Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 11 години
преди 10 години
преди 8 години
преди 10 години
преди 11 години
преди 10 години
преди 10 години
преди 11 години
преди 10 години
преди 10 години
преди 10 години
преди 11 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 11 години
преди 11 години
преди 8 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 11 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. #ifndef _SPIFIFO_h_
  2. #define _SPIFIFO_h_
  3. #include "avr_emulation.h"
  4. #ifdef KINETISK
  5. #if F_BUS == 120000000
  6. #define HAS_SPIFIFO
  7. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(120 / 5) * ((1+1)/2)
  8. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2)) //(120 / 2) * ((1+0)/4) = 15 MHz
  9. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0)) //(120 / 5) * ((1+0)/2)
  10. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(120 / 5) * ((1+1)/6)
  11. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(2)) //(120 / 5) * ((1+0)/4)
  12. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(4)) //(120 / 5) * ((1+0)/6)
  13. #elif F_BUS == 108000000
  14. #define HAS_SPIFIFO
  15. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(108 / 5) * ((1+1)/2) = 21.6 MHz
  16. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2)) //(108 / 2) * ((1+0)/4) = 13.5 MHz
  17. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(108 / 3) * ((1+1)/6)
  18. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(108 / 5) * ((1+1)/6) = 7.2 MHz
  19. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(4)) //(108 / 3) * ((1+0)/6)
  20. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(5) | SPI_CTAR_BR(2)) //(108 / 7) * ((1+0)/4) = 3.86 MHz
  21. #elif F_BUS == 96000000
  22. #define HAS_SPIFIFO
  23. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(96 / 2) * ((1+0)/2)
  24. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(96 / 2) * ((1+1)/6)
  25. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_DBR) //(96 / 2) * ((1+1)/8)
  26. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(2)) //(96 / 3) * ((1+0)/4)
  27. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(6)) //(96 / 2) * ((1+0)/8)
  28. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(6)) //(96 / 3) * ((1+0)/8)
  29. #elif F_BUS == 90000000
  30. #define HAS_SPIFIFO
  31. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(90 / 2) * ((1+0)/2) = 22.5 MHz
  32. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(90 / 2) * ((1+1)/6) = 15 MHz
  33. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_DBR) //(90 / 2) * ((1+1)/8) = 11.25 MHz
  34. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4)) //(90 / 2) * ((1+0)/6) = 7.5 MHz
  35. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(90 / 5) * ((1+1)/6)
  36. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(6)) //(90 / 3) * ((1+0)/8) = 3.75 MHz
  37. #elif F_BUS == 80000000
  38. #define HAS_SPIFIFO
  39. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(80 / 2) * ((1+0)/2) = 20 MHz
  40. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(80 / 5) * ((1+1)/2)
  41. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(5) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(80 / 7) * ((1+1)/2) = 11.42 MHz
  42. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0)) //(80 / 5) * ((1+0)/2)
  43. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(5) | SPI_CTAR_BR(0)) //(80 / 7) * ((1+0)/2) = 5.7 MHz
  44. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(2)) //(80 / 5) * ((1+0)/4)
  45. #elif F_BUS == 72000000
  46. #define HAS_SPIFIFO
  47. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(72 / 3) * ((1+1)/2)
  48. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(72 / 2) * ((1+1)/6) = 12 MHz
  49. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(72 / 2) * ((1+1)/6)
  50. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(4) | SPI_CTAR_DBR) //(72 / 3) * ((1+1)/6)
  51. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4)) //(72 / 2) * ((1+0)/6)
  52. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(4)) //(72 / 3) * ((1+0)/6)
  53. #elif F_BUS == 64000000
  54. #define HAS_SPIFIFO
  55. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(64 / 3) * ((1+1)/2) = 21.3 MHz
  56. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(64 / 2) * ((1+0)/2)
  57. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0)) //(64 / 3) * ((1+0)/2) = 10.67 MHz
  58. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2)) //(64 / 2) * ((1+0)/4)
  59. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(4)) //(64 / 2) * ((1+0)/6) = 5.3 MHz
  60. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(6)) //(64 / 2) * ((1+0)/8)
  61. #elif F_BUS == 60000000
  62. #define HAS_SPIFIFO
  63. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(60 / 3) * ((1+1)/2) = 20 MHz
  64. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(60 / 2) * ((1+0)/2) = 15 MHz
  65. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(60 / 5) * ((1+1)/2)
  66. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1)) //(60 / 2) * ((1+0)/4) = 7.5 MHz
  67. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0)) //(60 / 5) * ((1+0)/2)
  68. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(60 / 5) * ((1+1)/6)
  69. #elif F_BUS == 56000000
  70. #define HAS_SPIFIFO
  71. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(56 / 3) * ((1+1)/2) = 18.67
  72. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(56 / 2) * ((1+0)/2) = 14
  73. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(56 / 5) * ((1+1)/2) = 11.2
  74. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(56 / 7) * ((1+1)/2)
  75. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0)) //(56 / 5) * ((1+0)/2)
  76. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(0)) //(56 / 7) * ((1+0)/2)
  77. #elif F_BUS == 48000000
  78. #define HAS_SPIFIFO
  79. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(48 / 2) * ((1+1)/2)
  80. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(48 / 3) * ((1+1)/2)
  81. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(48 / 2) * ((1+0)/2)
  82. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(48 / 2) * ((1+1)/6)
  83. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1)) //(48 / 2) * ((1+0)/4)
  84. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2)) //(48 / 2) * ((1+0)/6)
  85. #elif F_BUS == 40000000
  86. #define HAS_SPIFIFO
  87. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 2) * ((1+1)/2) = 20
  88. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 3) * ((1+1)/2) = 13.33
  89. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(40 / 2) * ((1+0)/2) = 10
  90. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(40 / 5) * ((1+1)/2)
  91. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(3) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(40 / 7) * ((1+1)/2) = 5.71
  92. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(1)) //(40 / 5) * ((1+0)/2)
  93. #elif F_BUS == 36000000
  94. #define HAS_SPIFIFO
  95. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 2) * ((1+1)/2) = 18
  96. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 3) * ((1+1)/2) = 12
  97. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 3) * ((1+1)/2) = 12
  98. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(36 / 5) * ((1+1)/2) = 7.2
  99. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(36 / 2) * ((1+1)/6)
  100. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(36 / 3) * ((1+1)/6)
  101. #elif F_BUS == 24000000
  102. #define HAS_SPIFIFO
  103. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) 12 MHz
  104. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2) 12 MHz
  105. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/2)
  106. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(24 / 3) * ((1+1)/2)
  107. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0)) //(24 / 2) * ((1+0)/2)
  108. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(2) | SPI_CTAR_DBR) //(24 / 2) * ((1+1)/6)
  109. #elif F_BUS == 16000000
  110. #define HAS_SPIFIFO
  111. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  112. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  113. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  114. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  115. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  116. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_DBR) //(16 / 2) * ((1+1)/8) = 2 MHz
  117. #elif F_BUS == 8000000
  118. #define HAS_SPIFIFO
  119. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  120. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  121. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  122. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  123. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  124. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_DBR) //(8 / 2) * ((1+1)/4) = 2 MHz
  125. #elif F_BUS == 4000000
  126. #define HAS_SPIFIFO
  127. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  128. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  129. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  130. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  131. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  132. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 2 MHz
  133. #elif F_BUS == 2000000
  134. #define HAS_SPIFIFO
  135. #define SPI_CLOCK_24MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  136. #define SPI_CLOCK_16MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  137. #define SPI_CLOCK_12MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  138. #define SPI_CLOCK_8MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  139. #define SPI_CLOCK_6MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  140. #define SPI_CLOCK_4MHz (SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR) //(4 / 2) * ((1+1)/2) = 1 MHz
  141. #endif // F_BUS
  142. #endif // KINETISK
  143. /*
  144. #! /usr/bin/perl
  145. $clock = 60;
  146. for $i (2, 3, 5, 7) {
  147. for $j (0, 1) {
  148. for $k (2, 4, 6, 8, 16, 32) {
  149. $out = $clock / $i * (1 + $j) / $k;
  150. printf "%0.2f : ", $out;
  151. print "$clock / $i * (1 + $j) / $k = $out\n";
  152. }
  153. }
  154. }
  155. */
  156. // sck = F_BUS / PBR * ((1+DBR)/BR)
  157. // PBR = 2, 3, 5, 7
  158. // DBR = 0, 1 -- zero preferred
  159. // BR = 2, 4, 6, 8, 16, 32, 64, 128, 256, 512
  160. #ifdef HAS_SPIFIFO
  161. #ifndef SPI_MODE0
  162. #define SPI_MODE0 0x00 // CPOL = 0, CPHA = 0
  163. #define SPI_MODE1 0x04 // CPOL = 0, CPHA = 1
  164. #define SPI_MODE2 0x08 // CPOL = 1, CPHA = 0
  165. #define SPI_MODE3 0x0C // CPOL = 1, CPHA = 1
  166. #endif
  167. #define SPI_CONTINUE 1
  168. class SPIFIFOclass
  169. {
  170. public:
  171. inline void begin(uint8_t pin, uint32_t speed, uint32_t mode=SPI_MODE0) __attribute__((always_inline)) {
  172. uint32_t p, ctar = speed;
  173. SIM_SCGC6 |= SIM_SCGC6_SPI0;
  174. KINETISK_SPI0.MCR = SPI_MCR_MSTR | SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
  175. if (mode & 0x08) ctar |= SPI_CTAR_CPOL;
  176. if (mode & 0x04) {
  177. ctar |= SPI_CTAR_CPHA;
  178. ctar |= (ctar & 0x0F) << 8;
  179. } else {
  180. ctar |= (ctar & 0x0F) << 12;
  181. }
  182. KINETISK_SPI0.CTAR0 = ctar | SPI_CTAR_FMSZ(7);
  183. KINETISK_SPI0.CTAR1 = ctar | SPI_CTAR_FMSZ(15);
  184. if (pin == 10) { // PTC4
  185. CORE_PIN10_CONFIG = PORT_PCR_MUX(2);
  186. p = 0x01;
  187. } else if (pin == 2) { // PTD0
  188. CORE_PIN2_CONFIG = PORT_PCR_MUX(2);
  189. p = 0x01;
  190. } else if (pin == 9) { // PTC3
  191. CORE_PIN9_CONFIG = PORT_PCR_MUX(2);
  192. p = 0x02;
  193. } else if (pin == 6) { // PTD4
  194. CORE_PIN6_CONFIG = PORT_PCR_MUX(2);
  195. p = 0x02;
  196. } else if (pin == 20) { // PTD5
  197. CORE_PIN20_CONFIG = PORT_PCR_MUX(2);
  198. p = 0x04;
  199. } else if (pin == 23) { // PTC2
  200. CORE_PIN23_CONFIG = PORT_PCR_MUX(2);
  201. p = 0x04;
  202. } else if (pin == 21) { // PTD6
  203. CORE_PIN21_CONFIG = PORT_PCR_MUX(2);
  204. p = 0x08;
  205. } else if (pin == 22) { // PTC1
  206. CORE_PIN22_CONFIG = PORT_PCR_MUX(2);
  207. p = 0x08;
  208. } else if (pin == 15) { // PTC0
  209. CORE_PIN15_CONFIG = PORT_PCR_MUX(2);
  210. p = 0x10;
  211. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  212. } else if (pin == 26) {
  213. CORE_PIN26_CONFIG = PORT_PCR_MUX(2);
  214. p = 0x01;
  215. #endif
  216. } else {
  217. reg = portOutputRegister(pin);
  218. pinMode(pin, OUTPUT);
  219. *reg = 1;
  220. p = 0;
  221. }
  222. pcs = p;
  223. clear();
  224. SPCR.enable_pins();
  225. }
  226. inline void write(uint32_t b, uint32_t cont=0) __attribute__((always_inline)) {
  227. uint32_t pcsbits = pcs << 16;
  228. if (pcsbits) {
  229. KINETISK_SPI0.PUSHR = (b & 0xFF) | pcsbits | (cont ? SPI_PUSHR_CONT : 0);
  230. while (((KINETISK_SPI0.SR) & (15 << 12)) > (3 << 12)) ; // wait if FIFO full
  231. } else {
  232. *reg = 0;
  233. KINETISK_SPI0.SR = SPI_SR_EOQF;
  234. KINETISK_SPI0.PUSHR = (b & 0xFF) | (cont ? 0 : SPI_PUSHR_EOQ);
  235. if (cont) {
  236. while (((KINETISK_SPI0.SR) & (15 << 12)) > (3 << 12)) ;
  237. } else {
  238. while (!(KINETISK_SPI0.SR & SPI_SR_EOQF)) ;
  239. *reg = 1;
  240. }
  241. }
  242. }
  243. inline void write16(uint32_t b, uint32_t cont=0) __attribute__((always_inline)) {
  244. uint32_t pcsbits = pcs << 16;
  245. if (pcsbits) {
  246. KINETISK_SPI0.PUSHR = (b & 0xFFFF) | (pcs << 16) |
  247. (cont ? SPI_PUSHR_CONT : 0) | SPI_PUSHR_CTAS(1);
  248. while (((KINETISK_SPI0.SR) & (15 << 12)) > (3 << 12)) ;
  249. } else {
  250. *reg = 0;
  251. KINETISK_SPI0.SR = SPI_SR_EOQF;
  252. KINETISK_SPI0.PUSHR = (b & 0xFFFF) | (cont ? 0 : SPI_PUSHR_EOQ) | SPI_PUSHR_CTAS(1);
  253. if (cont) {
  254. while (((KINETISK_SPI0.SR) & (15 << 12)) > (3 << 12)) ;
  255. } else {
  256. while (!(KINETISK_SPI0.SR & SPI_SR_EOQF)) ;
  257. *reg = 1;
  258. }
  259. }
  260. }
  261. inline uint32_t read(void) __attribute__((always_inline)) {
  262. while ((KINETISK_SPI0.SR & (15 << 4)) == 0) ; // TODO, could wait forever
  263. return KINETISK_SPI0.POPR;
  264. }
  265. inline void clear(void) __attribute__((always_inline)) {
  266. KINETISK_SPI0.MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
  267. }
  268. private:
  269. static uint8_t pcs;
  270. static volatile uint8_t *reg;
  271. };
  272. extern SPIFIFOclass SPIFIFO;
  273. #endif // HAS_SPIFIFO
  274. #endif