Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
  73. };
  74. #elif defined(KINETISL)
  75. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  76. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  77. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  78. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  79. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  80. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  81. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  82. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  83. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  84. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  85. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  86. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  87. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  88. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  89. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  90. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  91. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  92. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  93. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  94. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  95. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  96. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  97. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  98. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  99. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  100. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  101. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  102. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  103. };
  104. #endif
  105. typedef void (*voidFuncPtr)(void);
  106. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  107. #if defined(KINETISK)
  108. static void porta_interrupt(void);
  109. static void portb_interrupt(void);
  110. static void portc_interrupt(void);
  111. static void portd_interrupt(void);
  112. static void porte_interrupt(void);
  113. #elif defined(KINETISL)
  114. static void porta_interrupt(void);
  115. static void portcd_interrupt(void);
  116. #endif
  117. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  118. {
  119. _VectorsRam[irq + 16] = function;
  120. }
  121. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  122. {
  123. volatile uint32_t *config;
  124. uint32_t cfg, mask;
  125. if (pin >= CORE_NUM_DIGITAL) return;
  126. switch (mode) {
  127. case CHANGE: mask = 0x0B; break;
  128. case RISING: mask = 0x09; break;
  129. case FALLING: mask = 0x0A; break;
  130. case LOW: mask = 0x08; break;
  131. case HIGH: mask = 0x0C; break;
  132. default: return;
  133. }
  134. mask = (mask << 16) | 0x01000000;
  135. config = portConfigRegister(pin);
  136. #if defined(KINETISK)
  137. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  138. attachInterruptVector(IRQ_PORTB, portb_interrupt);
  139. attachInterruptVector(IRQ_PORTC, portc_interrupt);
  140. attachInterruptVector(IRQ_PORTD, portd_interrupt);
  141. attachInterruptVector(IRQ_PORTE, porte_interrupt);
  142. #elif defined(KINETISL)
  143. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  144. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  145. #endif
  146. __disable_irq();
  147. cfg = *config;
  148. cfg &= ~0x000F0000; // disable any previous interrupt
  149. *config = cfg;
  150. intFunc[pin] = function; // set the function pointer
  151. cfg |= mask;
  152. *config = cfg; // enable the new interrupt
  153. __enable_irq();
  154. }
  155. void detachInterrupt(uint8_t pin)
  156. {
  157. volatile uint32_t *config;
  158. config = portConfigRegister(pin);
  159. __disable_irq();
  160. *config = ((*config & ~0x000F0000) | 0x01000000);
  161. intFunc[pin] = NULL;
  162. __enable_irq();
  163. }
  164. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  165. static void porta_interrupt(void)
  166. {
  167. uint32_t isfr = PORTA_ISFR;
  168. PORTA_ISFR = isfr;
  169. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  170. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  171. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  172. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  173. }
  174. static void portb_interrupt(void)
  175. {
  176. uint32_t isfr = PORTB_ISFR;
  177. PORTB_ISFR = isfr;
  178. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  179. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  180. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  181. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  182. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  183. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  184. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  185. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  186. }
  187. static void portc_interrupt(void)
  188. {
  189. // TODO: these are inefficent. Use CLZ somehow....
  190. uint32_t isfr = PORTC_ISFR;
  191. PORTC_ISFR = isfr;
  192. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  193. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  194. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  195. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  196. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  197. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  198. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  199. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  200. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  201. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  202. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  203. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  204. }
  205. static void portd_interrupt(void)
  206. {
  207. uint32_t isfr = PORTD_ISFR;
  208. PORTD_ISFR = isfr;
  209. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  210. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  211. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  212. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  213. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  214. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  215. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  216. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  217. }
  218. static void porte_interrupt(void)
  219. {
  220. uint32_t isfr = PORTE_ISFR;
  221. PORTE_ISFR = isfr;
  222. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  223. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  224. }
  225. #elif defined(__MKL26Z64__)
  226. static void porta_interrupt(void)
  227. {
  228. uint32_t isfr = PORTA_ISFR;
  229. PORTA_ISFR = isfr;
  230. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  231. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  232. }
  233. static void portcd_interrupt(void)
  234. {
  235. uint32_t isfr = PORTC_ISFR;
  236. PORTC_ISFR = isfr;
  237. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  238. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  239. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  240. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  241. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  242. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  243. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  244. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  245. isfr = PORTD_ISFR;
  246. PORTD_ISFR = isfr;
  247. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  248. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  249. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  250. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  251. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  252. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  253. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  254. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  255. }
  256. #endif
  257. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  258. unsigned long rtc_get(void)
  259. {
  260. return RTC_TSR;
  261. }
  262. void rtc_set(unsigned long t)
  263. {
  264. RTC_SR = 0;
  265. RTC_TPR = 0;
  266. RTC_TSR = t;
  267. RTC_SR = RTC_SR_TCE;
  268. }
  269. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  270. // For example, adjust = -100 is slows the clock by 11.92 ppm
  271. //
  272. void rtc_compensate(int adjust)
  273. {
  274. uint32_t comp, interval, tcr;
  275. // This simple approach tries to maximize the interval.
  276. // Perhaps minimizing TCR would be better, so the
  277. // compensation is distributed more evenly across
  278. // many seconds, rather than saving it all up and then
  279. // altering one second up to +/- 0.38%
  280. if (adjust >= 0) {
  281. comp = adjust;
  282. interval = 256;
  283. while (1) {
  284. tcr = comp * interval;
  285. if (tcr < 128*256) break;
  286. if (--interval == 1) break;
  287. }
  288. tcr = tcr >> 8;
  289. } else {
  290. comp = -adjust;
  291. interval = 256;
  292. while (1) {
  293. tcr = comp * interval;
  294. if (tcr < 129*256) break;
  295. if (--interval == 1) break;
  296. }
  297. tcr = tcr >> 8;
  298. tcr = 256 - tcr;
  299. }
  300. RTC_TCR = ((interval - 1) << 8) | tcr;
  301. }
  302. #else
  303. unsigned long rtc_get(void) { return 0; }
  304. void rtc_set(unsigned long t) { }
  305. void rtc_compensate(int adjust) { }
  306. #endif
  307. #if 0
  308. // TODO: build system should define this
  309. // so RTC is automatically initialized to approx correct time
  310. // at least when the program begins running right after upload
  311. #ifndef TIME_T
  312. #define TIME_T 1350160272
  313. #endif
  314. void init_rtc(void)
  315. {
  316. serial_print("init_rtc\n");
  317. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  318. // enable the RTC crystal oscillator, for approx 12pf crystal
  319. if (!(RTC_CR & RTC_CR_OSCE)) {
  320. serial_print("start RTC oscillator\n");
  321. RTC_SR = 0;
  322. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  323. }
  324. // should wait for crystal to stabilize.....
  325. serial_print("SR=");
  326. serial_phex32(RTC_SR);
  327. serial_print("\n");
  328. serial_print("CR=");
  329. serial_phex32(RTC_CR);
  330. serial_print("\n");
  331. serial_print("TSR=");
  332. serial_phex32(RTC_TSR);
  333. serial_print("\n");
  334. serial_print("TCR=");
  335. serial_phex32(RTC_TCR);
  336. serial_print("\n");
  337. if (RTC_SR & RTC_SR_TIF) {
  338. // enable the RTC
  339. RTC_SR = 0;
  340. RTC_TPR = 0;
  341. RTC_TSR = TIME_T;
  342. RTC_SR = RTC_SR_TCE;
  343. }
  344. }
  345. #endif
  346. extern void usb_init(void);
  347. // create a default PWM at the same 488.28 Hz as Arduino Uno
  348. #if defined(KINETISK)
  349. #define F_TIMER F_BUS
  350. #elif defined(KINETISL)
  351. #define F_TIMER (F_PLL/2)
  352. #endif
  353. #if F_TIMER == 60000000
  354. #define DEFAULT_FTM_MOD (61440 - 1)
  355. #define DEFAULT_FTM_PRESCALE 1
  356. #elif F_TIMER == 56000000
  357. #define DEFAULT_FTM_MOD (57344 - 1)
  358. #define DEFAULT_FTM_PRESCALE 1
  359. #elif F_TIMER == 48000000
  360. #define DEFAULT_FTM_MOD (49152 - 1)
  361. #define DEFAULT_FTM_PRESCALE 1
  362. #elif F_TIMER == 40000000
  363. #define DEFAULT_FTM_MOD (40960 - 1)
  364. #define DEFAULT_FTM_PRESCALE 1
  365. #elif F_TIMER == 36000000
  366. #define DEFAULT_FTM_MOD (36864 - 1)
  367. #define DEFAULT_FTM_PRESCALE 1
  368. #elif F_TIMER == 24000000
  369. #define DEFAULT_FTM_MOD (49152 - 1)
  370. #define DEFAULT_FTM_PRESCALE 0
  371. #elif F_TIMER == 16000000
  372. #define DEFAULT_FTM_MOD (32768 - 1)
  373. #define DEFAULT_FTM_PRESCALE 0
  374. #elif F_TIMER == 8000000
  375. #define DEFAULT_FTM_MOD (16384 - 1)
  376. #define DEFAULT_FTM_PRESCALE 0
  377. #elif F_TIMER == 4000000
  378. #define DEFAULT_FTM_MOD (8192 - 1)
  379. #define DEFAULT_FTM_PRESCALE 0
  380. #elif F_TIMER == 2000000
  381. #define DEFAULT_FTM_MOD (4096 - 1)
  382. #define DEFAULT_FTM_PRESCALE 0
  383. #endif
  384. //void init_pins(void)
  385. void _init_Teensyduino_internal_(void)
  386. {
  387. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  388. NVIC_ENABLE_IRQ(IRQ_PORTA);
  389. NVIC_ENABLE_IRQ(IRQ_PORTB);
  390. NVIC_ENABLE_IRQ(IRQ_PORTC);
  391. NVIC_ENABLE_IRQ(IRQ_PORTD);
  392. NVIC_ENABLE_IRQ(IRQ_PORTE);
  393. #elif defined(__MKL26Z64__)
  394. NVIC_ENABLE_IRQ(IRQ_PORTA);
  395. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  396. #endif
  397. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  398. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  399. FTM0_CNT = 0;
  400. FTM0_MOD = DEFAULT_FTM_MOD;
  401. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  402. FTM0_C1SC = 0x28;
  403. FTM0_C2SC = 0x28;
  404. FTM0_C3SC = 0x28;
  405. FTM0_C4SC = 0x28;
  406. FTM0_C5SC = 0x28;
  407. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  408. FTM0_C6SC = 0x28;
  409. FTM0_C7SC = 0x28;
  410. #endif
  411. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  412. FTM1_CNT = 0;
  413. FTM1_MOD = DEFAULT_FTM_MOD;
  414. FTM1_C0SC = 0x28;
  415. FTM1_C1SC = 0x28;
  416. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  417. #if defined(__MK20DX256__) || defined(__MKL26Z64__)
  418. FTM2_CNT = 0;
  419. FTM2_MOD = DEFAULT_FTM_MOD;
  420. FTM2_C0SC = 0x28;
  421. FTM2_C1SC = 0x28;
  422. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  423. #endif
  424. analog_init();
  425. //delay(100); // TODO: this is not necessary, right?
  426. delay(4);
  427. usb_init();
  428. }
  429. #if defined(__MK20DX128__)
  430. #define FTM0_CH0_PIN 22
  431. #define FTM0_CH1_PIN 23
  432. #define FTM0_CH2_PIN 9
  433. #define FTM0_CH3_PIN 10
  434. #define FTM0_CH4_PIN 6
  435. #define FTM0_CH5_PIN 20
  436. #define FTM0_CH6_PIN 21
  437. #define FTM0_CH7_PIN 5
  438. #define FTM1_CH0_PIN 3
  439. #define FTM1_CH1_PIN 4
  440. #elif defined(__MK20DX256__)
  441. #define FTM0_CH0_PIN 22
  442. #define FTM0_CH1_PIN 23
  443. #define FTM0_CH2_PIN 9
  444. #define FTM0_CH3_PIN 10
  445. #define FTM0_CH4_PIN 6
  446. #define FTM0_CH5_PIN 20
  447. #define FTM0_CH6_PIN 21
  448. #define FTM0_CH7_PIN 5
  449. #define FTM1_CH0_PIN 3
  450. #define FTM1_CH1_PIN 4
  451. #define FTM2_CH0_PIN 32
  452. #define FTM2_CH1_PIN 25
  453. #elif defined(__MKL26Z64__)
  454. #define FTM0_CH0_PIN 22
  455. #define FTM0_CH1_PIN 23
  456. #define FTM0_CH2_PIN 9
  457. #define FTM0_CH3_PIN 10
  458. #define FTM0_CH4_PIN 6
  459. #define FTM0_CH5_PIN 20
  460. #define FTM1_CH0_PIN 16
  461. #define FTM1_CH1_PIN 17
  462. #define FTM2_CH0_PIN 3
  463. #define FTM2_CH1_PIN 4
  464. #endif
  465. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  466. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  467. static uint8_t analog_write_res = 8;
  468. // SOPT4 is SIM select clocks?
  469. // FTM is clocked by the bus clock, either 24 or 48 MHz
  470. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  471. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  472. void analogWrite(uint8_t pin, int val)
  473. {
  474. uint32_t cval, max;
  475. #if defined(__MK20DX256__)
  476. if (pin == A14) {
  477. uint8_t res = analog_write_res;
  478. if (res < 12) {
  479. val <<= 12 - res;
  480. } else if (res > 12) {
  481. val >>= res - 12;
  482. }
  483. analogWriteDAC0(val);
  484. return;
  485. }
  486. #elif defined(__MKL26Z64__)
  487. if (pin == A12) {
  488. uint8_t res = analog_write_res;
  489. if (res < 12) {
  490. val <<= 12 - res;
  491. } else if (res > 12) {
  492. val >>= res - 12;
  493. }
  494. analogWriteDAC0(val);
  495. return;
  496. }
  497. #endif
  498. max = 1 << analog_write_res;
  499. if (val <= 0) {
  500. digitalWrite(pin, LOW);
  501. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  502. return;
  503. } else if (val >= max) {
  504. digitalWrite(pin, HIGH);
  505. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  506. return;
  507. }
  508. //serial_print("analogWrite\n");
  509. //serial_print("val = ");
  510. //serial_phex32(val);
  511. //serial_print("\n");
  512. //serial_print("analog_write_res = ");
  513. //serial_phex(analog_write_res);
  514. //serial_print("\n");
  515. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  516. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  517. #if defined(FTM2_CH0_PIN)
  518. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  519. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  520. #endif
  521. } else {
  522. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  523. }
  524. //serial_print("cval = ");
  525. //serial_phex32(cval);
  526. //serial_print("\n");
  527. switch (pin) {
  528. #ifdef FTM0_CH0_PIN
  529. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  530. FTM0_C0V = cval;
  531. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  532. break;
  533. #endif
  534. #ifdef FTM0_CH1_PIN
  535. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  536. FTM0_C1V = cval;
  537. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  538. break;
  539. #endif
  540. #ifdef FTM0_CH2_PIN
  541. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  542. FTM0_C2V = cval;
  543. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  544. break;
  545. #endif
  546. #ifdef FTM0_CH3_PIN
  547. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  548. FTM0_C3V = cval;
  549. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  550. break;
  551. #endif
  552. #ifdef FTM0_CH4_PIN
  553. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  554. FTM0_C4V = cval;
  555. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  556. break;
  557. #endif
  558. #ifdef FTM0_CH5_PIN
  559. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  560. FTM0_C5V = cval;
  561. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  562. break;
  563. #endif
  564. #ifdef FTM0_CH6_PIN
  565. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  566. FTM0_C6V = cval;
  567. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  568. break;
  569. #endif
  570. #ifdef FTM0_CH7_PIN
  571. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  572. FTM0_C7V = cval;
  573. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  574. break;
  575. #endif
  576. #ifdef FTM1_CH0_PIN
  577. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  578. FTM1_C0V = cval;
  579. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  580. break;
  581. #endif
  582. #ifdef FTM1_CH1_PIN
  583. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  584. FTM1_C1V = cval;
  585. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  586. break;
  587. #endif
  588. #ifdef FTM2_CH0_PIN
  589. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  590. FTM2_C0V = cval;
  591. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  592. break;
  593. #endif
  594. #ifdef FTM2_CH1_PIN
  595. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  596. FTM2_C1V = cval;
  597. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  598. break;
  599. #endif
  600. default:
  601. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  602. pinMode(pin, OUTPUT);
  603. }
  604. }
  605. void analogWriteRes(uint32_t bits)
  606. {
  607. if (bits < 1) {
  608. bits = 1;
  609. } else if (bits > 16) {
  610. bits = 16;
  611. }
  612. analog_write_res = bits;
  613. }
  614. void analogWriteFrequency(uint8_t pin, uint32_t frequency)
  615. {
  616. uint32_t minfreq, prescale, mod;
  617. //serial_print("analogWriteFrequency: pin = ");
  618. //serial_phex(pin);
  619. //serial_print(", freq = ");
  620. //serial_phex32(frequency);
  621. //serial_print("\n");
  622. for (prescale = 0; prescale < 7; prescale++) {
  623. minfreq = (F_TIMER >> 16) >> prescale;
  624. if (frequency > minfreq) break;
  625. }
  626. //serial_print("F_TIMER = ");
  627. //serial_phex32(F_TIMER >> prescale);
  628. //serial_print("\n");
  629. //serial_print("prescale = ");
  630. //serial_phex(prescale);
  631. //serial_print("\n");
  632. //mod = ((F_TIMER >> prescale) / frequency) - 1;
  633. mod = (((F_TIMER >> prescale) + (frequency >> 1)) / frequency) - 1;
  634. if (mod > 65535) mod = 65535;
  635. //serial_print("mod = ");
  636. //serial_phex32(mod);
  637. //serial_print("\n");
  638. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  639. FTM1_SC = 0;
  640. FTM1_CNT = 0;
  641. FTM1_MOD = mod;
  642. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  643. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  644. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  645. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  646. #ifdef FTM0_CH6_PIN
  647. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  648. #endif
  649. ) {
  650. FTM0_SC = 0;
  651. FTM0_CNT = 0;
  652. FTM0_MOD = mod;
  653. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  654. }
  655. #ifdef FTM2_CH0_PIN
  656. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  657. FTM2_SC = 0;
  658. FTM2_CNT = 0;
  659. FTM2_MOD = mod;
  660. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
  661. }
  662. #endif
  663. }
  664. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  665. void digitalWrite(uint8_t pin, uint8_t val)
  666. {
  667. if (pin >= CORE_NUM_DIGITAL) return;
  668. #ifdef KINETISK
  669. if (*portModeRegister(pin)) {
  670. if (val) {
  671. *portSetRegister(pin) = 1;
  672. } else {
  673. *portClearRegister(pin) = 1;
  674. }
  675. #else
  676. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  677. if (val) {
  678. *portSetRegister(pin) = digitalPinToBitMask(pin);
  679. } else {
  680. *portClearRegister(pin) = digitalPinToBitMask(pin);
  681. }
  682. #endif
  683. } else {
  684. volatile uint32_t *config = portConfigRegister(pin);
  685. if (val) {
  686. // TODO use bitband for atomic read-mod-write
  687. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  688. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  689. } else {
  690. // TODO use bitband for atomic read-mod-write
  691. *config &= ~(PORT_PCR_PE);
  692. //*config = PORT_PCR_MUX(1);
  693. }
  694. }
  695. }
  696. uint8_t digitalRead(uint8_t pin)
  697. {
  698. if (pin >= CORE_NUM_DIGITAL) return 0;
  699. #ifdef KINETISK
  700. return *portInputRegister(pin);
  701. #else
  702. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  703. #endif
  704. }
  705. void pinMode(uint8_t pin, uint8_t mode)
  706. {
  707. volatile uint32_t *config;
  708. if (pin >= CORE_NUM_DIGITAL) return;
  709. config = portConfigRegister(pin);
  710. if (mode == OUTPUT) {
  711. #ifdef KINETISK
  712. *portModeRegister(pin) = 1;
  713. #else
  714. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  715. #endif
  716. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  717. } else {
  718. #ifdef KINETISK
  719. *portModeRegister(pin) = 0;
  720. #else
  721. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  722. #endif
  723. if (mode == INPUT) {
  724. *config = PORT_PCR_MUX(1);
  725. } else {
  726. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  727. }
  728. }
  729. }
  730. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  731. {
  732. if (bitOrder == LSBFIRST) {
  733. shiftOut_lsbFirst(dataPin, clockPin, value);
  734. } else {
  735. shiftOut_msbFirst(dataPin, clockPin, value);
  736. }
  737. }
  738. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  739. {
  740. uint8_t mask;
  741. for (mask=0x01; mask; mask <<= 1) {
  742. digitalWrite(dataPin, value & mask);
  743. digitalWrite(clockPin, HIGH);
  744. digitalWrite(clockPin, LOW);
  745. }
  746. }
  747. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  748. {
  749. uint8_t mask;
  750. for (mask=0x80; mask; mask >>= 1) {
  751. digitalWrite(dataPin, value & mask);
  752. digitalWrite(clockPin, HIGH);
  753. digitalWrite(clockPin, LOW);
  754. }
  755. }
  756. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  757. {
  758. if (bitOrder == LSBFIRST) {
  759. return shiftIn_lsbFirst(dataPin, clockPin);
  760. } else {
  761. return shiftIn_msbFirst(dataPin, clockPin);
  762. }
  763. }
  764. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  765. {
  766. uint8_t mask, value=0;
  767. for (mask=0x01; mask; mask <<= 1) {
  768. digitalWrite(clockPin, HIGH);
  769. if (digitalRead(dataPin)) value |= mask;
  770. digitalWrite(clockPin, LOW);
  771. }
  772. return value;
  773. }
  774. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  775. {
  776. uint8_t mask, value=0;
  777. for (mask=0x80; mask; mask >>= 1) {
  778. digitalWrite(clockPin, HIGH);
  779. if (digitalRead(dataPin)) value |= mask;
  780. digitalWrite(clockPin, LOW);
  781. }
  782. return value;
  783. }
  784. // the systick interrupt is supposed to increment this at 1 kHz rate
  785. volatile uint32_t systick_millis_count = 0;
  786. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  787. uint32_t micros(void)
  788. {
  789. uint32_t count, current, istatus;
  790. __disable_irq();
  791. current = SYST_CVR;
  792. count = systick_millis_count;
  793. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  794. __enable_irq();
  795. //systick_current = current;
  796. //systick_count = count;
  797. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  798. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  799. current = ((F_CPU / 1000) - 1) - current;
  800. return count * 1000 + current / (F_CPU / 1000000);
  801. }
  802. void delay(uint32_t ms)
  803. {
  804. uint32_t start = micros();
  805. if (ms > 0) {
  806. while (1) {
  807. if ((micros() - start) >= 1000) {
  808. ms--;
  809. if (ms == 0) return;
  810. start += 1000;
  811. }
  812. yield();
  813. }
  814. }
  815. }
  816. // TODO: verify these result in correct timeouts...
  817. #if F_CPU == 168000000
  818. #define PULSEIN_LOOPS_PER_USEC 25
  819. #elif F_CPU == 144000000
  820. #define PULSEIN_LOOPS_PER_USEC 21
  821. #elif F_CPU == 120000000
  822. #define PULSEIN_LOOPS_PER_USEC 18
  823. #elif F_CPU == 96000000
  824. #define PULSEIN_LOOPS_PER_USEC 14
  825. #elif F_CPU == 72000000
  826. #define PULSEIN_LOOPS_PER_USEC 10
  827. #elif F_CPU == 48000000
  828. #define PULSEIN_LOOPS_PER_USEC 7
  829. #elif F_CPU == 24000000
  830. #define PULSEIN_LOOPS_PER_USEC 4
  831. #elif F_CPU == 16000000
  832. #define PULSEIN_LOOPS_PER_USEC 1
  833. #elif F_CPU == 8000000
  834. #define PULSEIN_LOOPS_PER_USEC 1
  835. #elif F_CPU == 4000000
  836. #define PULSEIN_LOOPS_PER_USEC 1
  837. #elif F_CPU == 2000000
  838. #define PULSEIN_LOOPS_PER_USEC 1
  839. #endif
  840. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  841. {
  842. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  843. uint32_t usec_start, usec_stop;
  844. // wait for any previous pulse to end
  845. while (*reg) {
  846. if (--timeout_count == 0) return 0;
  847. }
  848. // wait for the pulse to start
  849. while (!*reg) {
  850. if (--timeout_count == 0) return 0;
  851. }
  852. usec_start = micros();
  853. // wait for the pulse to stop
  854. while (*reg) {
  855. if (--timeout_count == 0) return 0;
  856. }
  857. usec_stop = micros();
  858. return usec_stop - usec_start;
  859. }
  860. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  861. {
  862. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  863. uint32_t usec_start, usec_stop;
  864. // wait for any previous pulse to end
  865. while (!*reg) {
  866. if (--timeout_count == 0) return 0;
  867. }
  868. // wait for the pulse to start
  869. while (*reg) {
  870. if (--timeout_count == 0) return 0;
  871. }
  872. usec_start = micros();
  873. // wait for the pulse to stop
  874. while (!*reg) {
  875. if (--timeout_count == 0) return 0;
  876. }
  877. usec_stop = micros();
  878. return usec_stop - usec_start;
  879. }
  880. // TODO: an inline version should handle the common case where state is const
  881. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  882. {
  883. if (pin >= CORE_NUM_DIGITAL) return 0;
  884. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  885. return pulseIn_low(portInputRegister(pin), timeout);;
  886. }