST:
  183. tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
  184. break;
  185. default:
  186. break;
  187. }
  188. }
  189. usb_rx_memory_needed = 0;
  190. for (i=1; i <= NUM_ENDPOINTS; i++) {
  191. epconf = *cfg++;
  192. *reg = epconf;
  193. reg += 4;
  194. if (epconf & USB_ENDPT_EPRXEN) {
  195. usb_packet_t *p;
  196. p = usb_malloc();
  197. if (p) {
  198. table[index(i, RX, EVEN)].addr = p->buf;
  199. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  200. } else {
  201. table[index(i, RX, EVEN)].desc = 0;
  202. usb_rx_memory_needed++;
  203. }
  204. p = usb_malloc();
  205. if (p) {
  206. table[index(i, RX, ODD)].addr = p->buf;
  207. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  208. } else {
  209. table[index(i, RX, ODD)].desc = 0;
  210. usb_rx_memory_needed++;
  211. }
  212. }
  213. table[index(i, TX, EVEN)].desc = 0;
  214. table[index(i, TX, ODD)].desc = 0;
  215. }
  216. break;
  217. case 0x0880: // GET_CONFIGURATION
  218. reply_buffer[0] = usb_configuration;
  219. datalen = 1;
  220. data = reply_buffer;
  221. break;
  222. case 0x0080: // GET_STATUS (device)
  223. reply_buffer[0] = 0;
  224. reply_buffer[1] = 0;
  225. datalen = 2;
  226. data = reply_buffer;
  227. break;
  228. case 0x0082: // GET_STATUS (endpoint)
  229. if (setup.wIndex > NUM_ENDPOINTS) {
  230. // TODO: do we need to handle IN vs OUT here?
  231. endpoint0_stall();
  232. return;
  233. }
  234. reply_buffer[0] = 0;
  235. reply_buffer[1] = 0;
  236. if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
  237. data = reply_buffer;
  238. datalen = 2;
  239. break;
  240. case 0x0102: // CLEAR_FEATURE (endpoint)
  241. i = setup.wIndex & 0x7F;
  242. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  243. // TODO: do we need to handle IN vs OUT here?
  244. endpoint0_stall();
  245. return;
  246. }
  247. (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
  248. // TODO: do we need to clear the data toggle here?
  249. break;
  250. case 0x0302: // SET_FEATURE (endpoint)
  251. i = setup.wIndex & 0x7F;
  252. if (i > NUM_ENDPOINTS || setup.wValue != 0) {
  253. // TODO: do we need to handle IN vs OUT here?
  254. endpoint0_stall();
  255. return;
  256. }
  257. (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
  258. // TODO: do we need to clear the data toggle here?
  259. break;
  260. case 0x0680: // GET_DESCRIPTOR
  261. case 0x0681:
  262. //serial_print("desc:");
  263. //serial_phex16(setup.wValue);
  264. //serial_print("\n");
  265. for (list = usb_descriptor_list; 1; list++) {
  266. if (list->addr == NULL) break;
  267. //if (setup.wValue == list->wValue &&
  268. //(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
  269. if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
  270. data = list->addr;
  271. if ((setup.wValue >> 8) == 3) {
  272. // for string descriptors, use the descriptor's
  273. // length field, allowing runtime configured
  274. // length.
  275. datalen = *(list->addr);
  276. } else {
  277. datalen = list->length;
  278. }
  279. #if 0
  280. serial_print("Desc found, ");
  281. serial_phex32((uint32_t)data);
  282. serial_print(",");
  283. serial_phex16(datalen);
  284. serial_print(",");
  285. serial_phex(data[0]);
  286. serial_phex(data[1]);
  287. serial_phex(data[2]);
  288. serial_phex(data[3]);
  289. serial_phex(data[4]);
  290. serial_phex(data[5]);
  291. serial_print("\n");
  292. #endif
  293. goto send;
  294. }
  295. }
  296. //serial_print("desc: not found\n");
  297. endpoint0_stall();
  298. return;
  299. #if defined(CDC_STATUS_INTERFACE)
  300. case 0x2221: // CDC_SET_CONTROL_LINE_STATE
  301. usb_cdc_line_rtsdtr = setup.wValue;
  302. //serial_print("set control line state\n");
  303. break;
  304. case 0x2321: // CDC_SEND_BREAK
  305. break;
  306. case 0x2021: // CDC_SET_LINE_CODING
  307. //serial_print("set coding, waiting...\n");
  308. return;
  309. #endif
  310. // TODO: this does not work... why?
  311. #if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
  312. case 0x0921: // HID SET_REPORT
  313. //serial_print(":)\n");
  314. return;
  315. case 0x0A21: // HID SET_IDLE
  316. break;
  317. // case 0xC940:
  318. #endif
  319. default:
  320. endpoint0_stall();
  321. return;
  322. }
  323. send:
  324. //serial_print("setup send ");
  325. //serial_phex32(data);
  326. //serial_print(",");
  327. //serial_phex16(datalen);
  328. //serial_print("\n");
  329. if (datalen > setup.wLength) datalen = setup.wLength;
  330. size = datalen;
  331. if (size > EP0_SIZE) size = EP0_SIZE;
  332. endpoint0_transmit(data, size);
  333. data += size;
  334. datalen -= size;
  335. if (datalen == 0 && size < EP0_SIZE) return;
  336. size = datalen;
  337. if (size > EP0_SIZE) size = EP0_SIZE;
  338. endpoint0_transmit(data, size);
  339. data += size;
  340. datalen -= size;
  341. if (datalen == 0 && size < EP0_SIZE) return;
  342. ep0_tx_ptr = data;
  343. ep0_tx_len = datalen;
  344. }
  345. //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
  346. //experiences any configuration event (configuration events are explained in
  347. //Sections 9.1.1.5 and 9.4.5).
  348. //Configuring a device or changing an alternate setting causes all of the status
  349. //and configuration values associated with endpoints in the affected interfaces
  350. //to be set to their default values. This includes setting the data toggle of
  351. //any endpoint using data toggles to the value DATA0.
  352. //For endpoints using data toggle, regardless of whether an endpoint has the
  353. //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
  354. //data toggle being reinitialized to DATA0.
  355. // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  356. static void usb_control(uint32_t stat)
  357. {
  358. bdt_t *b;
  359. uint32_t pid, size;
  360. uint8_t *buf;
  361. const uint8_t *data;
  362. b = stat2bufferdescriptor(stat);
  363. pid = BDT_PID(b->desc);
  364. //count = b->desc >> 16;
  365. buf = b->addr;
  366. //serial_print("pid:");
  367. //serial_phex(pid);
  368. //serial_print(", count:");
  369. //serial_phex(count);
  370. //serial_print("\n");
  371. switch (pid) {
  372. case 0x0D: // Setup received from host
  373. //serial_print("PID=Setup\n");
  374. //if (count != 8) ; // panic?
  375. // grab the 8 byte setup info
  376. setup.word1 = *(uint32_t *)(buf);
  377. setup.word2 = *(uint32_t *)(buf + 4);
  378. // give the buffer back
  379. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  380. //table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
  381. //table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
  382. // clear any leftover pending IN transactions
  383. ep0_tx_ptr = NULL;
  384. if (ep0_tx_data_toggle) {
  385. }
  386. //if (table[index(0, TX, EVEN)].desc & 0x80) {
  387. //serial_print("leftover tx even\n");
  388. //}
  389. //if (table[index(0, TX, ODD)].desc & 0x80) {
  390. //serial_print("leftover tx odd\n");
  391. //}
  392. table[index(0, TX, EVEN)].desc = 0;
  393. table[index(0, TX, ODD)].desc = 0;
  394. // first IN after Setup is always DATA1
  395. ep0_tx_data_toggle = 1;
  396. #if 0
  397. serial_print("bmRequestType:");
  398. serial_phex(setup.bmRequestType);
  399. serial_print(", bRequest:");
  400. serial_phex(setup.bRequest);
  401. serial_print(", wValue:");
  402. serial_phex16(setup.wValue);
  403. serial_print(", wIndex:");
  404. serial_phex16(setup.wIndex);
  405. serial_print(", len:");
  406. serial_phex16(setup.wLength);
  407. serial_print("\n");
  408. #endif
  409. // actually "do" the setup request
  410. usb_setup();
  411. // unfreeze the USB, now that we're ready
  412. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  413. break;
  414. case 0x01: // OUT transaction received from host
  415. case 0x02:
  416. //serial_print("PID=OUT\n");
  417. #ifdef CDC_STATUS_INTERFACE
  418. if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
  419. int i;
  420. uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
  421. //serial_print("set line coding ");
  422. for (i=0; i<7; i++) {
  423. //serial_phex(*buf);
  424. *dst++ = *buf++;
  425. }
  426. //serial_phex32(usb_cdc_line_coding[0]);
  427. //serial_print("\n");
  428. if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
  429. endpoint0_transmit(NULL, 0);
  430. }
  431. #endif
  432. #ifdef KEYBOARD_INTERFACE
  433. if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
  434. keyboard_leds = buf[0];
  435. endpoint0_transmit(NULL, 0);
  436. }
  437. #endif
  438. #ifdef SEREMU_INTERFACE
  439. if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
  440. && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
  441. usb_reboot_timer = 5;
  442. endpoint0_transmit(NULL, 0);
  443. }
  444. #endif
  445. // give the buffer back
  446. b->desc = BDT_DESC(EP0_SIZE, DATA1);
  447. break;
  448. case 0x09: // IN transaction completed to host
  449. //serial_print("PID=IN:");
  450. //serial_phex(stat);
  451. //serial_print("\n");
  452. // send remaining data, if any...
  453. data = ep0_tx_ptr;
  454. if (data) {
  455. size = ep0_tx_len;
  456. if (size > EP0_SIZE) size = EP0_SIZE;
  457. endpoint0_transmit(data, size);
  458. data += size;
  459. ep0_tx_len -= size;
  460. ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
  461. }
  462. if (setup.bRequest == 5 && setup.bmRequestType == 0) {
  463. setup.bRequest = 0;
  464. //serial_print("set address: ");
  465. //serial_phex16(setup.wValue);
  466. //serial_print("\n");
  467. USB0_ADDR = setup.wValue;
  468. }
  469. break;
  470. //default:
  471. //serial_print("PID=unknown:");
  472. //serial_phex(pid);
  473. //serial_print("\n");
  474. }
  475. USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
  476. }
  477. usb_packet_t *usb_rx(uint32_t endpoint)
  478. {
  479. usb_packet_t *ret;
  480. endpoint--;
  481. if (endpoint >= NUM_ENDPOINTS) return NULL;
  482. __disable_irq();
  483. ret = rx_first[endpoint];
  484. if (ret) {
  485. rx_first[endpoint] = ret->next;
  486. usb_rx_byte_count_data[endpoint] -= ret->len;
  487. }
  488. __enable_irq();
  489. //serial_print("rx, epidx=");
  490. //serial_phex(endpoint);
  491. //serial_print(", packet=");
  492. //serial_phex32(ret);
  493. //serial_print("\n");
  494. return ret;
  495. }
  496. static uint32_t usb_queue_byte_count(const usb_packet_t *p)
  497. {
  498. uint32_t count=0;
  499. __disable_irq();
  500. for ( ; p; p = p->next) {
  501. count += p->len;
  502. }
  503. __enable_irq();
  504. return count;
  505. }
  506. // TODO: make this an inline function...
  507. /*
  508. uint32_t usb_rx_byte_count(uint32_t endpoint)
  509. {
  510. endpoint--;
  511. if (endpoint >= NUM_ENDPOINTS) return 0;
  512. return usb_rx_byte_count_data[endpoint];
  513. //return usb_queue_byte_count(rx_first[endpoint]);
  514. }
  515. */
  516. uint32_t usb_tx_byte_count(uint32_t endpoint)
  517. {
  518. endpoint--;
  519. if (endpoint >= NUM_ENDPOINTS) return 0;
  520. return usb_queue_byte_count(tx_first[endpoint]);
  521. }
  522. uint32_t usb_tx_packet_count(uint32_t endpoint)
  523. {
  524. const usb_packet_t *p;
  525. uint32_t count=0;
  526. endpoint--;
  527. if (endpoint >= NUM_ENDPOINTS) return 0;
  528. __disable_irq();
  529. for (p = tx_first[endpoint]; p; p = p->next) count++;
  530. __enable_irq();
  531. return count;
  532. }
  533. // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
  534. // receive endpoints are starving for memory. The intention is to give
  535. // endpoints needing receive memory priority over the user's code, which is
  536. // likely calling usb_malloc to obtain memory for transmitting. When the
  537. // user is creating data very quickly, their consumption could starve reception
  538. // without this prioritization. The packet buffer (input) is assigned to the
  539. // first endpoint needing memory.
  540. //
  541. void usb_rx_memory(usb_packet_t *packet)
  542. {
  543. unsigned int i;
  544. const uint8_t *cfg;
  545. cfg = usb_endpoint_config_table;
  546. //serial_print("rx_mem:");
  547. __disable_irq();
  548. for (i=1; i <= NUM_ENDPOINTS; i++) {
  549. if (*cfg++ & USB_ENDPT_EPRXEN) {
  550. if (table[index(i, RX, EVEN)].desc == 0) {
  551. table[index(i, RX, EVEN)].addr = packet->buf;
  552. table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
  553. usb_rx_memory_needed--;
  554. __enable_irq();
  555. //serial_phex(i);
  556. //serial_print(",even\n");
  557. return;
  558. }
  559. if (table[index(i, RX, ODD)].desc == 0) {
  560. table[index(i, RX, ODD)].addr = packet->buf;
  561. table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
  562. usb_rx_memory_needed--;
  563. __enable_irq();
  564. //serial_phex(i);
  565. //serial_print(",odd\n");
  566. return;
  567. }
  568. }
  569. }
  570. __enable_irq();
  571. // we should never reach this point. If we get here, it means
  572. // usb_rx_memory_needed was set greater than zero, but no memory
  573. // was actually needed.
  574. usb_rx_memory_needed = 0;
  575. usb_free(packet);
  576. return;
  577. }
  578. //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
  579. //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
  580. void usb_tx(uint32_t endpoint, usb_packet_t *packet)
  581. {
  582. bdt_t *b = &table[index(endpoint, TX, EVEN)];
  583. uint8_t next;
  584. endpoint--;
  585. if (endpoint >= NUM_ENDPOINTS) return;
  586. __disable_irq();
  587. //serial_print("txstate=");
  588. //serial_phex(tx_state[endpoint]);
  589. //serial_print("\n");
  590. switch (tx_state[endpoint]) {
  591. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  592. next = TX_STATE_ODD_FREE;
  593. break;
  594. case TX_STATE_BOTH_FREE_ODD_FIRST:
  595. b++;
  596. next = TX_STATE_EVEN_FREE;
  597. break;
  598. case TX_STATE_EVEN_FREE:
  599. next = TX_STATE_NONE_FREE_ODD_FIRST;
  600. break;
  601. case TX_STATE_ODD_FREE:
  602. b++;
  603. next = TX_STATE_NONE_FREE_EVEN_FIRST;
  604. break;
  605. default:
  606. if (tx_first[endpoint] == NULL) {
  607. tx_first[endpoint] = packet;
  608. } else {
  609. tx_last[endpoint]->next = packet;
  610. }
  611. tx_last[endpoint] = packet;
  612. __enable_irq();
  613. return;
  614. }
  615. tx_state[endpoint] = next;
  616. b->addr = packet->buf;
  617. b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
  618. __enable_irq();
  619. }
  620. void _reboot_Teensyduino_(void)
  621. {
  622. // TODO: initialize R0 with a code....
  623. __asm__ volatile("bkpt");
  624. }
  625. void usb_isr(void)
  626. {
  627. uint8_t status, stat, t;
  628. //serial_print("isr");
  629. //status = USB0_ISTAT;
  630. //serial_phex(status);
  631. //serial_print("\n");
  632. restart:
  633. status = USB0_ISTAT;
  634. if ((status & USB_INTEN_SOFTOKEN /* 04 */ )) {
  635. if (usb_configuration) {
  636. t = usb_reboot_timer;
  637. if (t) {
  638. usb_reboot_timer = --t;
  639. if (!t) _reboot_Teensyduino_();
  640. }
  641. #ifdef CDC_DATA_INTERFACE
  642. t = usb_cdc_transmit_flush_timer;
  643. if (t) {
  644. usb_cdc_transmit_flush_timer = --t;
  645. if (t == 0) usb_serial_flush_callback();
  646. }
  647. #endif
  648. #ifdef SEREMU_INTERFACE
  649. t = usb_seremu_transmit_flush_timer;
  650. if (t) {
  651. usb_seremu_transmit_flush_timer = --t;
  652. if (t == 0) usb_seremu_flush_callback();
  653. }
  654. #endif
  655. #ifdef MIDI_INTERFACE
  656. usb_midi_flush_output();
  657. #endif
  658. #ifdef FLIGHTSIM_INTERFACE
  659. usb_flightsim_flush_callback();
  660. #endif
  661. }
  662. USB0_ISTAT = USB_INTEN_SOFTOKEN;
  663. }
  664. if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
  665. uint8_t endpoint;
  666. stat = USB0_STAT;
  667. //serial_print("token: ep=");
  668. //serial_phex(stat >> 4);
  669. //serial_print(stat & 0x08 ? ",tx" : ",rx");
  670. //serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
  671. endpoint = stat >> 4;
  672. if (endpoint == 0) {
  673. usb_control(stat);
  674. } else {
  675. bdt_t *b = stat2bufferdescriptor(stat);
  676. usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
  677. #if 0
  678. serial_print("ep:");
  679. serial_phex(endpoint);
  680. serial_print(", pid:");
  681. serial_phex(BDT_PID(b->desc));
  682. serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
  683. serial_print(", count:");
  684. serial_phex(b->desc >> 16);
  685. serial_print("\n");
  686. #endif
  687. endpoint--; // endpoint is index to zero-based arrays
  688. if (stat & 0x08) { // transmit
  689. usb_free(packet);
  690. packet = tx_first[endpoint];
  691. if (packet) {
  692. //serial_print("tx packet\n");
  693. tx_first[endpoint] = packet->next;
  694. b->addr = packet->buf;
  695. switch (tx_state[endpoint]) {
  696. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  697. tx_state[endpoint] = TX_STATE_ODD_FREE;
  698. break;
  699. case TX_STATE_BOTH_FREE_ODD_FIRST:
  700. tx_state[endpoint] = TX_STATE_EVEN_FREE;
  701. break;
  702. case TX_STATE_EVEN_FREE:
  703. tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
  704. break;
  705. case TX_STATE_ODD_FREE:
  706. tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
  707. break;
  708. default:
  709. break;
  710. }
  711. b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
  712. } else {
  713. //serial_print("tx no packet\n");
  714. switch (tx_state[endpoint]) {
  715. case TX_STATE_BOTH_FREE_EVEN_FIRST:
  716. case TX_STATE_BOTH_FREE_ODD_FIRST:
  717. break;
  718. case TX_STATE_EVEN_FREE:
  719. tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
  720. break;
  721. case TX_STATE_ODD_FREE:
  722. tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
  723. break;
  724. default:
  725. tx_state[endpoint] = ((uint32_t)b & 8) ?
  726. TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
  727. break;
  728. }
  729. }
  730. } else { // receive
  731. packet->len = b->desc >> 16;
  732. if (packet->len > 0) {
  733. packet->index = 0;
  734. packet->next = NULL;
  735. if (rx_first[endpoint] == NULL) {
  736. //serial_print("rx 1st, epidx=");
  737. //serial_phex(endpoint);
  738. //serial_print(", packet=");
  739. //serial_phex32((uint32_t)packet);
  740. //serial_print("\n");
  741. rx_first[endpoint] = packet;
  742. } else {
  743. //serial_print("rx Nth, epidx=");
  744. //serial_phex(endpoint);
  745. //serial_print(", packet=");
  746. //serial_phex32((uint32_t)packet);
  747. //serial_print("\n");
  748. rx_last[endpoint]->next = packet;
  749. }
  750. rx_last[endpoint] = packet;
  751. usb_rx_byte_count_data[endpoint] += packet->len;
  752. // TODO: implement a per-endpoint maximum # of allocated packets
  753. // so a flood of incoming data on 1 endpoint doesn't starve
  754. // the others if the user isn't reading it regularly
  755. packet = usb_malloc();
  756. if (packet) {
  757. b->addr = packet->buf;
  758. b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
  759. } else {
  760. //serial_print("starving ");
  761. //serial_phex(endpoint + 1);
  762. //serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n");
  763. b->desc = 0;
  764. usb_rx_memory_needed++;
  765. }
  766. } else {
  767. b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
  768. }
  769. }
  770. }
  771. USB0_ISTAT = USB_ISTAT_TOKDNE;
  772. goto restart;
  773. }
  774. if (status & USB_ISTAT_USBRST /* 01 */ ) {
  775. //serial_print("reset\n");
  776. // initialize BDT toggle bits
  777. USB0_CTL = USB_CTL_ODDRST;
  778. ep0_tx_bdt_bank = 0;
  779. // set up buffers to receive Setup and OUT packets
  780. table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
  781. table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
  782. table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
  783. table[index(0, RX, ODD)].addr = ep0_rx1_buf;
  784. table[index(0, TX, EVEN)].desc = 0;
  785. table[index(0, TX, ODD)].desc = 0;
  786. // activate endpoint 0
  787. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  788. // clear all ending interrupts
  789. USB0_ERRSTAT = 0xFF;
  790. USB0_ISTAT = 0xFF;
  791. // set the address to zero during enumeration
  792. USB0_ADDR = 0;
  793. // enable other interrupts
  794. USB0_ERREN = 0xFF;
  795. USB0_INTEN = USB_INTEN_TOKDNEEN |
  796. USB_INTEN_SOFTOKEN |
  797. USB_INTEN_STALLEN |
  798. USB_INTEN_ERROREN |
  799. USB_INTEN_USBRSTEN |
  800. USB_INTEN_SLEEPEN;
  801. // is this necessary?
  802. USB0_CTL = USB_CTL_USBENSOFEN;
  803. return;
  804. }
  805. if ((status & USB_ISTAT_STALL /* 80 */ )) {
  806. //serial_print("stall:\n");
  807. USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
  808. USB0_ISTAT = USB_ISTAT_STALL;
  809. }
  810. if ((status & USB_ISTAT_ERROR /* 02 */ )) {
  811. uint8_t err = USB0_ERRSTAT;
  812. USB0_ERRSTAT = err;
  813. //serial_print("err:");
  814. //serial_phex(err);
  815. //serial_print("\n");
  816. USB0_ISTAT = USB_ISTAT_ERROR;
  817. }
  818. if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
  819. //serial_print("sleep\n");
  820. USB0_ISTAT = USB_ISTAT_SLEEP;
  821. }
  822. }
  823. void usb_init(void)
  824. {
  825. int i;
  826. //serial_begin(BAUD2DIV(115200));
  827. //serial_print("usb_init\n");
  828. usb_init_serialnumber();
  829. for (i=0; i <= NUM_ENDPOINTS*4; i++) {
  830. table[i].desc = 0;
  831. table[i].addr = 0;
  832. }
  833. // this basically follows the flowchart in the Kinetis
  834. // Quick Reference User Guide, Rev. 1, 03/2012, page 141
  835. // assume 48 MHz clock already running
  836. // SIM - enable clock
  837. SIM_SCGC4 |= SIM_SCGC4_USBOTG;
  838. // reset USB module
  839. USB0_USBTRC0 = USB_USBTRC_USBRESET;
  840. while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
  841. // set desc table base addr
  842. USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
  843. USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
  844. USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
  845. // clear all ISR flags
  846. USB0_ISTAT = 0xFF;
  847. USB0_ERRSTAT = 0xFF;
  848. USB0_OTGISTAT = 0xFF;
  849. USB0_USBTRC0 |= 0x40; // undocumented bit
  850. // enable USB
  851. USB0_CTL = USB_CTL_USBENSOFEN;
  852. USB0_USBCTRL = 0;
  853. // enable reset interrupt
  854. USB0_INTEN = USB_INTEN_USBRSTEN;
  855. // enable interrupt in NVIC...
  856. NVIC_SET_PRIORITY(IRQ_USBOTG, 112);
  857. NVIC_ENABLE_IRQ(IRQ_USBOTG);
  858. // enable d+ pullup
  859. USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
  860. }
  861. #else // F_CPU < 20 MHz && defined(NUM_ENDPOINTS)
  862. void usb_init(void)
  863. {
  864. }
  865. #endif // F_CPU >= 20 MHz && defined(NUM_ENDPOINTS)