Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
преди 10 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. #ifndef DMAChannel_h_
  2. #define DMAChannel_h_
  3. #include "kinetis.h"
  4. // This code is a work-in-progress. It's incomplete and not usable yet...
  5. //
  6. // http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3
  7. // known libraries with DMA usage (in need of porting to this new scheme):
  8. //
  9. // https://github.com/PaulStoffregen/Audio
  10. // https://github.com/PaulStoffregen/OctoWS2811
  11. // https://github.com/pedvide/ADC
  12. // https://github.com/duff2013/SerialEvent
  13. // https://github.com/pixelmatix/SmartMatrix
  14. // https://github.com/crteensy/DmaSpi
  15. #ifdef __cplusplus
  16. #define DMACHANNEL_HAS_BEGIN
  17. class DMABaseClass {
  18. public:
  19. typedef struct __attribute__((packed)) {
  20. volatile const void * volatile SADDR;
  21. int16_t SOFF;
  22. union { uint16_t ATTR;
  23. struct { uint8_t ATTR_DST; uint8_t ATTR_SRC; }; };
  24. union { uint32_t NBYTES; uint32_t NBYTES_MLNO;
  25. uint32_t NBYTES_MLOFFNO; uint32_t NBYTES_MLOFFYES; };
  26. int32_t SLAST;
  27. volatile void * volatile DADDR;
  28. int16_t DOFF;
  29. union { volatile uint16_t CITER;
  30. volatile uint16_t CITER_ELINKYES; volatile uint16_t CITER_ELINKNO; };
  31. int32_t DLASTSGA;
  32. volatile uint16_t CSR;
  33. union { volatile uint16_t BITER;
  34. volatile uint16_t BITER_ELINKYES; volatile uint16_t BITER_ELINKNO; };
  35. } TCD_t;
  36. TCD_t *TCD;
  37. /***************************************/
  38. /** Data Transfer **/
  39. /***************************************/
  40. // Use a single variable as the data source. Typically a register
  41. // for receiving data from one of the hardware peripherals is used.
  42. void source(volatile const signed char &p) { source(*(volatile const uint8_t *)&p); }
  43. void source(volatile const unsigned char &p) {
  44. TCD->SADDR = &p;
  45. TCD->SOFF = 0;
  46. TCD->ATTR_SRC = 0;
  47. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
  48. TCD->SLAST = 0;
  49. }
  50. void source(volatile const signed short &p) { source(*(volatile const uint16_t *)&p); }
  51. void source(volatile const unsigned short &p) {
  52. TCD->SADDR = &p;
  53. TCD->SOFF = 0;
  54. TCD->ATTR_SRC = 1;
  55. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
  56. TCD->SLAST = 0;
  57. }
  58. void source(volatile const signed int &p) { source(*(volatile const uint32_t *)&p); }
  59. void source(volatile const unsigned int &p) { source(*(volatile const uint32_t *)&p); }
  60. void source(volatile const signed long &p) { source(*(volatile const uint32_t *)&p); }
  61. void source(volatile const unsigned long &p) {
  62. TCD->SADDR = &p;
  63. TCD->SOFF = 0;
  64. TCD->ATTR_SRC = 2;
  65. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
  66. TCD->SLAST = 0;
  67. }
  68. // Use a buffer (array of data) as the data source. Typically a
  69. // buffer for transmitting data is used.
  70. void sourceBuffer(volatile const signed char p[], unsigned int len) {
  71. sourceBuffer((volatile const uint8_t *)p, len); }
  72. void sourceBuffer(volatile const unsigned char p[], unsigned int len) {
  73. TCD->SADDR = p;
  74. TCD->SOFF = 1;
  75. TCD->ATTR_SRC = 0;
  76. TCD->NBYTES = 1;
  77. TCD->SLAST = -len;
  78. TCD->BITER = len;
  79. TCD->CITER = len;
  80. }
  81. void sourceBuffer(volatile const signed short p[], unsigned int len) {
  82. sourceBuffer((volatile const uint16_t *)p, len); }
  83. void sourceBuffer(volatile const unsigned short p[], unsigned int len) {
  84. TCD->SADDR = p;
  85. TCD->SOFF = 2;
  86. TCD->ATTR_SRC = 1;
  87. TCD->NBYTES = 2;
  88. TCD->SLAST = -len;
  89. TCD->BITER = len / 2;
  90. TCD->CITER = len / 2;
  91. }
  92. void sourceBuffer(volatile const signed int p[], unsigned int len) {
  93. sourceBuffer((volatile const uint32_t *)p, len); }
  94. void sourceBuffer(volatile const unsigned int p[], unsigned int len) {
  95. sourceBuffer((volatile const uint32_t *)p, len); }
  96. void sourceBuffer(volatile const signed long p[], unsigned int len) {
  97. sourceBuffer((volatile const uint32_t *)p, len); }
  98. void sourceBuffer(volatile const unsigned long p[], unsigned int len) {
  99. TCD->SADDR = p;
  100. TCD->SOFF = 4;
  101. TCD->ATTR_SRC = 2;
  102. TCD->NBYTES = 4;
  103. TCD->SLAST = -len;
  104. TCD->BITER = len / 4;
  105. TCD->CITER = len / 4;
  106. }
  107. // Use a circular buffer as the data source
  108. void sourceCircular(volatile const signed char p[], unsigned int len) {
  109. sourceCircular((volatile const uint8_t *)p, len); }
  110. void sourceCircular(volatile const unsigned char p[], unsigned int len) {
  111. TCD->SADDR = p;
  112. TCD->SOFF = 1;
  113. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3);
  114. TCD->NBYTES = 1;
  115. TCD->SLAST = 0;
  116. TCD->BITER = len;
  117. TCD->CITER = len;
  118. }
  119. void sourceCircular(volatile const signed short p[], unsigned int len) {
  120. sourceCircular((volatile const uint16_t *)p, len); }
  121. void sourceCircular(volatile const unsigned short p[], unsigned int len) {
  122. TCD->SADDR = p;
  123. TCD->SOFF = 2;
  124. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1;
  125. TCD->NBYTES = 2;
  126. TCD->SLAST = 0;
  127. TCD->BITER = len / 2;
  128. TCD->CITER = len / 2;
  129. }
  130. void sourceCircular(volatile const signed int p[], unsigned int len) {
  131. sourceCircular((volatile const uint32_t *)p, len); }
  132. void sourceCircular(volatile const unsigned int p[], unsigned int len) {
  133. sourceCircular((volatile const uint32_t *)p, len); }
  134. void sourceCircular(volatile const signed long p[], unsigned int len) {
  135. sourceCircular((volatile const uint32_t *)p, len); }
  136. void sourceCircular(volatile const unsigned long p[], unsigned int len) {
  137. TCD->SADDR = p;
  138. TCD->SOFF = 4;
  139. TCD->ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2;
  140. TCD->NBYTES = 4;
  141. TCD->SLAST = 0;
  142. TCD->BITER = len / 4;
  143. TCD->CITER = len / 4;
  144. }
  145. // Use a single variable as the data destination. Typically a register
  146. // for transmitting data to one of the hardware peripherals is used.
  147. void destination(volatile signed char &p) { destination(*(volatile uint8_t *)&p); }
  148. void destination(volatile unsigned char &p) {
  149. TCD->DADDR = &p;
  150. TCD->DOFF = 0;
  151. TCD->ATTR_DST = 0;
  152. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 1;
  153. TCD->DLASTSGA = 0;
  154. }
  155. void destination(volatile signed short &p) { destination(*(volatile uint16_t *)&p); }
  156. void destination(volatile unsigned short &p) {
  157. TCD->DADDR = &p;
  158. TCD->DOFF = 0;
  159. TCD->ATTR_DST = 1;
  160. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 2;
  161. TCD->DLASTSGA = 0;
  162. }
  163. void destination(volatile signed int &p) { destination(*(volatile uint32_t *)&p); }
  164. void destination(volatile unsigned int &p) { destination(*(volatile uint32_t *)&p); }
  165. void destination(volatile signed long &p) { destination(*(volatile uint32_t *)&p); }
  166. void destination(volatile unsigned long &p) {
  167. TCD->DADDR = &p;
  168. TCD->DOFF = 0;
  169. TCD->ATTR_DST = 2;
  170. if ((uint32_t)&p < 0x40000000 || TCD->NBYTES == 0) TCD->NBYTES = 4;
  171. TCD->DLASTSGA = 0;
  172. }
  173. // Use a buffer (array of data) as the data destination. Typically a
  174. // buffer for receiving data is used.
  175. void destinationBuffer(volatile signed char p[], unsigned int len) {
  176. destinationBuffer((volatile uint8_t *)p, len); }
  177. void destinationBuffer(volatile unsigned char p[], unsigned int len) {
  178. TCD->DADDR = p;
  179. TCD->DOFF = 1;
  180. TCD->ATTR_DST = 0;
  181. TCD->NBYTES = 1;
  182. TCD->DLASTSGA = -len;
  183. TCD->BITER = len;
  184. TCD->CITER = len;
  185. }
  186. void destinationBuffer(volatile signed short p[], unsigned int len) {
  187. destinationBuffer((volatile uint16_t *)p, len); }
  188. void destinationBuffer(volatile unsigned short p[], unsigned int len) {
  189. TCD->DADDR = p;
  190. TCD->DOFF = 2;
  191. TCD->ATTR_DST = 1;
  192. TCD->NBYTES = 2;
  193. TCD->DLASTSGA = -len;
  194. TCD->BITER = len / 2;
  195. TCD->CITER = len / 2;
  196. }
  197. void destinationBuffer(volatile signed int p[], unsigned int len) {
  198. destinationBuffer((volatile uint32_t *)p, len); }
  199. void destinationBuffer(volatile unsigned int p[], unsigned int len) {
  200. destinationBuffer((volatile uint32_t *)p, len); }
  201. void destinationBuffer(volatile signed long p[], unsigned int len) {
  202. destinationBuffer((volatile uint32_t *)p, len); }
  203. void destinationBuffer(volatile unsigned long p[], unsigned int len) {
  204. TCD->DADDR = p;
  205. TCD->DOFF = 4;
  206. TCD->ATTR_DST = 2;
  207. TCD->NBYTES = 4;
  208. TCD->DLASTSGA = -len;
  209. TCD->BITER = len / 4;
  210. TCD->CITER = len / 4;
  211. }
  212. // Use a circular buffer as the data destination
  213. void destinationCircular(volatile signed char p[], unsigned int len) {
  214. destinationCircular((volatile uint8_t *)p, len); }
  215. void destinationCircular(volatile unsigned char p[], unsigned int len) {
  216. TCD->DADDR = p;
  217. TCD->DOFF = 1;
  218. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3);
  219. TCD->NBYTES = 1;
  220. TCD->DLASTSGA = 0;
  221. TCD->BITER = len;
  222. TCD->CITER = len;
  223. }
  224. void destinationCircular(volatile signed short p[], unsigned int len) {
  225. destinationCircular((volatile uint16_t *)p, len); }
  226. void destinationCircular(volatile unsigned short p[], unsigned int len) {
  227. TCD->DADDR = p;
  228. TCD->DOFF = 2;
  229. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1;
  230. TCD->NBYTES = 2;
  231. TCD->DLASTSGA = 0;
  232. TCD->BITER = len / 2;
  233. TCD->CITER = len / 2;
  234. }
  235. void destinationCircular(volatile signed int p[], unsigned int len) {
  236. destinationCircular((volatile uint32_t *)p, len); }
  237. void destinationCircular(volatile unsigned int p[], unsigned int len) {
  238. destinationCircular((volatile uint32_t *)p, len); }
  239. void destinationCircular(volatile signed long p[], unsigned int len) {
  240. destinationCircular((volatile uint32_t *)p, len); }
  241. void destinationCircular(volatile unsigned long p[], unsigned int len) {
  242. TCD->DADDR = p;
  243. TCD->DOFF = 4;
  244. TCD->ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2;
  245. TCD->NBYTES = 4;
  246. TCD->DLASTSGA = 0;
  247. TCD->BITER = len / 4;
  248. TCD->CITER = len / 4;
  249. }
  250. /*************************************************/
  251. /** Quantity of Data to Transfer **/
  252. /*************************************************/
  253. // Set the data size used for each triggered transfer
  254. void transferSize(unsigned int len) {
  255. if (len == 4) {
  256. TCD->NBYTES = 4;
  257. if (TCD->SOFF != 0) TCD->SOFF = 4;
  258. if (TCD->DOFF != 0) TCD->DOFF = 4;
  259. TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0202;
  260. } else if (len == 2) {
  261. TCD->NBYTES = 2;
  262. if (TCD->SOFF != 0) TCD->SOFF = 2;
  263. if (TCD->DOFF != 0) TCD->DOFF = 2;
  264. TCD->ATTR = (TCD->ATTR & 0xF8F8) | 0x0101;
  265. } else {
  266. TCD->NBYTES = 1;
  267. if (TCD->SOFF != 0) TCD->SOFF = 1;
  268. if (TCD->DOFF != 0) TCD->DOFF = 1;
  269. TCD->ATTR = TCD->ATTR & 0xF8F8;
  270. }
  271. }
  272. // Set the number of transfers (number of triggers until complete)
  273. void transferCount(unsigned int len) {
  274. if (len > 32767) return;
  275. if (len >= 512) {
  276. TCD->BITER = len;
  277. TCD->CITER = len;
  278. } else {
  279. TCD->BITER = (TCD->BITER & 0xFE00) | len;
  280. TCD->CITER = (TCD->CITER & 0xFE00) | len;
  281. }
  282. }
  283. /*************************************************/
  284. /** Special Options / Features **/
  285. /*************************************************/
  286. void interruptAtCompletion(void) {
  287. TCD->CSR |= DMA_TCD_CSR_INTMAJOR;
  288. }
  289. void interruptAtHalf(void) {
  290. TCD->CSR |= DMA_TCD_CSR_INTHALF;
  291. }
  292. void disableOnCompletion(void) {
  293. TCD->CSR |= DMA_TCD_CSR_DREQ;
  294. }
  295. void replaceSettingsOnCompletion(const DMABaseClass &settings) {
  296. TCD->DLASTSGA = (int32_t)(settings.TCD);
  297. TCD->CSR &= ~DMA_TCD_CSR_DONE;
  298. TCD->CSR |= DMA_TCD_CSR_ESG;
  299. }
  300. protected:
  301. // users should not be able to create instances of DMABaseClass, which
  302. // require the inheriting class to initialize the TCD pointer.
  303. DMABaseClass() {}
  304. static inline void copy_tcd(TCD_t *dst, const TCD_t *src) {
  305. const uint32_t *p = (const uint32_t *)src;
  306. uint32_t *q = (uint32_t *)dst;
  307. uint32_t t1, t2, t3, t4;
  308. t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
  309. *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
  310. t1 = *p++; t2 = *p++; t3 = *p++; t4 = *p++;
  311. *q++ = t1; *q++ = t2; *q++ = t3; *q++ = t4;
  312. }
  313. };
  314. // DMASetting represents settings stored only in memory, which can be
  315. // applied to any DMA channel.
  316. class DMASetting : public DMABaseClass {
  317. public:
  318. DMASetting() {
  319. TCD = &tcddata;
  320. }
  321. DMASetting(const DMASetting &c) {
  322. TCD = &tcddata;
  323. *this = c;
  324. }
  325. DMASetting(const DMABaseClass &c) {
  326. TCD = &tcddata;
  327. *this = c;
  328. }
  329. DMASetting & operator = (const DMABaseClass &rhs) {
  330. copy_tcd(TCD, rhs.TCD);
  331. return *this;
  332. }
  333. private:
  334. TCD_t tcddata __attribute__((aligned(32)));
  335. };
  336. // DMAChannel reprents an actual DMA channel and its current settings
  337. class DMAChannel : public DMABaseClass {
  338. public:
  339. /*************************************************/
  340. /** Channel Allocation **/
  341. /*************************************************/
  342. DMAChannel() {
  343. begin();
  344. }
  345. DMAChannel(const DMAChannel &c) {
  346. TCD = c.TCD;
  347. channel = c.channel;
  348. }
  349. DMAChannel(const DMASetting &c) {
  350. begin();
  351. copy_tcd(TCD, c.TCD);
  352. }
  353. DMAChannel & operator = (const DMAChannel &rhs) {
  354. if (channel != rhs.channel) {
  355. release();
  356. TCD = rhs.TCD;
  357. channel = rhs.channel;
  358. }
  359. return *this;
  360. }
  361. DMAChannel & operator = (const DMASetting &rhs) {
  362. copy_tcd(TCD, rhs.TCD);
  363. return *this;
  364. }
  365. ~DMAChannel() {
  366. release();
  367. }
  368. void begin(void);
  369. private:
  370. void release(void);
  371. public:
  372. /***************************************/
  373. /** Triggering **/
  374. /***************************************/
  375. // Triggers cause the DMA channel to actually move data. Each
  376. // trigger moves a single data unit, which is typically 8, 16 or
  377. // 32 bits. If a channel is configured for 200 transfers
  378. // Use a hardware trigger to make the DMA channel run
  379. void triggerAtHardwareEvent(uint8_t source) {
  380. volatile uint8_t *mux;
  381. mux = (volatile uint8_t *)&(DMAMUX0_CHCFG0) + channel;
  382. *mux = 0;
  383. *mux = (source & 63) | DMAMUX_ENABLE;
  384. }
  385. // Use another DMA channel as the trigger, causing this
  386. // channel to trigger after each transfer is makes, except
  387. // the its last transfer. This effectively makes the 2
  388. // channels run in parallel until the last transfer
  389. void triggerAtTransfersOf(DMABaseClass &ch) {
  390. ch.TCD->BITER = (ch.TCD->BITER & ~DMA_TCD_BITER_ELINKYES_LINKCH_MASK)
  391. | DMA_TCD_BITER_ELINKYES_LINKCH(channel) | DMA_TCD_BITER_ELINKYES_ELINK;
  392. ch.TCD->CITER = ch.TCD->BITER ;
  393. }
  394. // Use another DMA channel as the trigger, causing this
  395. // channel to trigger when the other channel completes.
  396. void triggerAtCompletionOf(DMABaseClass &ch) {
  397. ch.TCD->CSR = (ch.TCD->CSR & ~(DMA_TCD_CSR_MAJORLINKCH_MASK|DMA_TCD_CSR_DONE))
  398. | DMA_TCD_CSR_MAJORLINKCH(channel) | DMA_TCD_CSR_MAJORELINK;
  399. }
  400. // Cause this DMA channel to be continuously triggered, so
  401. // it will move data as rapidly as possible, without waiting.
  402. // Normally this would be used with disableOnCompletion().
  403. void triggerContinuously(void) {
  404. volatile uint8_t *mux = (volatile uint8_t *)&DMAMUX0_CHCFG0;
  405. mux[channel] = 0;
  406. #if DMAMUX_NUM_SOURCE_ALWAYS >= DMA_NUM_CHANNELS
  407. mux[channel] = DMAMUX_SOURCE_ALWAYS0 + channel;
  408. #else
  409. // search for an unused "always on" source
  410. unsigned int i = DMAMUX_SOURCE_ALWAYS0;
  411. for (i = DMAMUX_SOURCE_ALWAYS0;
  412. i < DMAMUX_SOURCE_ALWAYS0 + DMAMUX_NUM_SOURCE_ALWAYS; i++) {
  413. unsigned int ch;
  414. for (ch=0; ch < DMA_NUM_CHANNELS; ch++) {
  415. if (mux[ch] == i) break;
  416. }
  417. if (ch >= DMA_NUM_CHANNELS) {
  418. mux[channel] = (i | DMAMUX_ENABLE);
  419. return;
  420. }
  421. }
  422. #endif
  423. }
  424. // Manually trigger the DMA channel.
  425. void triggerManual(void) {
  426. DMA_SSRT = channel;
  427. }
  428. /***************************************/
  429. /** Interrupts **/
  430. /***************************************/
  431. // An interrupt routine can be run when the DMA channel completes
  432. // the entire transfer, and also optionally when half of the
  433. // transfer is completed.
  434. void attachInterrupt(void (*isr)(void)) {
  435. _VectorsRam[channel + IRQ_DMA_CH0 + 16] = isr;
  436. NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel);
  437. }
  438. void detachInterrupt(void) {
  439. NVIC_DISABLE_IRQ(IRQ_DMA_CH0 + channel);
  440. }
  441. void clearInterrupt(void) {
  442. DMA_CINT = channel;
  443. }
  444. /***************************************/
  445. /** Enable / Disable **/
  446. /***************************************/
  447. void enable(void) {
  448. DMA_SERQ = channel;
  449. }
  450. void disable(void) {
  451. DMA_CERQ = channel;
  452. }
  453. /***************************************/
  454. /** Status **/
  455. /***************************************/
  456. bool complete(void) {
  457. if (TCD->CSR & DMA_TCD_CSR_DONE) return true;
  458. return false;
  459. }
  460. void clearComplete(void) {
  461. DMA_CDNE = channel;
  462. }
  463. bool error(void) {
  464. if (DMA_ERR & (1<<channel)) return true;
  465. return false;
  466. }
  467. void clearError(void) {
  468. DMA_CERR = channel;
  469. }
  470. void * sourceAddress(void) {
  471. return (void *)(TCD->SADDR);
  472. }
  473. void * destinationAddress(void) {
  474. return (void *)(TCD->DADDR);
  475. }
  476. /***************************************/
  477. /** Direct Hardware Access **/
  478. /***************************************/
  479. // For complex and unusual configurations not possible with the above
  480. // functions, the Transfer Control Descriptor (TCD) and channel number
  481. // can be used directly. This leads to less portable and less readable
  482. // code, but direct control of all parameters is possible.
  483. uint8_t channel;
  484. // TCD is accessible due to inheritance from DMABaseClass
  485. /* usage cases:
  486. ************************
  487. OctoWS2811:
  488. ************************
  489. // enable clocks to the DMA controller and DMAMUX
  490. SIM_SCGC7 |= SIM_SCGC7_DMA;
  491. SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
  492. DMA_CR = 0;
  493. DMA_CERQ = 1;
  494. DMA_CERQ = 2;
  495. DMA_CERQ = 3;
  496. // DMA channel #1 sets WS2811 high at the beginning of each cycle
  497. DMA_TCD1_SADDR = &ones;
  498. DMA_TCD1_SOFF = 0;
  499. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  500. DMA_TCD1_NBYTES_MLNO = 1;
  501. DMA_TCD1_SLAST = 0;
  502. DMA_TCD1_DADDR = &GPIOD_PSOR;
  503. DMA_TCD1_DOFF = 0;
  504. DMA_TCD1_CITER_ELINKNO = bufsize;
  505. DMA_TCD1_DLASTSGA = 0;
  506. DMA_TCD1_CSR = DMA_TCD_CSR_DREQ;
  507. DMA_TCD1_BITER_ELINKNO = bufsize;
  508. dma1.source(ones);
  509. dma1.destination(GPIOD_PSOR);
  510. dma1.size(1);
  511. dma1.count(bufsize);
  512. dma1.disableOnCompletion();
  513. // DMA channel #2 writes the pixel data at 20% of the cycle
  514. DMA_TCD2_SADDR = frameBuffer;
  515. DMA_TCD2_SOFF = 1;
  516. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  517. DMA_TCD2_NBYTES_MLNO = 1;
  518. DMA_TCD2_SLAST = -bufsize;
  519. DMA_TCD2_DADDR = &GPIOD_PDOR;
  520. DMA_TCD2_DOFF = 0;
  521. DMA_TCD2_CITER_ELINKNO = bufsize;
  522. DMA_TCD2_DLASTSGA = 0;
  523. DMA_TCD2_CSR = DMA_TCD_CSR_DREQ;
  524. DMA_TCD2_BITER_ELINKNO = bufsize;
  525. dma2.source(frameBuffer, sizeof(frameBuffer));
  526. dma2.destination(GPIOD_PDOR);
  527. dma2.size(1);
  528. dma2.count(bufsize);
  529. dma2.disableOnCompletion();
  530. // DMA channel #3 clear all the pins low at 48% of the cycle
  531. DMA_TCD3_SADDR = &ones;
  532. DMA_TCD3_SOFF = 0;
  533. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  534. DMA_TCD3_NBYTES_MLNO = 1;
  535. DMA_TCD3_SLAST = 0;
  536. DMA_TCD3_DADDR = &GPIOD_PCOR;
  537. DMA_TCD3_DOFF = 0;
  538. DMA_TCD3_CITER_ELINKNO = bufsize;
  539. DMA_TCD3_DLASTSGA = 0;
  540. DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR;
  541. DMA_TCD3_BITER_ELINKNO = bufsize;
  542. dma3.source(ones);
  543. dma3.destination(GPIOD_PCOR);
  544. dma3.size(1);
  545. dma3.count(bufsize);
  546. dma3.disableOnCompletion();
  547. ************************
  548. Audio, DAC
  549. ************************
  550. DMA_CR = 0;
  551. DMA_TCD4_SADDR = dac_buffer;
  552. DMA_TCD4_SOFF = 2;
  553. DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  554. DMA_TCD4_NBYTES_MLNO = 2;
  555. DMA_TCD4_SLAST = -sizeof(dac_buffer);
  556. DMA_TCD4_DADDR = &DAC0_DAT0L;
  557. DMA_TCD4_DOFF = 0;
  558. DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2;
  559. DMA_TCD4_DLASTSGA = 0;
  560. DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2;
  561. DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  562. DMAMUX0_CHCFG4 = DMAMUX_DISABLE;
  563. DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE;
  564. ************************
  565. Audio, I2S
  566. ************************
  567. DMA_CR = 0;
  568. DMA_TCD0_SADDR = i2s_tx_buffer;
  569. DMA_TCD0_SOFF = 2;
  570. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  571. DMA_TCD0_NBYTES_MLNO = 2;
  572. DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer);
  573. DMA_TCD0_DADDR = &I2S0_TDR0;
  574. DMA_TCD0_DOFF = 0;
  575. DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  576. DMA_TCD0_DLASTSGA = 0;
  577. DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
  578. DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
  579. DMAMUX0_CHCFG0 = DMAMUX_DISABLE;
  580. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE;
  581. ************************
  582. ADC lib, Pedro Villanueva
  583. ************************
  584. DMA_CR = 0; // normal mode of operation
  585. *DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing
  586. *DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  587. DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) |
  588. DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values
  589. *DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop)
  590. *DMA_TCD_SADDR = ADC_RA; // source address
  591. *DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes
  592. *DMA_TCD_SLAST = 0; // don't change src address after major loop completes
  593. *DMA_TCD_DADDR = elems; // destination address
  594. *DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop
  595. *DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element
  596. *DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled
  597. *DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled
  598. *DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete
  599. DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request
  600. DMA_CINT = DMA_channel; // clear interrupts
  601. uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0;
  602. if(ADC_number==1){
  603. DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1;
  604. }
  605. *DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0
  606. DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request
  607. NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts
  608. ************************
  609. SmartMatrix
  610. ************************
  611. // enable minor loop mapping so addresses can get reset after minor loops
  612. DMA_CR = 1 << 7;
  613. // DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO
  614. // using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins
  615. // address temporary buffer is refreshed before each DMA trigger (by DMA channel #2)
  616. // only use single major loop, never disable channel
  617. #define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2
  618. DMA_TCD0_SADDR = &gpiosync.gpio_pcor;
  619. DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  620. DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  621. DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
  622. // Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete
  623. // Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop
  624. DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE |
  625. ((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) |
  626. (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor));
  627. // start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset)
  628. DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER;
  629. // update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER
  630. DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER;
  631. DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER));
  632. // single major loop
  633. DMA_TCD0_CITER_ELINKNO = 1;
  634. DMA_TCD0_BITER_ELINKNO = 1;
  635. // link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete
  636. DMA_TCD0_CSR = (1 << 8) | (1 << 5);
  637. DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE;
  638. // DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle
  639. // only use single major loop, never disable channel
  640. DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues;
  641. DMA_TCD1_SOFF = sizeof(uint16_t);
  642. DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  643. DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  644. // 16-bit = 2 bytes transferred
  645. // transfer two 16-bit values, reset destination address back after each minor loop
  646. DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  647. // start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset)
  648. DMA_TCD1_DADDR = &gpiosync.gpio_pcor;
  649. DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor;
  650. DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor));
  651. // no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete
  652. DMA_TCD1_CITER_ELINKNO = 1;
  653. DMA_TCD1_BITER_ELINKNO = 1;
  654. DMA_TCD1_CSR = 0;
  655. // DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block
  656. // only use single major loop, never disable channel
  657. // link to channel 3 when complete
  658. #define TIMER_REGISTERS_TO_UPDATE 2
  659. DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe;
  660. DMA_TCD2_SOFF = sizeof(uint16_t);
  661. DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t));
  662. DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
  663. // 16-bit = 2 bytes transferred
  664. DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t);
  665. DMA_TCD2_DADDR = &FTM1_C1V;
  666. DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V;
  667. DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD);
  668. // no minor loop linking, single major loop
  669. DMA_TCD2_CITER_ELINKNO = 1;
  670. DMA_TCD2_BITER_ELINKNO = 1;
  671. // link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete
  672. DMA_TCD2_CSR = (3 << 8) | (1 << 5);
  673. DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE;
  674. #define DMA_TCD_MLOFF_MASK (0x3FFFFC00)
  675. // DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete
  676. DMA_TCD3_SADDR = matrixUpdateData[0][0];
  677. DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2;
  678. // SADDR will get updated by ISR, no need to set SLAST
  679. DMA_TCD3_SLAST = 0;
  680. DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0);
  681. // after each minor loop, set source to point back to the beginning of this set of data,
  682. // but advance by 1 byte to get the next significant bits data
  683. DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE |
  684. (((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) |
  685. (MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK);
  686. DMA_TCD3_DADDR = &GPIOD_PDOR;
  687. DMA_TCD3_DOFF = 0;
  688. DMA_TCD3_DLASTSGA = 0;
  689. DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW;
  690. DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW;
  691. // int after major loop is complete
  692. DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR;
  693. // for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer)
  694. //DMA_TCD3_CSR |= (0x02 << 14);
  695. // enable a done interrupt when all DMA operations are complete
  696. NVIC_ENABLE_IRQ(IRQ_DMA_CH3);
  697. // enable additional dma interrupt used as software interrupt
  698. NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority
  699. NVIC_ENABLE_IRQ(IRQ_DMA_CH1);
  700. // enable channels 0, 1, 2, 3
  701. DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3);
  702. // at the end after everything is set up: enable timer from system clock, with appropriate prescale
  703. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE);
  704. */
  705. };
  706. // arrange the relative priority of 2 or more DMA channels
  707. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2);
  708. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3);
  709. void DMAPriorityOrder(DMAChannel &ch1, DMAChannel &ch2, DMAChannel &ch3, DMAChannel &ch4);
  710. extern "C" {
  711. #endif
  712. extern uint16_t dma_channel_allocated_mask;
  713. #ifdef __cplusplus
  714. }
  715. #endif
  716. #endif