Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

pins_teensy.c 45KB

9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
9 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
  73. #ifdef CORE_PIN34_PORTREG
  74. {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
  92. {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
  93. {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
  94. {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
  95. {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
  96. {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
  97. {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
  98. #endif
  99. };
  100. #elif defined(KINETISL)
  101. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  102. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  103. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  104. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  105. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  106. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  107. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  108. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  109. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  110. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  111. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  112. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  113. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  114. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  115. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  116. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  117. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  118. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  119. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  120. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  121. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  122. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  123. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  124. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  125. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  126. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  127. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  128. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  129. };
  130. #endif
  131. typedef void (*voidFuncPtr)(void);
  132. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  133. #if defined(KINETISK)
  134. static void porta_interrupt(void);
  135. static void portb_interrupt(void);
  136. static void portc_interrupt(void);
  137. static void portd_interrupt(void);
  138. static void porte_interrupt(void);
  139. #elif defined(KINETISL)
  140. static void porta_interrupt(void);
  141. static void portcd_interrupt(void);
  142. #endif
  143. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  144. {
  145. _VectorsRam[irq + 16] = function;
  146. }
  147. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  148. {
  149. volatile uint32_t *config;
  150. uint32_t cfg, mask;
  151. if (pin >= CORE_NUM_DIGITAL) return;
  152. switch (mode) {
  153. case CHANGE: mask = 0x0B; break;
  154. case RISING: mask = 0x09; break;
  155. case FALLING: mask = 0x0A; break;
  156. case LOW: mask = 0x08; break;
  157. case HIGH: mask = 0x0C; break;
  158. default: return;
  159. }
  160. mask = (mask << 16) | 0x01000000;
  161. config = portConfigRegister(pin);
  162. #if defined(KINETISK)
  163. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  164. attachInterruptVector(IRQ_PORTB, portb_interrupt);
  165. attachInterruptVector(IRQ_PORTC, portc_interrupt);
  166. attachInterruptVector(IRQ_PORTD, portd_interrupt);
  167. attachInterruptVector(IRQ_PORTE, porte_interrupt);
  168. #elif defined(KINETISL)
  169. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  170. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  171. #endif
  172. __disable_irq();
  173. cfg = *config;
  174. cfg &= ~0x000F0000; // disable any previous interrupt
  175. *config = cfg;
  176. intFunc[pin] = function; // set the function pointer
  177. cfg |= mask;
  178. *config = cfg; // enable the new interrupt
  179. __enable_irq();
  180. }
  181. void detachInterrupt(uint8_t pin)
  182. {
  183. volatile uint32_t *config;
  184. config = portConfigRegister(pin);
  185. __disable_irq();
  186. *config = ((*config & ~0x000F0000) | 0x01000000);
  187. intFunc[pin] = NULL;
  188. __enable_irq();
  189. }
  190. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  191. static void porta_interrupt(void)
  192. {
  193. uint32_t isfr = PORTA_ISFR;
  194. PORTA_ISFR = isfr;
  195. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  196. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  197. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  198. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  199. }
  200. static void portb_interrupt(void)
  201. {
  202. uint32_t isfr = PORTB_ISFR;
  203. PORTB_ISFR = isfr;
  204. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  205. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  206. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  207. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  208. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  209. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  210. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  211. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  212. }
  213. static void portc_interrupt(void)
  214. {
  215. // TODO: these are inefficent. Use CLZ somehow....
  216. uint32_t isfr = PORTC_ISFR;
  217. PORTC_ISFR = isfr;
  218. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  219. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  220. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  221. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  222. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  223. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  224. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  225. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  226. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  227. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  228. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  229. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  230. }
  231. static void portd_interrupt(void)
  232. {
  233. uint32_t isfr = PORTD_ISFR;
  234. PORTD_ISFR = isfr;
  235. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  236. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  237. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  238. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  239. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  240. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  241. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  242. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  243. }
  244. static void porte_interrupt(void)
  245. {
  246. uint32_t isfr = PORTE_ISFR;
  247. PORTE_ISFR = isfr;
  248. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  249. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  250. }
  251. #elif defined(__MKL26Z64__)
  252. static void porta_interrupt(void)
  253. {
  254. uint32_t isfr = PORTA_ISFR;
  255. PORTA_ISFR = isfr;
  256. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  257. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  258. }
  259. static void portcd_interrupt(void)
  260. {
  261. uint32_t isfr = PORTC_ISFR;
  262. PORTC_ISFR = isfr;
  263. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  264. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  265. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  266. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  267. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  268. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  269. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  270. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  271. isfr = PORTD_ISFR;
  272. PORTD_ISFR = isfr;
  273. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  274. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  275. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  276. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  277. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  278. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  279. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  280. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  281. }
  282. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  283. static void porta_interrupt(void)
  284. {
  285. uint32_t isfr = PORTA_ISFR;
  286. PORTA_ISFR = isfr;
  287. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  288. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  289. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  290. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  291. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  292. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  293. if ((isfr & CORE_PIN39_BITMASK) && intFunc[39]) intFunc[39]();
  294. if ((isfr & CORE_PIN40_BITMASK) && intFunc[40]) intFunc[40]();
  295. if ((isfr & CORE_PIN41_BITMASK) && intFunc[41]) intFunc[41]();
  296. if ((isfr & CORE_PIN42_BITMASK) && intFunc[42]) intFunc[42]();
  297. }
  298. static void portb_interrupt(void)
  299. {
  300. uint32_t isfr = PORTB_ISFR;
  301. PORTB_ISFR = isfr;
  302. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  303. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  304. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  305. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  306. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  307. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  308. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  309. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  310. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  311. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  312. if ((isfr & CORE_PIN43_BITMASK) && intFunc[43]) intFunc[43]();
  313. if ((isfr & CORE_PIN44_BITMASK) && intFunc[44]) intFunc[44]();
  314. if ((isfr & CORE_PIN45_BITMASK) && intFunc[45]) intFunc[45]();
  315. if ((isfr & CORE_PIN46_BITMASK) && intFunc[46]) intFunc[46]();
  316. if ((isfr & CORE_PIN49_BITMASK) && intFunc[49]) intFunc[49]();
  317. if ((isfr & CORE_PIN50_BITMASK) && intFunc[50]) intFunc[50]();
  318. }
  319. static void portc_interrupt(void)
  320. {
  321. // TODO: these are inefficent. Use CLZ somehow....
  322. uint32_t isfr = PORTC_ISFR;
  323. PORTC_ISFR = isfr;
  324. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  325. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  326. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  327. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  328. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  329. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  330. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  331. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  332. if ((isfr & CORE_PIN35_BITMASK) && intFunc[35]) intFunc[35]();
  333. if ((isfr & CORE_PIN36_BITMASK) && intFunc[36]) intFunc[36]();
  334. if ((isfr & CORE_PIN37_BITMASK) && intFunc[37]) intFunc[37]();
  335. if ((isfr & CORE_PIN38_BITMASK) && intFunc[38]) intFunc[38]();
  336. }
  337. static void portd_interrupt(void)
  338. {
  339. uint32_t isfr = PORTD_ISFR;
  340. PORTD_ISFR = isfr;
  341. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  342. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  343. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  344. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  345. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  346. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  347. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  348. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  349. if ((isfr & CORE_PIN47_BITMASK) && intFunc[47]) intFunc[47]();
  350. if ((isfr & CORE_PIN48_BITMASK) && intFunc[48]) intFunc[48]();
  351. if ((isfr & CORE_PIN51_BITMASK) && intFunc[51]) intFunc[51]();
  352. if ((isfr & CORE_PIN52_BITMASK) && intFunc[52]) intFunc[52]();
  353. if ((isfr & CORE_PIN53_BITMASK) && intFunc[53]) intFunc[53]();
  354. if ((isfr & CORE_PIN54_BITMASK) && intFunc[54]) intFunc[54]();
  355. if ((isfr & CORE_PIN55_BITMASK) && intFunc[55]) intFunc[55]();
  356. }
  357. static void porte_interrupt(void)
  358. {
  359. uint32_t isfr = PORTE_ISFR;
  360. PORTE_ISFR = isfr;
  361. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  362. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  363. if ((isfr & CORE_PIN34_BITMASK) && intFunc[34]) intFunc[34]();
  364. if ((isfr & CORE_PIN56_BITMASK) && intFunc[56]) intFunc[56]();
  365. if ((isfr & CORE_PIN57_BITMASK) && intFunc[57]) intFunc[57]();
  366. }
  367. #endif
  368. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  369. unsigned long rtc_get(void)
  370. {
  371. return RTC_TSR;
  372. }
  373. void rtc_set(unsigned long t)
  374. {
  375. RTC_SR = 0;
  376. RTC_TPR = 0;
  377. RTC_TSR = t;
  378. RTC_SR = RTC_SR_TCE;
  379. }
  380. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  381. // For example, adjust = -100 is slows the clock by 11.92 ppm
  382. //
  383. void rtc_compensate(int adjust)
  384. {
  385. uint32_t comp, interval, tcr;
  386. // This simple approach tries to maximize the interval.
  387. // Perhaps minimizing TCR would be better, so the
  388. // compensation is distributed more evenly across
  389. // many seconds, rather than saving it all up and then
  390. // altering one second up to +/- 0.38%
  391. if (adjust >= 0) {
  392. comp = adjust;
  393. interval = 256;
  394. while (1) {
  395. tcr = comp * interval;
  396. if (tcr < 128*256) break;
  397. if (--interval == 1) break;
  398. }
  399. tcr = tcr >> 8;
  400. } else {
  401. comp = -adjust;
  402. interval = 256;
  403. while (1) {
  404. tcr = comp * interval;
  405. if (tcr < 129*256) break;
  406. if (--interval == 1) break;
  407. }
  408. tcr = tcr >> 8;
  409. tcr = 256 - tcr;
  410. }
  411. RTC_TCR = ((interval - 1) << 8) | tcr;
  412. }
  413. #else
  414. unsigned long rtc_get(void) { return 0; }
  415. void rtc_set(unsigned long t) { }
  416. void rtc_compensate(int adjust) { }
  417. #endif
  418. #if 0
  419. // TODO: build system should define this
  420. // so RTC is automatically initialized to approx correct time
  421. // at least when the program begins running right after upload
  422. #ifndef TIME_T
  423. #define TIME_T 1350160272
  424. #endif
  425. void init_rtc(void)
  426. {
  427. serial_print("init_rtc\n");
  428. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  429. // enable the RTC crystal oscillator, for approx 12pf crystal
  430. if (!(RTC_CR & RTC_CR_OSCE)) {
  431. serial_print("start RTC oscillator\n");
  432. RTC_SR = 0;
  433. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  434. }
  435. // should wait for crystal to stabilize.....
  436. serial_print("SR=");
  437. serial_phex32(RTC_SR);
  438. serial_print("\n");
  439. serial_print("CR=");
  440. serial_phex32(RTC_CR);
  441. serial_print("\n");
  442. serial_print("TSR=");
  443. serial_phex32(RTC_TSR);
  444. serial_print("\n");
  445. serial_print("TCR=");
  446. serial_phex32(RTC_TCR);
  447. serial_print("\n");
  448. if (RTC_SR & RTC_SR_TIF) {
  449. // enable the RTC
  450. RTC_SR = 0;
  451. RTC_TPR = 0;
  452. RTC_TSR = TIME_T;
  453. RTC_SR = RTC_SR_TCE;
  454. }
  455. }
  456. #endif
  457. extern void usb_init(void);
  458. // create a default PWM at the same 488.28 Hz as Arduino Uno
  459. #if defined(KINETISK)
  460. #define F_TIMER F_BUS
  461. #elif defined(KINETISL)
  462. #if F_CPU > 16000000
  463. #define F_TIMER (F_PLL/2)
  464. #else
  465. #define F_TIMER (F_PLL)
  466. #endif//Low Power
  467. #endif
  468. #if F_TIMER == 120000000
  469. #define DEFAULT_FTM_MOD (61440 - 1)
  470. #define DEFAULT_FTM_PRESCALE 2
  471. #elif F_TIMER == 108000000
  472. #define DEFAULT_FTM_MOD (55296 - 1)
  473. #define DEFAULT_FTM_PRESCALE 2
  474. #elif F_TIMER == 96000000
  475. #define DEFAULT_FTM_MOD (49152 - 1)
  476. #define DEFAULT_FTM_PRESCALE 2
  477. #elif F_TIMER == 90000000
  478. #define DEFAULT_FTM_MOD (46080 - 1)
  479. #define DEFAULT_FTM_PRESCALE 2
  480. #elif F_TIMER == 80000000
  481. #define DEFAULT_FTM_MOD (40960 - 1)
  482. #define DEFAULT_FTM_PRESCALE 2
  483. #elif F_TIMER == 72000000
  484. #define DEFAULT_FTM_MOD (36864 - 1)
  485. #define DEFAULT_FTM_PRESCALE 2
  486. #elif F_TIMER == 64000000
  487. #define DEFAULT_FTM_MOD (65536 - 1)
  488. #define DEFAULT_FTM_PRESCALE 1
  489. #elif F_TIMER == 60000000
  490. #define DEFAULT_FTM_MOD (61440 - 1)
  491. #define DEFAULT_FTM_PRESCALE 1
  492. #elif F_TIMER == 56000000
  493. #define DEFAULT_FTM_MOD (57344 - 1)
  494. #define DEFAULT_FTM_PRESCALE 1
  495. #elif F_TIMER == 54000000
  496. #define DEFAULT_FTM_MOD (55296 - 1)
  497. #define DEFAULT_FTM_PRESCALE 1
  498. #elif F_TIMER == 48000000
  499. #define DEFAULT_FTM_MOD (49152 - 1)
  500. #define DEFAULT_FTM_PRESCALE 1
  501. #elif F_TIMER == 40000000
  502. #define DEFAULT_FTM_MOD (40960 - 1)
  503. #define DEFAULT_FTM_PRESCALE 1
  504. #elif F_TIMER == 36000000
  505. #define DEFAULT_FTM_MOD (36864 - 1)
  506. #define DEFAULT_FTM_PRESCALE 1
  507. #elif F_TIMER == 24000000
  508. #define DEFAULT_FTM_MOD (49152 - 1)
  509. #define DEFAULT_FTM_PRESCALE 0
  510. #elif F_TIMER == 16000000
  511. #define DEFAULT_FTM_MOD (32768 - 1)
  512. #define DEFAULT_FTM_PRESCALE 0
  513. #elif F_TIMER == 8000000
  514. #define DEFAULT_FTM_MOD (16384 - 1)
  515. #define DEFAULT_FTM_PRESCALE 0
  516. #elif F_TIMER == 4000000
  517. #define DEFAULT_FTM_MOD (8192 - 1)
  518. #define DEFAULT_FTM_PRESCALE 0
  519. #elif F_TIMER == 2000000
  520. #define DEFAULT_FTM_MOD (4096 - 1)
  521. #define DEFAULT_FTM_PRESCALE 0
  522. #endif
  523. //void init_pins(void)
  524. void _init_Teensyduino_internal_(void)
  525. {
  526. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  527. NVIC_ENABLE_IRQ(IRQ_PORTA);
  528. NVIC_ENABLE_IRQ(IRQ_PORTB);
  529. NVIC_ENABLE_IRQ(IRQ_PORTC);
  530. NVIC_ENABLE_IRQ(IRQ_PORTD);
  531. NVIC_ENABLE_IRQ(IRQ_PORTE);
  532. #elif defined(__MKL26Z64__)
  533. NVIC_ENABLE_IRQ(IRQ_PORTA);
  534. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  535. #endif
  536. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  537. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  538. FTM0_CNT = 0;
  539. FTM0_MOD = DEFAULT_FTM_MOD;
  540. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  541. FTM0_C1SC = 0x28;
  542. FTM0_C2SC = 0x28;
  543. FTM0_C3SC = 0x28;
  544. FTM0_C4SC = 0x28;
  545. FTM0_C5SC = 0x28;
  546. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  547. FTM0_C6SC = 0x28;
  548. FTM0_C7SC = 0x28;
  549. #endif
  550. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  551. FTM3_C0SC = 0x28;
  552. FTM3_C1SC = 0x28;
  553. FTM3_C2SC = 0x28;
  554. FTM3_C3SC = 0x28;
  555. FTM3_C4SC = 0x28;
  556. FTM3_C5SC = 0x28;
  557. FTM3_C6SC = 0x28;
  558. FTM3_C7SC = 0x28;
  559. #endif
  560. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  561. FTM1_CNT = 0;
  562. FTM1_MOD = DEFAULT_FTM_MOD;
  563. FTM1_C0SC = 0x28;
  564. FTM1_C1SC = 0x28;
  565. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  566. #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
  567. FTM2_CNT = 0;
  568. FTM2_MOD = DEFAULT_FTM_MOD;
  569. FTM2_C0SC = 0x28;
  570. FTM2_C1SC = 0x28;
  571. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  572. #endif
  573. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  574. FTM3_CNT = 0;
  575. FTM3_MOD = DEFAULT_FTM_MOD;
  576. FTM3_C0SC = 0x28;
  577. FTM3_C1SC = 0x28;
  578. FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  579. #endif
  580. #if defined(__MK66FX1M0__)
  581. SIM_SCGC2 |= SIM_SCGC2_TPM1;
  582. SIM_SOPT2 |= SIM_SOPT2_TPMSRC(2);
  583. TPM1_CNT = 0;
  584. TPM1_MOD = 32767;
  585. TPM1_C0SC = 0x28;
  586. TPM1_C1SC = 0x28;
  587. TPM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0);
  588. #endif
  589. analog_init();
  590. // for background about this startup delay, please see these conversations
  591. // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
  592. // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
  593. delay(400);
  594. usb_init();
  595. }
  596. #if defined(__MK20DX128__)
  597. #define FTM0_CH0_PIN 22
  598. #define FTM0_CH1_PIN 23
  599. #define FTM0_CH2_PIN 9
  600. #define FTM0_CH3_PIN 10
  601. #define FTM0_CH4_PIN 6
  602. #define FTM0_CH5_PIN 20
  603. #define FTM0_CH6_PIN 21
  604. #define FTM0_CH7_PIN 5
  605. #define FTM1_CH0_PIN 3
  606. #define FTM1_CH1_PIN 4
  607. #elif defined(__MK20DX256__)
  608. #define FTM0_CH0_PIN 22
  609. #define FTM0_CH1_PIN 23
  610. #define FTM0_CH2_PIN 9
  611. #define FTM0_CH3_PIN 10
  612. #define FTM0_CH4_PIN 6
  613. #define FTM0_CH5_PIN 20
  614. #define FTM0_CH6_PIN 21
  615. #define FTM0_CH7_PIN 5
  616. #define FTM1_CH0_PIN 3
  617. #define FTM1_CH1_PIN 4
  618. #define FTM2_CH0_PIN 32
  619. #define FTM2_CH1_PIN 25
  620. #elif defined(__MKL26Z64__)
  621. #define FTM0_CH0_PIN 22
  622. #define FTM0_CH1_PIN 23
  623. #define FTM0_CH2_PIN 9
  624. #define FTM0_CH3_PIN 10
  625. #define FTM0_CH4_PIN 6
  626. #define FTM0_CH5_PIN 20
  627. #define FTM1_CH0_PIN 16
  628. #define FTM1_CH1_PIN 17
  629. #define FTM2_CH0_PIN 3
  630. #define FTM2_CH1_PIN 4
  631. #elif defined(__MK64FX512__)
  632. #define FTM0_CH0_PIN 22
  633. #define FTM0_CH1_PIN 23
  634. #define FTM0_CH2_PIN 9
  635. #define FTM0_CH3_PIN 10
  636. #define FTM0_CH4_PIN 6
  637. #define FTM0_CH5_PIN 20
  638. #define FTM0_CH6_PIN 21
  639. #define FTM0_CH7_PIN 5
  640. #define FTM1_CH0_PIN 3
  641. #define FTM1_CH1_PIN 4
  642. #define FTM2_CH0_PIN 29
  643. #define FTM2_CH1_PIN 30
  644. #define FTM3_CH0_PIN 2
  645. #define FTM3_CH1_PIN 14
  646. #define FTM3_CH2_PIN 7
  647. #define FTM3_CH3_PIN 8
  648. #define FTM3_CH4_PIN 35
  649. #define FTM3_CH5_PIN 36
  650. #define FTM3_CH6_PIN 37
  651. #define FTM3_CH7_PIN 38
  652. #elif defined(__MK66FX1M0__)
  653. #define FTM0_CH0_PIN 22
  654. #define FTM0_CH1_PIN 23
  655. #define FTM0_CH2_PIN 9
  656. #define FTM0_CH3_PIN 10
  657. #define FTM0_CH4_PIN 6
  658. #define FTM0_CH5_PIN 20
  659. #define FTM0_CH6_PIN 21
  660. #define FTM0_CH7_PIN 5
  661. #define FTM1_CH0_PIN 3
  662. #define FTM1_CH1_PIN 4
  663. #define FTM2_CH0_PIN 29
  664. #define FTM2_CH1_PIN 30
  665. #define FTM3_CH0_PIN 2
  666. #define FTM3_CH1_PIN 14
  667. #define FTM3_CH2_PIN 7
  668. #define FTM3_CH3_PIN 8
  669. #define FTM3_CH4_PIN 35
  670. #define FTM3_CH5_PIN 36
  671. #define FTM3_CH6_PIN 37
  672. #define FTM3_CH7_PIN 38
  673. #define TPM1_CH0_PIN 16
  674. #define TPM1_CH1_PIN 17
  675. #endif
  676. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  677. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  678. static uint8_t analog_write_res = 8;
  679. // SOPT4 is SIM select clocks?
  680. // FTM is clocked by the bus clock, either 24 or 48 MHz
  681. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  682. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  683. void analogWrite(uint8_t pin, int val)
  684. {
  685. uint32_t cval, max;
  686. #if defined(__MK20DX256__)
  687. if (pin == A14) {
  688. uint8_t res = analog_write_res;
  689. if (res < 12) {
  690. val <<= 12 - res;
  691. } else if (res > 12) {
  692. val >>= res - 12;
  693. }
  694. analogWriteDAC0(val);
  695. return;
  696. }
  697. #elif defined(__MKL26Z64__)
  698. if (pin == A12) {
  699. uint8_t res = analog_write_res;
  700. if (res < 12) {
  701. val <<= 12 - res;
  702. } else if (res > 12) {
  703. val >>= res - 12;
  704. }
  705. analogWriteDAC0(val);
  706. return;
  707. }
  708. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  709. if (pin == A21 || pin == A22) {
  710. uint8_t res = analog_write_res;
  711. if (res < 12) {
  712. val <<= 12 - res;
  713. } else if (res > 12) {
  714. val >>= res - 12;
  715. }
  716. if (pin == A21) analogWriteDAC0(val);
  717. else analogWriteDAC1(val);
  718. return;
  719. }
  720. #endif
  721. max = 1 << analog_write_res;
  722. if (val <= 0) {
  723. digitalWrite(pin, LOW);
  724. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  725. return;
  726. } else if (val >= max) {
  727. digitalWrite(pin, HIGH);
  728. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  729. return;
  730. }
  731. //serial_print("analogWrite\n");
  732. //serial_print("val = ");
  733. //serial_phex32(val);
  734. //serial_print("\n");
  735. //serial_print("analog_write_res = ");
  736. //serial_phex(analog_write_res);
  737. //serial_print("\n");
  738. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  739. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  740. #if defined(FTM2_CH0_PIN)
  741. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  742. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  743. #endif
  744. #if defined(FTM3_CH0_PIN)
  745. } else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN || pin == FTM3_CH2_PIN
  746. || pin == FTM3_CH3_PIN || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  747. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  748. cval = ((uint32_t)val * (uint32_t)(FTM3_MOD + 1)) >> analog_write_res;
  749. #endif
  750. #if defined(TPM1_CH0_PIN)
  751. } else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  752. cval = ((uint32_t)val * (uint32_t)(TPM1_MOD + 1)) >> analog_write_res;
  753. #endif
  754. } else {
  755. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  756. }
  757. //serial_print("cval = ");
  758. //serial_phex32(cval);
  759. //serial_print("\n");
  760. switch (pin) {
  761. #ifdef FTM0_CH0_PIN
  762. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  763. FTM0_C0V = cval;
  764. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  765. break;
  766. #endif
  767. #ifdef FTM0_CH1_PIN
  768. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  769. FTM0_C1V = cval;
  770. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  771. break;
  772. #endif
  773. #ifdef FTM0_CH2_PIN
  774. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  775. FTM0_C2V = cval;
  776. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  777. break;
  778. #endif
  779. #ifdef FTM0_CH3_PIN
  780. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  781. FTM0_C3V = cval;
  782. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  783. break;
  784. #endif
  785. #ifdef FTM0_CH4_PIN
  786. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  787. FTM0_C4V = cval;
  788. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  789. break;
  790. #endif
  791. #ifdef FTM0_CH5_PIN
  792. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  793. FTM0_C5V = cval;
  794. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  795. break;
  796. #endif
  797. #ifdef FTM0_CH6_PIN
  798. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  799. FTM0_C6V = cval;
  800. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  801. break;
  802. #endif
  803. #ifdef FTM0_CH7_PIN
  804. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  805. FTM0_C7V = cval;
  806. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  807. break;
  808. #endif
  809. #ifdef FTM1_CH0_PIN
  810. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  811. FTM1_C0V = cval;
  812. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  813. break;
  814. #endif
  815. #ifdef FTM1_CH1_PIN
  816. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  817. FTM1_C1V = cval;
  818. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  819. break;
  820. #endif
  821. #ifdef FTM2_CH0_PIN
  822. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  823. FTM2_C0V = cval;
  824. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  825. break;
  826. #endif
  827. #ifdef FTM2_CH1_PIN
  828. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  829. FTM2_C1V = cval;
  830. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  831. break;
  832. #endif
  833. #ifdef FTM3_CH0_PIN
  834. case FTM3_CH0_PIN:
  835. FTM3_C0V = cval;
  836. FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  837. break;
  838. #endif
  839. #ifdef FTM3_CH1_PIN
  840. case FTM3_CH1_PIN:
  841. FTM3_C1V = cval;
  842. FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  843. break;
  844. #endif
  845. #ifdef FTM3_CH2_PIN
  846. case FTM3_CH2_PIN:
  847. FTM3_C2V = cval;
  848. FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  849. break;
  850. #endif
  851. #ifdef FTM3_CH3_PIN
  852. case FTM3_CH3_PIN:
  853. FTM3_C3V = cval;
  854. FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  855. break;
  856. #endif
  857. #ifdef FTM3_CH4_PIN
  858. case FTM3_CH4_PIN:
  859. FTM3_C4V = cval;
  860. FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  861. break;
  862. #endif
  863. #ifdef FTM3_CH5_PIN
  864. case FTM3_CH5_PIN:
  865. FTM3_C5V = cval;
  866. FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  867. break;
  868. #endif
  869. #ifdef FTM3_CH6_PIN
  870. case FTM3_CH6_PIN:
  871. FTM3_C6V = cval;
  872. FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  873. break;
  874. #endif
  875. #ifdef FTM3_CH7_PIN
  876. case FTM3_CH7_PIN:
  877. FTM3_C7V = cval;
  878. FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  879. break;
  880. #endif
  881. #ifdef TPM1_CH0_PIN
  882. case TPM1_CH0_PIN:
  883. TPM1_C0V = cval;
  884. FTM_PINCFG(TPM1_CH0_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  885. break;
  886. #endif
  887. #ifdef TPM1_CH1_PIN
  888. case TPM1_CH1_PIN:
  889. TPM1_C1V = cval;
  890. FTM_PINCFG(TPM1_CH1_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  891. break;
  892. #endif
  893. default:
  894. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  895. pinMode(pin, OUTPUT);
  896. }
  897. }
  898. void analogWriteRes(uint32_t bits)
  899. {
  900. if (bits < 1) {
  901. bits = 1;
  902. } else if (bits > 16) {
  903. bits = 16;
  904. }
  905. analog_write_res = bits;
  906. }
  907. void analogWriteFrequency(uint8_t pin, float frequency)
  908. {
  909. uint32_t prescale, mod, ftmClock, ftmClockSource;
  910. float minfreq;
  911. //serial_print("analogWriteFrequency: pin = ");
  912. //serial_phex(pin);
  913. //serial_print(", freq = ");
  914. //serial_phex32((uint32_t)frequency);
  915. //serial_print("\n");
  916. #ifdef TPM1_CH0_PIN
  917. if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  918. ftmClockSource = 1;
  919. ftmClock = 16000000;
  920. } else
  921. #endif
  922. if (frequency < (float)(F_TIMER >> 7) / 65536.0f) {
  923. // frequency is too low for working with F_TIMER:
  924. ftmClockSource = 2; // Use alternative 31250Hz clock source
  925. ftmClock = 31250; // Set variable for the actual timer clock frequency
  926. } else {
  927. ftmClockSource = 1; // Use default F_TIMER clock source
  928. ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
  929. }
  930. for (prescale = 0; prescale < 7; prescale++) {
  931. minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
  932. if (frequency >= minfreq) break;
  933. }
  934. //serial_print("F_TIMER/ftm_Clock = ");
  935. //serial_phex32(ftmClock >> prescale);
  936. //serial_print("\n");
  937. //serial_print("prescale = ");
  938. //serial_phex(prescale);
  939. //serial_print("\n");
  940. mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
  941. if (mod > 65535) mod = 65535;
  942. //serial_print("mod = ");
  943. //serial_phex32(mod);
  944. //serial_print("\n");
  945. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  946. FTM1_SC = 0;
  947. FTM1_CNT = 0;
  948. FTM1_MOD = mod;
  949. FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  950. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  951. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  952. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  953. #ifdef FTM0_CH6_PIN
  954. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  955. #endif
  956. ) {
  957. FTM0_SC = 0;
  958. FTM0_CNT = 0;
  959. FTM0_MOD = mod;
  960. FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  961. }
  962. #ifdef FTM2_CH0_PIN
  963. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  964. FTM2_SC = 0;
  965. FTM2_CNT = 0;
  966. FTM2_MOD = mod;
  967. FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  968. }
  969. #endif
  970. #ifdef FTM3_CH0_PIN
  971. else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
  972. || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
  973. || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  974. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  975. FTM3_SC = 0;
  976. FTM3_CNT = 0;
  977. FTM3_MOD = mod;
  978. FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
  979. }
  980. #endif
  981. #ifdef TPM1_CH0_PIN
  982. else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  983. TPM1_SC = 0;
  984. TPM1_CNT = 0;
  985. TPM1_MOD = mod;
  986. TPM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale);
  987. }
  988. #endif
  989. }
  990. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  991. void digitalWrite(uint8_t pin, uint8_t val)
  992. {
  993. if (pin >= CORE_NUM_DIGITAL) return;
  994. #ifdef KINETISK
  995. if (*portModeRegister(pin)) {
  996. if (val) {
  997. *portSetRegister(pin) = 1;
  998. } else {
  999. *portClearRegister(pin) = 1;
  1000. }
  1001. #else
  1002. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  1003. if (val) {
  1004. *portSetRegister(pin) = digitalPinToBitMask(pin);
  1005. } else {
  1006. *portClearRegister(pin) = digitalPinToBitMask(pin);
  1007. }
  1008. #endif
  1009. } else {
  1010. volatile uint32_t *config = portConfigRegister(pin);
  1011. if (val) {
  1012. // TODO use bitband for atomic read-mod-write
  1013. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  1014. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  1015. } else {
  1016. // TODO use bitband for atomic read-mod-write
  1017. *config &= ~(PORT_PCR_PE);
  1018. //*config = PORT_PCR_MUX(1);
  1019. }
  1020. }
  1021. }
  1022. uint8_t digitalRead(uint8_t pin)
  1023. {
  1024. if (pin >= CORE_NUM_DIGITAL) return 0;
  1025. #ifdef KINETISK
  1026. return *portInputRegister(pin);
  1027. #else
  1028. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  1029. #endif
  1030. }
  1031. void pinMode(uint8_t pin, uint8_t mode)
  1032. {
  1033. volatile uint32_t *config;
  1034. if (pin >= CORE_NUM_DIGITAL) return;
  1035. config = portConfigRegister(pin);
  1036. if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
  1037. #ifdef KINETISK
  1038. *portModeRegister(pin) = 1;
  1039. #else
  1040. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  1041. #endif
  1042. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  1043. if (mode == OUTPUT_OPENDRAIN) {
  1044. *config |= PORT_PCR_ODE;
  1045. } else {
  1046. *config &= ~PORT_PCR_ODE;
  1047. }
  1048. } else {
  1049. #ifdef KINETISK
  1050. *portModeRegister(pin) = 0;
  1051. #else
  1052. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  1053. #endif
  1054. if (mode == INPUT || mode == INPUT_PULLUP || mode == INPUT_PULLDOWN) {
  1055. *config = PORT_PCR_MUX(1);
  1056. if (mode == INPUT_PULLUP) {
  1057. *config |= (PORT_PCR_PE | PORT_PCR_PS); // pullup
  1058. } else if (mode == INPUT_PULLDOWN) {
  1059. *config |= (PORT_PCR_PE); // pulldown
  1060. *config &= ~(PORT_PCR_PS);
  1061. }
  1062. } else {
  1063. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  1064. }
  1065. }
  1066. }
  1067. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  1068. {
  1069. if (bitOrder == LSBFIRST) {
  1070. shiftOut_lsbFirst(dataPin, clockPin, value);
  1071. } else {
  1072. shiftOut_msbFirst(dataPin, clockPin, value);
  1073. }
  1074. }
  1075. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1076. {
  1077. uint8_t mask;
  1078. for (mask=0x01; mask; mask <<= 1) {
  1079. digitalWrite(dataPin, value & mask);
  1080. digitalWrite(clockPin, HIGH);
  1081. digitalWrite(clockPin, LOW);
  1082. }
  1083. }
  1084. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1085. {
  1086. uint8_t mask;
  1087. for (mask=0x80; mask; mask >>= 1) {
  1088. digitalWrite(dataPin, value & mask);
  1089. digitalWrite(clockPin, HIGH);
  1090. digitalWrite(clockPin, LOW);
  1091. }
  1092. }
  1093. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  1094. {
  1095. if (bitOrder == LSBFIRST) {
  1096. return shiftIn_lsbFirst(dataPin, clockPin);
  1097. } else {
  1098. return shiftIn_msbFirst(dataPin, clockPin);
  1099. }
  1100. }
  1101. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  1102. {
  1103. uint8_t mask, value=0;
  1104. for (mask=0x01; mask; mask <<= 1) {
  1105. digitalWrite(clockPin, HIGH);
  1106. if (digitalRead(dataPin)) value |= mask;
  1107. digitalWrite(clockPin, LOW);
  1108. }
  1109. return value;
  1110. }
  1111. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  1112. {
  1113. uint8_t mask, value=0;
  1114. for (mask=0x80; mask; mask >>= 1) {
  1115. digitalWrite(clockPin, HIGH);
  1116. if (digitalRead(dataPin)) value |= mask;
  1117. digitalWrite(clockPin, LOW);
  1118. }
  1119. return value;
  1120. }
  1121. // the systick interrupt is supposed to increment this at 1 kHz rate
  1122. volatile uint32_t systick_millis_count = 0;
  1123. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  1124. uint32_t micros(void)
  1125. {
  1126. uint32_t count, current, istatus;
  1127. __disable_irq();
  1128. current = SYST_CVR;
  1129. count = systick_millis_count;
  1130. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  1131. __enable_irq();
  1132. //systick_current = current;
  1133. //systick_count = count;
  1134. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  1135. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  1136. current = ((F_CPU / 1000) - 1) - current;
  1137. #if defined(KINETISL) && F_CPU == 48000000
  1138. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  1139. #elif defined(KINETISL) && F_CPU == 24000000
  1140. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  1141. #endif
  1142. return count * 1000 + current / (F_CPU / 1000000);
  1143. }
  1144. void delay(uint32_t ms)
  1145. {
  1146. uint32_t start = micros();
  1147. if (ms > 0) {
  1148. while (1) {
  1149. while ((micros() - start) >= 1000) {
  1150. ms--;
  1151. if (ms == 0) return;
  1152. start += 1000;
  1153. }
  1154. yield();
  1155. }
  1156. }
  1157. }
  1158. // TODO: verify these result in correct timeouts...
  1159. #if F_CPU == 240000000
  1160. #define PULSEIN_LOOPS_PER_USEC 33
  1161. #elif F_CPU == 216000000
  1162. #define PULSEIN_LOOPS_PER_USEC 31
  1163. #elif F_CPU == 192000000
  1164. #define PULSEIN_LOOPS_PER_USEC 29
  1165. #elif F_CPU == 180000000
  1166. #define PULSEIN_LOOPS_PER_USEC 27
  1167. #elif F_CPU == 168000000
  1168. #define PULSEIN_LOOPS_PER_USEC 25
  1169. #elif F_CPU == 144000000
  1170. #define PULSEIN_LOOPS_PER_USEC 21
  1171. #elif F_CPU == 120000000
  1172. #define PULSEIN_LOOPS_PER_USEC 18
  1173. #elif F_CPU == 96000000
  1174. #define PULSEIN_LOOPS_PER_USEC 14
  1175. #elif F_CPU == 72000000
  1176. #define PULSEIN_LOOPS_PER_USEC 10
  1177. #elif F_CPU == 48000000
  1178. #define PULSEIN_LOOPS_PER_USEC 7
  1179. #elif F_CPU == 24000000
  1180. #define PULSEIN_LOOPS_PER_USEC 4
  1181. #elif F_CPU == 16000000
  1182. #define PULSEIN_LOOPS_PER_USEC 1
  1183. #elif F_CPU == 8000000
  1184. #define PULSEIN_LOOPS_PER_USEC 1
  1185. #elif F_CPU == 4000000
  1186. #define PULSEIN_LOOPS_PER_USEC 1
  1187. #elif F_CPU == 2000000
  1188. #define PULSEIN_LOOPS_PER_USEC 1
  1189. #endif
  1190. #if defined(KINETISK)
  1191. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  1192. {
  1193. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1194. uint32_t usec_start, usec_stop;
  1195. // wait for any previous pulse to end
  1196. while (*reg) {
  1197. if (--timeout_count == 0) return 0;
  1198. }
  1199. // wait for the pulse to start
  1200. while (!*reg) {
  1201. if (--timeout_count == 0) return 0;
  1202. }
  1203. usec_start = micros();
  1204. // wait for the pulse to stop
  1205. while (*reg) {
  1206. if (--timeout_count == 0) return 0;
  1207. }
  1208. usec_stop = micros();
  1209. return usec_stop - usec_start;
  1210. }
  1211. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  1212. {
  1213. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1214. uint32_t usec_start, usec_stop;
  1215. // wait for any previous pulse to end
  1216. while (!*reg) {
  1217. if (--timeout_count == 0) return 0;
  1218. }
  1219. // wait for the pulse to start
  1220. while (*reg) {
  1221. if (--timeout_count == 0) return 0;
  1222. }
  1223. usec_start = micros();
  1224. // wait for the pulse to stop
  1225. while (!*reg) {
  1226. if (--timeout_count == 0) return 0;
  1227. }
  1228. usec_stop = micros();
  1229. return usec_stop - usec_start;
  1230. }
  1231. // TODO: an inline version should handle the common case where state is const
  1232. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1233. {
  1234. if (pin >= CORE_NUM_DIGITAL) return 0;
  1235. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  1236. return pulseIn_low(portInputRegister(pin), timeout);;
  1237. }
  1238. #elif defined(KINETISL)
  1239. // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
  1240. uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1241. {
  1242. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1243. uint32_t usec_start, usec_stop;
  1244. // wait for any previous pulse to end
  1245. while (*reg & mask) {
  1246. if (--timeout_count == 0) return -1;
  1247. }
  1248. // wait for the pulse to start
  1249. while (!(*reg & mask)) {
  1250. if (--timeout_count == 0) return 0;
  1251. }
  1252. usec_start = micros();
  1253. // wait for the pulse to stop
  1254. while (*reg & mask) {
  1255. if (--timeout_count == 0) return 0;
  1256. }
  1257. usec_stop = micros();
  1258. return usec_stop - usec_start;
  1259. }
  1260. uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1261. {
  1262. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1263. uint32_t usec_start, usec_stop;
  1264. // wait for any previous pulse to end
  1265. while (!(*reg & mask)) {
  1266. if (--timeout_count == 0) return 0;
  1267. }
  1268. // wait for the pulse to start
  1269. while (*reg & mask) {
  1270. if (--timeout_count == 0) return 0;
  1271. }
  1272. usec_start = micros();
  1273. // wait for the pulse to stop
  1274. while (!(*reg & mask)) {
  1275. if (--timeout_count == 0) return 0;
  1276. }
  1277. usec_stop = micros();
  1278. return usec_stop - usec_start;
  1279. }
  1280. // TODO: an inline version should handle the common case where state is const
  1281. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1282. {
  1283. if (pin >= CORE_NUM_DIGITAL) return 0;
  1284. if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
  1285. return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
  1286. }
  1287. #endif