Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2017 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #ifndef SERIAL2_TX_BUFFER_SIZE
  37. #define SERIAL2_TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer
  38. #endif
  39. #ifndef SERIAL2_RX_BUFFER_SIZE
  40. #define SERIAL2_RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  41. #endif
  42. #define RTS_HIGH_WATERMARK (SERIAL2_RX_BUFFER_SIZE-24) // RTS requests sender to pause
  43. #define RTS_LOW_WATERMARK (SERIAL2_RX_BUFFER_SIZE-38) // RTS allows sender to resume
  44. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  45. ////////////////////////////////////////////////////////////////
  46. // changes not recommended below this point....
  47. ////////////////////////////////////////////////////////////////
  48. #ifdef SERIAL_9BIT_SUPPORT
  49. static uint8_t use9Bits = 0;
  50. #define BUFTYPE uint16_t
  51. #else
  52. #define BUFTYPE uint8_t
  53. #define use9Bits 0
  54. #endif
  55. static volatile BUFTYPE tx_buffer[SERIAL2_TX_BUFFER_SIZE];
  56. static volatile BUFTYPE rx_buffer[SERIAL2_RX_BUFFER_SIZE];
  57. static volatile uint8_t transmitting = 0;
  58. #if defined(KINETISK)
  59. static volatile uint8_t *transmit_pin=NULL;
  60. #define transmit_assert() *transmit_pin = 1
  61. #define transmit_deassert() *transmit_pin = 0
  62. static volatile uint8_t *rts_pin=NULL;
  63. #define rts_assert() *rts_pin = 0
  64. #define rts_deassert() *rts_pin = 1
  65. #elif defined(KINETISL)
  66. static volatile uint8_t *transmit_pin=NULL;
  67. static uint8_t transmit_mask=0;
  68. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  69. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  70. static volatile uint8_t *rts_pin=NULL;
  71. static uint8_t rts_mask=0;
  72. #define rts_assert() *(rts_pin+8) = rts_mask;
  73. #define rts_deassert() *(rts_pin+4) = rts_mask;
  74. #endif
  75. #if SERIAL2_TX_BUFFER_SIZE > 65535
  76. static volatile uint32_t tx_buffer_head = 0;
  77. static volatile uint32_t tx_buffer_tail = 0;
  78. #elif SERIAL2_TX_BUFFER_SIZE > 255
  79. static volatile uint16_t tx_buffer_head = 0;
  80. static volatile uint16_t tx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t tx_buffer_head = 0;
  83. static volatile uint8_t tx_buffer_tail = 0;
  84. #endif
  85. #if SERIAL2_RX_BUFFER_SIZE > 65535
  86. static volatile uint32_t rx_buffer_head = 0;
  87. static volatile uint32_t rx_buffer_tail = 0;
  88. #elif SERIAL2_RX_BUFFER_SIZE > 255
  89. static volatile uint16_t rx_buffer_head = 0;
  90. static volatile uint16_t rx_buffer_tail = 0;
  91. #else
  92. static volatile uint8_t rx_buffer_head = 0;
  93. static volatile uint8_t rx_buffer_tail = 0;
  94. #endif
  95. #if defined(KINETISK)
  96. static uint8_t rx_pin_num = 9;
  97. static uint8_t tx_pin_num = 10;
  98. #endif
  99. #if defined(KINETISL)
  100. static uint8_t half_duplex_mode = 0;
  101. #endif
  102. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  103. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  104. #ifdef HAS_KINETISK_UART1_FIFO
  105. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  106. #else
  107. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  108. #endif
  109. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  110. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  111. #define C2_TX_INACTIVE C2_ENABLE
  112. // BITBAND Support
  113. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  114. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  115. #define C3_TXDIR_BIT 5
  116. void serial2_begin(uint32_t divisor)
  117. {
  118. SIM_SCGC4 |= SIM_SCGC4_UART1; // turn on clock, TODO: use bitband
  119. rx_buffer_head = 0;
  120. rx_buffer_tail = 0;
  121. tx_buffer_head = 0;
  122. tx_buffer_tail = 0;
  123. transmitting = 0;
  124. #if defined(KINETISK)
  125. switch (rx_pin_num) {
  126. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  127. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  128. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  129. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  130. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  131. #endif
  132. }
  133. switch (tx_pin_num) {
  134. case 10: CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  135. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  136. case 31: CORE_PIN31_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  137. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5 or T3.6
  138. case 58: CORE_PIN58_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  139. #endif
  140. }
  141. #elif defined(KINETISL)
  142. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  143. CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
  144. #endif
  145. #if defined(HAS_KINETISK_UART1)
  146. if (divisor < 32) divisor = 32;
  147. UART1_BDH = (divisor >> 13) & 0x1F;
  148. UART1_BDL = (divisor >> 5) & 0xFF;
  149. UART1_C4 = divisor & 0x1F;
  150. #ifdef HAS_KINETISK_UART1_FIFO
  151. UART1_C1 = UART_C1_ILT;
  152. UART1_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  153. UART1_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  154. UART1_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  155. #else
  156. UART1_C1 = 0;
  157. UART1_PFIFO = 0;
  158. #endif
  159. #elif defined(HAS_KINETISL_UART1)
  160. if (divisor < 1) divisor = 1;
  161. UART1_BDH = (divisor >> 8) & 0x1F;
  162. UART1_BDL = divisor & 0xFF;
  163. UART1_C1 = 0;
  164. #endif
  165. UART1_C2 = C2_TX_INACTIVE;
  166. NVIC_SET_PRIORITY(IRQ_UART1_STATUS, IRQ_PRIORITY);
  167. NVIC_ENABLE_IRQ(IRQ_UART1_STATUS);
  168. }
  169. void serial2_format(uint32_t format)
  170. {
  171. uint8_t c;
  172. c = UART1_C1;
  173. c = (c & ~0x13) | (format & 0x03); // configure parity
  174. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  175. UART1_C1 = c;
  176. if ((format & 0x0F) == 0x04) UART1_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  177. c = UART1_S2 & ~0x10;
  178. if (format & 0x10) c |= 0x10; // rx invert
  179. UART1_S2 = c;
  180. c = UART1_C3 & ~0x10;
  181. if (format & 0x20) c |= 0x10; // tx invert
  182. UART1_C3 = c;
  183. #if defined(SERIAL_9BIT_SUPPORT) && !defined(KINETISL)
  184. c = UART1_C4 & 0x1F;
  185. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  186. UART1_C4 = c;
  187. use9Bits = format & 0x80;
  188. #endif
  189. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(KINETISL)
  190. // For T3.5/T3.6/TLC See about turning on 2 stop bit mode
  191. if ( format & 0x100) {
  192. uint8_t bdl = UART1_BDL;
  193. UART1_BDH |= UART_BDH_SBNS; // Turn on 2 stop bits - was turned off by set baud
  194. UART1_BDL = bdl; // Says BDH not acted on until BDL is written
  195. }
  196. #endif
  197. // process request for half duplex.
  198. if ((format & SERIAL_HALF_DUPLEX) != 0) {
  199. c = UART1_C1;
  200. c |= UART_C1_LOOPS | UART_C1_RSRC;
  201. UART1_C1 = c;
  202. // Lets try to make use of bitband address to set the direction for ue...
  203. #if defined(KINETISL)
  204. //CORE_PIN10_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  205. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
  206. half_duplex_mode = 1;
  207. #else
  208. volatile uint32_t *reg = portConfigRegister(tx_pin_num);
  209. *reg = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3) | PORT_PCR_PE | PORT_PCR_PS; // pullup on output pin;
  210. transmit_pin = (uint8_t*)GPIO_BITBAND_PTR(UART1_C3, C3_TXDIR_BIT);
  211. #endif
  212. } else {
  213. #if defined(KINETISL)
  214. half_duplex_mode = 0;
  215. #else
  216. if (transmit_pin == (uint8_t*)GPIO_BITBAND_PTR(UART1_C3, C3_TXDIR_BIT)) transmit_pin = NULL;
  217. #endif
  218. }
  219. }
  220. void serial2_end(void)
  221. {
  222. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  223. while (transmitting) yield(); // wait for buffered data to send
  224. NVIC_DISABLE_IRQ(IRQ_UART1_STATUS);
  225. UART1_C2 = 0;
  226. #if defined(KINETISK)
  227. switch (rx_pin_num) {
  228. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC3
  229. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  230. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE1
  231. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  232. case 59: CORE_PIN59_CONFIG = 0; break;
  233. #endif
  234. }
  235. switch (tx_pin_num & 127) {
  236. case 10: CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTC4
  237. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  238. case 31: CORE_PIN31_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); break; // PTE0
  239. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  240. case 58: CORE_PIN58_CONFIG = 0; break;
  241. #endif
  242. }
  243. #elif defined(KINETISL)
  244. CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC3
  245. CORE_PIN10_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); // PTC4
  246. #endif
  247. UART1_S1;
  248. UART1_D; // clear leftover error status
  249. rx_buffer_head = 0;
  250. rx_buffer_tail = 0;
  251. if (rts_pin) rts_deassert();
  252. }
  253. void serial2_set_transmit_pin(uint8_t pin)
  254. {
  255. while (transmitting) ;
  256. pinMode(pin, OUTPUT);
  257. digitalWrite(pin, LOW);
  258. transmit_pin = portOutputRegister(pin);
  259. #if defined(KINETISL)
  260. transmit_mask = digitalPinToBitMask(pin);
  261. #endif
  262. }
  263. void serial2_set_tx(uint8_t pin, uint8_t opendrain)
  264. {
  265. #if defined(KINETISK)
  266. uint32_t cfg;
  267. if (opendrain) pin |= 128;
  268. if (pin == tx_pin_num) return;
  269. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  270. switch (tx_pin_num & 127) {
  271. case 10: CORE_PIN10_CONFIG = 0; break; // PTC4
  272. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  273. case 31: CORE_PIN31_CONFIG = 0; break; // PTE0
  274. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  275. case 58: CORE_PIN58_CONFIG = 0; break;
  276. #endif
  277. }
  278. if (opendrain) {
  279. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  280. } else {
  281. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  282. }
  283. switch (pin & 127) {
  284. case 10: CORE_PIN10_CONFIG = cfg | PORT_PCR_MUX(3); break;
  285. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  286. case 31: CORE_PIN31_CONFIG = cfg | PORT_PCR_MUX(3); break;
  287. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  288. case 58: CORE_PIN58_CONFIG = cfg | PORT_PCR_MUX(3); break;
  289. #endif
  290. }
  291. }
  292. tx_pin_num = pin;
  293. #endif
  294. }
  295. void serial2_set_rx(uint8_t pin)
  296. {
  297. #if defined(KINETISK)
  298. if (pin == rx_pin_num) return;
  299. if ((SIM_SCGC4 & SIM_SCGC4_UART1)) {
  300. switch (rx_pin_num) {
  301. case 9: CORE_PIN9_CONFIG = 0; break; // PTC3
  302. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  303. case 26: CORE_PIN26_CONFIG = 0; break; // PTE1
  304. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  305. case 59: CORE_PIN59_CONFIG = 0; break;
  306. #endif
  307. }
  308. switch (pin) {
  309. case 9: CORE_PIN9_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  310. #if defined(__MK20DX128__) || defined(__MK20DX256__) // T3.0, T3.1, T3.2
  311. case 26: CORE_PIN26_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  312. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // T3.5, T3.6
  313. case 59: CORE_PIN59_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  314. #endif
  315. }
  316. }
  317. rx_pin_num = pin;
  318. #endif
  319. }
  320. int serial2_set_rts(uint8_t pin)
  321. {
  322. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  323. if (pin < CORE_NUM_DIGITAL) {
  324. rts_pin = portOutputRegister(pin);
  325. #if defined(KINETISL)
  326. rts_mask = digitalPinToBitMask(pin);
  327. #endif
  328. pinMode(pin, OUTPUT);
  329. rts_assert();
  330. } else {
  331. rts_pin = NULL;
  332. return 0;
  333. }
  334. /*
  335. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  336. if (pin == 22) {
  337. CORE_PIN22_CONFIG = PORT_PCR_MUX(3);
  338. } else {
  339. UART1_MODEM &= ~UART_MODEM_RXRTSE;
  340. return 0;
  341. }
  342. UART1_MODEM |= UART_MODEM_RXRTSE;
  343. */
  344. return 1;
  345. }
  346. int serial2_set_cts(uint8_t pin)
  347. {
  348. #if defined(KINETISK)
  349. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return 0;
  350. if (pin == 23) {
  351. CORE_PIN23_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  352. #if defined(__MK64FX512__) || defined(__MK66FX1M0__) // on T3.5 or T3.6
  353. } else if (pin == 60) {
  354. CORE_PIN60_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  355. #endif
  356. } else {
  357. UART1_MODEM &= ~UART_MODEM_TXCTSE;
  358. return 0;
  359. }
  360. UART1_MODEM |= UART_MODEM_TXCTSE;
  361. return 1;
  362. #else
  363. return 0;
  364. #endif
  365. }
  366. void serial2_putchar(uint32_t c)
  367. {
  368. uint32_t head, n;
  369. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  370. if (transmit_pin) transmit_assert();
  371. #if defined(KINETISL)
  372. if (half_duplex_mode) {
  373. __disable_irq();
  374. volatile uint32_t reg = UART1_C3;
  375. reg |= UART_C3_TXDIR;
  376. UART1_C3 = reg;
  377. __enable_irq();
  378. }
  379. #endif
  380. head = tx_buffer_head;
  381. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  382. while (tx_buffer_tail == head) {
  383. int priority = nvic_execution_priority();
  384. if (priority <= IRQ_PRIORITY) {
  385. if ((UART1_S1 & UART_S1_TDRE)) {
  386. uint32_t tail = tx_buffer_tail;
  387. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  388. n = tx_buffer[tail];
  389. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  390. UART1_D = n;
  391. tx_buffer_tail = tail;
  392. }
  393. } else if (priority >= 256) {
  394. yield(); // wait
  395. }
  396. }
  397. tx_buffer[head] = c;
  398. transmitting = 1;
  399. tx_buffer_head = head;
  400. UART1_C2 = C2_TX_ACTIVE;
  401. }
  402. #ifdef HAS_KINETISK_UART1_FIFO
  403. void serial2_write(const void *buf, unsigned int count)
  404. {
  405. const uint8_t *p = (const uint8_t *)buf;
  406. const uint8_t *end = p + count;
  407. uint32_t head, n;
  408. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  409. if (transmit_pin) transmit_assert();
  410. while (p < end) {
  411. head = tx_buffer_head;
  412. if (++head >= SERIAL2_TX_BUFFER_SIZE) head = 0;
  413. if (tx_buffer_tail == head) {
  414. UART1_C2 = C2_TX_ACTIVE;
  415. do {
  416. int priority = nvic_execution_priority();
  417. if (priority <= IRQ_PRIORITY) {
  418. if ((UART1_S1 & UART_S1_TDRE)) {
  419. uint32_t tail = tx_buffer_tail;
  420. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  421. n = tx_buffer[tail];
  422. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  423. UART1_D = n;
  424. tx_buffer_tail = tail;
  425. }
  426. } else if (priority >= 256) {
  427. yield();
  428. }
  429. } while (tx_buffer_tail == head);
  430. }
  431. tx_buffer[head] = *p++;
  432. transmitting = 1;
  433. tx_buffer_head = head;
  434. }
  435. UART1_C2 = C2_TX_ACTIVE;
  436. }
  437. #else
  438. void serial2_write(const void *buf, unsigned int count)
  439. {
  440. const uint8_t *p = (const uint8_t *)buf;
  441. while (count-- > 0) serial2_putchar(*p++);
  442. }
  443. #endif
  444. void serial2_flush(void)
  445. {
  446. while (transmitting) yield(); // wait
  447. }
  448. int serial2_write_buffer_free(void)
  449. {
  450. uint32_t head, tail;
  451. head = tx_buffer_head;
  452. tail = tx_buffer_tail;
  453. if (head >= tail) return SERIAL2_TX_BUFFER_SIZE - 1 - head + tail;
  454. return tail - head - 1;
  455. }
  456. int serial2_available(void)
  457. {
  458. uint32_t head, tail;
  459. head = rx_buffer_head;
  460. tail = rx_buffer_tail;
  461. if (head >= tail) return head - tail;
  462. return SERIAL2_RX_BUFFER_SIZE + head - tail;
  463. }
  464. int serial2_getchar(void)
  465. {
  466. uint32_t head, tail;
  467. int c;
  468. head = rx_buffer_head;
  469. tail = rx_buffer_tail;
  470. if (head == tail) return -1;
  471. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  472. c = rx_buffer[tail];
  473. rx_buffer_tail = tail;
  474. if (rts_pin) {
  475. int avail;
  476. if (head >= tail) avail = head - tail;
  477. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  478. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  479. }
  480. return c;
  481. }
  482. int serial2_peek(void)
  483. {
  484. uint32_t head, tail;
  485. head = rx_buffer_head;
  486. tail = rx_buffer_tail;
  487. if (head == tail) return -1;
  488. if (++tail >= SERIAL2_RX_BUFFER_SIZE) tail = 0;
  489. return rx_buffer[tail];
  490. }
  491. void serial2_clear(void)
  492. {
  493. #ifdef HAS_KINETISK_UART1_FIFO
  494. if (!(SIM_SCGC4 & SIM_SCGC4_UART1)) return;
  495. UART1_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  496. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  497. UART1_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  498. #endif
  499. rx_buffer_head = rx_buffer_tail;
  500. if (rts_pin) rts_assert();
  501. }
  502. // status interrupt combines
  503. // Transmit data below watermark UART_S1_TDRE
  504. // Transmit complete UART_S1_TC
  505. // Idle line UART_S1_IDLE
  506. // Receive data above watermark UART_S1_RDRF
  507. // LIN break detect UART_S2_LBKDIF
  508. // RxD pin active edge UART_S2_RXEDGIF
  509. void uart1_status_isr(void)
  510. {
  511. uint32_t head, tail, n;
  512. uint8_t c;
  513. #ifdef HAS_KINETISK_UART1_FIFO
  514. uint32_t newhead;
  515. uint8_t avail;
  516. if (UART1_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  517. __disable_irq();
  518. avail = UART1_RCFIFO;
  519. if (avail == 0) {
  520. // The only way to clear the IDLE interrupt flag is
  521. // to read the data register. But reading with no
  522. // data causes a FIFO underrun, which causes the
  523. // FIFO to return corrupted data. If anyone from
  524. // Freescale reads this, what a poor design! There
  525. // write should be a write-1-to-clear for IDLE.
  526. c = UART1_D;
  527. // flushing the fifo recovers from the underrun,
  528. // but there's a possible race condition where a
  529. // new character could be received between reading
  530. // RCFIFO == 0 and flushing the FIFO. To minimize
  531. // the chance, interrupts are disabled so a higher
  532. // priority interrupt (hopefully) doesn't delay.
  533. // TODO: change this to disabling the IDLE interrupt
  534. // which won't be simple, since we already manage
  535. // which transmit interrupts are enabled.
  536. UART1_CFIFO = UART_CFIFO_RXFLUSH;
  537. __enable_irq();
  538. } else {
  539. __enable_irq();
  540. head = rx_buffer_head;
  541. tail = rx_buffer_tail;
  542. do {
  543. if (use9Bits && (UART1_C3 & 0x80)) {
  544. n = UART1_D | 0x100;
  545. } else {
  546. n = UART1_D;
  547. }
  548. newhead = head + 1;
  549. if (newhead >= SERIAL2_RX_BUFFER_SIZE) newhead = 0;
  550. if (newhead != tail) {
  551. head = newhead;
  552. rx_buffer[head] = n;
  553. }
  554. } while (--avail > 0);
  555. rx_buffer_head = head;
  556. if (rts_pin) {
  557. int avail;
  558. if (head >= tail) avail = head - tail;
  559. else avail = SERIAL2_RX_BUFFER_SIZE + head - tail;
  560. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  561. }
  562. }
  563. }
  564. c = UART1_C2;
  565. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  566. head = tx_buffer_head;
  567. tail = tx_buffer_tail;
  568. do {
  569. if (tail == head) break;
  570. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  571. avail = UART1_S1;
  572. n = tx_buffer[tail];
  573. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  574. UART1_D = n;
  575. } while (UART1_TCFIFO < 8);
  576. tx_buffer_tail = tail;
  577. if (UART1_S1 & UART_S1_TDRE) UART1_C2 = C2_TX_COMPLETING;
  578. }
  579. #else
  580. if (UART1_S1 & UART_S1_RDRF) {
  581. if (use9Bits && (UART1_C3 & 0x80)) {
  582. n = UART1_D | 0x100;
  583. } else {
  584. n = UART1_D;
  585. }
  586. head = rx_buffer_head + 1;
  587. if (head >= SERIAL2_RX_BUFFER_SIZE) head = 0;
  588. if (head != rx_buffer_tail) {
  589. rx_buffer[head] = n;
  590. rx_buffer_head = head;
  591. }
  592. }
  593. c = UART1_C2;
  594. if ((c & UART_C2_TIE) && (UART1_S1 & UART_S1_TDRE)) {
  595. head = tx_buffer_head;
  596. tail = tx_buffer_tail;
  597. if (head == tail) {
  598. UART1_C2 = C2_TX_COMPLETING;
  599. } else {
  600. if (++tail >= SERIAL2_TX_BUFFER_SIZE) tail = 0;
  601. n = tx_buffer[tail];
  602. if (use9Bits) UART1_C3 = (UART1_C3 & ~0x40) | ((n & 0x100) >> 2);
  603. UART1_D = n;
  604. tx_buffer_tail = tail;
  605. }
  606. }
  607. #endif
  608. if ((c & UART_C2_TCIE) && (UART1_S1 & UART_S1_TC)) {
  609. transmitting = 0;
  610. if (transmit_pin) transmit_deassert();
  611. #if defined(KINETISL)
  612. if (half_duplex_mode) {
  613. __disable_irq();
  614. volatile uint32_t reg = UART1_C3;
  615. reg &= ~UART_C3_TXDIR;
  616. UART1_C3 = reg;
  617. __enable_irq();
  618. }
  619. #endif
  620. UART1_C2 = C2_TX_INACTIVE;
  621. }
  622. }