Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 9 години
преди 10 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 10 години
преди 11 години
преди 9 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 10 години
преди 9 години
преди 10 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 11 години
преди 11 години
преди 9 години
преди 11 години
преди 9 години
преди 11 години
преди 10 години
преди 9 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 11 години
преди 10 години
преди 9 години
преди 10 години
преди 11 години
преди 11 години
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "kinetis.h"
  31. #include "core_pins.h"
  32. #include "HardwareSerial.h"
  33. ////////////////////////////////////////////////////////////////
  34. // Tunable parameters (relatively safe to edit these numbers)
  35. ////////////////////////////////////////////////////////////////
  36. #define TX_BUFFER_SIZE 64 // number of outgoing bytes to buffer
  37. #define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer
  38. #define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause
  39. #define RTS_LOW_WATERMARK 26 // RTS allows sender to resume
  40. #define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest
  41. ////////////////////////////////////////////////////////////////
  42. // changes not recommended below this point....
  43. ////////////////////////////////////////////////////////////////
  44. #ifdef SERIAL_9BIT_SUPPORT
  45. static uint8_t use9Bits = 0;
  46. #define BUFTYPE uint16_t
  47. #else
  48. #define BUFTYPE uint8_t
  49. #define use9Bits 0
  50. #endif
  51. static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE];
  52. static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE];
  53. static volatile uint8_t transmitting = 0;
  54. #if defined(KINETISK)
  55. static volatile uint8_t *transmit_pin=NULL;
  56. #define transmit_assert() *transmit_pin = 1
  57. #define transmit_deassert() *transmit_pin = 0
  58. static volatile uint8_t *rts_pin=NULL;
  59. #define rts_assert() *rts_pin = 0
  60. #define rts_deassert() *rts_pin = 1
  61. #elif defined(KINETISL)
  62. static volatile uint8_t *transmit_pin=NULL;
  63. static uint8_t transmit_mask=0;
  64. #define transmit_assert() *(transmit_pin+4) = transmit_mask;
  65. #define transmit_deassert() *(transmit_pin+8) = transmit_mask;
  66. static volatile uint8_t *rts_pin=NULL;
  67. static uint8_t rts_mask=0;
  68. #define rts_assert() *(rts_pin+8) = rts_mask;
  69. #define rts_deassert() *(rts_pin+4) = rts_mask;
  70. #endif
  71. #if TX_BUFFER_SIZE > 255
  72. static volatile uint16_t tx_buffer_head = 0;
  73. static volatile uint16_t tx_buffer_tail = 0;
  74. #else
  75. static volatile uint8_t tx_buffer_head = 0;
  76. static volatile uint8_t tx_buffer_tail = 0;
  77. #endif
  78. #if RX_BUFFER_SIZE > 255
  79. static volatile uint16_t rx_buffer_head = 0;
  80. static volatile uint16_t rx_buffer_tail = 0;
  81. #else
  82. static volatile uint8_t rx_buffer_head = 0;
  83. static volatile uint8_t rx_buffer_tail = 0;
  84. #endif
  85. static uint8_t rx_pin_num = 0;
  86. static uint8_t tx_pin_num = 1;
  87. // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
  88. // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
  89. #ifdef HAS_KINETISK_UART0_FIFO
  90. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
  91. #else
  92. #define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE
  93. #endif
  94. #define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE
  95. #define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE
  96. #define C2_TX_INACTIVE C2_ENABLE
  97. void serial_begin(uint32_t divisor)
  98. {
  99. SIM_SCGC4 |= SIM_SCGC4_UART0; // turn on clock, TODO: use bitband
  100. rx_buffer_head = 0;
  101. rx_buffer_tail = 0;
  102. tx_buffer_head = 0;
  103. tx_buffer_tail = 0;
  104. transmitting = 0;
  105. switch (rx_pin_num) {
  106. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  107. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  108. #if defined(KINETISL)
  109. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  110. #endif
  111. }
  112. switch (tx_pin_num) {
  113. case 1: CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  114. case 5: CORE_PIN5_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); break;
  115. #if defined(KINETISL)
  116. case 4: CORE_PIN4_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(2); break;
  117. #endif
  118. }
  119. #if defined(HAS_KINETISK_UART0)
  120. UART0_BDH = (divisor >> 13) & 0x1F;
  121. UART0_BDL = (divisor >> 5) & 0xFF;
  122. UART0_C4 = divisor & 0x1F;
  123. #ifdef HAS_KINETISK_UART0_FIFO
  124. UART0_C1 = UART_C1_ILT;
  125. UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
  126. UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
  127. UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
  128. #else
  129. UART0_C1 = 0;
  130. UART0_PFIFO = 0;
  131. #endif
  132. #elif defined(HAS_KINETISL_UART0)
  133. UART0_BDH = (divisor >> 8) & 0x1F;
  134. UART0_BDL = divisor & 0xFF;
  135. UART0_C1 = 0;
  136. #endif
  137. UART0_C2 = C2_TX_INACTIVE;
  138. NVIC_SET_PRIORITY(IRQ_UART0_STATUS, IRQ_PRIORITY);
  139. NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
  140. }
  141. void serial_format(uint32_t format)
  142. {
  143. uint8_t c;
  144. c = UART0_C1;
  145. c = (c & ~0x13) | (format & 0x03); // configure parity
  146. if (format & 0x04) c |= 0x10; // 9 bits (might include parity)
  147. UART0_C1 = c;
  148. if ((format & 0x0F) == 0x04) UART0_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1
  149. c = UART0_S2 & ~0x10;
  150. if (format & 0x10) c |= 0x10; // rx invert
  151. UART0_S2 = c;
  152. c = UART0_C3 & ~0x10;
  153. if (format & 0x20) c |= 0x10; // tx invert
  154. UART0_C3 = c;
  155. #ifdef SERIAL_9BIT_SUPPORT
  156. c = UART0_C4 & 0x1F;
  157. if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits)
  158. UART0_C4 = c;
  159. use9Bits = format & 0x80;
  160. #endif
  161. }
  162. void serial_end(void)
  163. {
  164. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  165. while (transmitting) yield(); // wait for buffered data to send
  166. NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
  167. UART0_C2 = 0;
  168. CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  169. CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
  170. rx_buffer_head = 0;
  171. rx_buffer_tail = 0;
  172. if (rts_pin) rts_deassert();
  173. }
  174. void serial_set_transmit_pin(uint8_t pin)
  175. {
  176. while (transmitting) ;
  177. pinMode(pin, OUTPUT);
  178. digitalWrite(pin, LOW);
  179. transmit_pin = portOutputRegister(pin);
  180. #if defined(KINETISL)
  181. transmit_mask = digitalPinToBitMask(pin);
  182. #endif
  183. }
  184. void serial_set_tx(uint8_t pin, uint8_t opendrain)
  185. {
  186. uint32_t cfg;
  187. if (opendrain) pin |= 128;
  188. if (pin == tx_pin_num) return;
  189. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  190. switch (tx_pin_num & 127) {
  191. case 1: CORE_PIN1_CONFIG = 0; break; // PTB17
  192. case 5: CORE_PIN5_CONFIG = 0; break; // PTD7
  193. #if defined(KINETISL)
  194. case 4: CORE_PIN4_CONFIG = 0; break; // PTA2
  195. case 24: CORE_PIN24_CONFIG = 0; break; // PTE20
  196. #endif
  197. }
  198. if (opendrain) {
  199. cfg = PORT_PCR_DSE | PORT_PCR_ODE;
  200. } else {
  201. cfg = PORT_PCR_DSE | PORT_PCR_SRE;
  202. }
  203. switch (pin & 127) {
  204. case 1: CORE_PIN1_CONFIG = cfg | PORT_PCR_MUX(3); break;
  205. case 5: CORE_PIN5_CONFIG = cfg | PORT_PCR_MUX(3); break;
  206. #if defined(KINETISL)
  207. case 4: CORE_PIN4_CONFIG = cfg | PORT_PCR_MUX(2); break;
  208. case 24: CORE_PIN24_CONFIG = cfg | PORT_PCR_MUX(4); break;
  209. #endif
  210. }
  211. }
  212. tx_pin_num = pin;
  213. }
  214. void serial_set_rx(uint8_t pin)
  215. {
  216. if (pin == rx_pin_num) return;
  217. if ((SIM_SCGC4 & SIM_SCGC4_UART0)) {
  218. switch (rx_pin_num) {
  219. case 0: CORE_PIN0_CONFIG = 0; break; // PTB16
  220. case 21: CORE_PIN21_CONFIG = 0; break; // PTD6
  221. #if defined(KINETISL)
  222. case 3: CORE_PIN3_CONFIG = 0; break; // PTA1
  223. case 25: CORE_PIN25_CONFIG = 0; break; // PTE21
  224. #endif
  225. }
  226. switch (pin) {
  227. case 0: CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  228. case 21: CORE_PIN21_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); break;
  229. #if defined(KINETISL)
  230. case 3: CORE_PIN3_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(2); break;
  231. case 25: CORE_PIN25_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(4); break;
  232. #endif
  233. }
  234. }
  235. rx_pin_num = pin;
  236. }
  237. int serial_set_rts(uint8_t pin)
  238. {
  239. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  240. if (pin < CORE_NUM_DIGITAL) {
  241. rts_pin = portOutputRegister(pin);
  242. #if defined(KINETISL)
  243. rts_mask = digitalPinToBitMask(pin);
  244. #endif
  245. pinMode(pin, OUTPUT);
  246. rts_assert();
  247. } else {
  248. rts_pin = NULL;
  249. return 0;
  250. }
  251. /*
  252. if (pin == 6) {
  253. CORE_PIN6_CONFIG = PORT_PCR_MUX(3);
  254. } else if (pin == 19) {
  255. CORE_PIN19_CONFIG = PORT_PCR_MUX(3);
  256. } else {
  257. UART0_MODEM &= ~UART_MODEM_RXRTSE;
  258. return 0;
  259. }
  260. UART0_MODEM |= UART_MODEM_RXRTSE;
  261. */
  262. return 1;
  263. }
  264. int serial_set_cts(uint8_t pin)
  265. {
  266. #if defined(KINETISK)
  267. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return 0;
  268. if (pin == 18) {
  269. CORE_PIN18_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  270. } else if (pin == 20) {
  271. CORE_PIN20_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown
  272. } else {
  273. UART0_MODEM &= ~UART_MODEM_TXCTSE;
  274. return 0;
  275. }
  276. UART0_MODEM |= UART_MODEM_TXCTSE;
  277. return 1;
  278. #else
  279. return 0;
  280. #endif
  281. }
  282. void serial_putchar(uint32_t c)
  283. {
  284. uint32_t head, n;
  285. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  286. if (transmit_pin) transmit_assert();
  287. head = tx_buffer_head;
  288. if (++head >= TX_BUFFER_SIZE) head = 0;
  289. while (tx_buffer_tail == head) {
  290. int priority = nvic_execution_priority();
  291. if (priority <= IRQ_PRIORITY) {
  292. if ((UART0_S1 & UART_S1_TDRE)) {
  293. uint32_t tail = tx_buffer_tail;
  294. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  295. n = tx_buffer[tail];
  296. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  297. UART0_D = n;
  298. tx_buffer_tail = tail;
  299. }
  300. } else if (priority >= 256) {
  301. yield();
  302. }
  303. }
  304. tx_buffer[head] = c;
  305. transmitting = 1;
  306. tx_buffer_head = head;
  307. UART0_C2 = C2_TX_ACTIVE;
  308. }
  309. #ifdef HAS_KINETISK_UART0_FIFO
  310. void serial_write(const void *buf, unsigned int count)
  311. {
  312. const uint8_t *p = (const uint8_t *)buf;
  313. const uint8_t *end = p + count;
  314. uint32_t head, n;
  315. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  316. if (transmit_pin) transmit_assert();
  317. while (p < end) {
  318. head = tx_buffer_head;
  319. if (++head >= TX_BUFFER_SIZE) head = 0;
  320. if (tx_buffer_tail == head) {
  321. UART0_C2 = C2_TX_ACTIVE;
  322. do {
  323. int priority = nvic_execution_priority();
  324. if (priority <= IRQ_PRIORITY) {
  325. if ((UART0_S1 & UART_S1_TDRE)) {
  326. uint32_t tail = tx_buffer_tail;
  327. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  328. n = tx_buffer[tail];
  329. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  330. UART0_D = n;
  331. tx_buffer_tail = tail;
  332. }
  333. } else if (priority >= 256) {
  334. yield();
  335. }
  336. } while (tx_buffer_tail == head);
  337. }
  338. tx_buffer[head] = *p++;
  339. transmitting = 1;
  340. tx_buffer_head = head;
  341. }
  342. UART0_C2 = C2_TX_ACTIVE;
  343. }
  344. #else
  345. void serial_write(const void *buf, unsigned int count)
  346. {
  347. const uint8_t *p = (const uint8_t *)buf;
  348. while (count-- > 0) serial_putchar(*p++);
  349. }
  350. #endif
  351. void serial_flush(void)
  352. {
  353. while (transmitting) yield(); // wait
  354. }
  355. int serial_write_buffer_free(void)
  356. {
  357. uint32_t head, tail;
  358. head = tx_buffer_head;
  359. tail = tx_buffer_tail;
  360. if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail;
  361. return tail - head - 1;
  362. }
  363. int serial_available(void)
  364. {
  365. uint32_t head, tail;
  366. head = rx_buffer_head;
  367. tail = rx_buffer_tail;
  368. if (head >= tail) return head - tail;
  369. return RX_BUFFER_SIZE + head - tail;
  370. }
  371. int serial_getchar(void)
  372. {
  373. uint32_t head, tail;
  374. int c;
  375. head = rx_buffer_head;
  376. tail = rx_buffer_tail;
  377. if (head == tail) return -1;
  378. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  379. c = rx_buffer[tail];
  380. rx_buffer_tail = tail;
  381. if (rts_pin) {
  382. int avail;
  383. if (head >= tail) avail = head - tail;
  384. else avail = RX_BUFFER_SIZE + head - tail;
  385. if (avail <= RTS_LOW_WATERMARK) rts_assert();
  386. }
  387. return c;
  388. }
  389. int serial_peek(void)
  390. {
  391. uint32_t head, tail;
  392. head = rx_buffer_head;
  393. tail = rx_buffer_tail;
  394. if (head == tail) return -1;
  395. if (++tail >= RX_BUFFER_SIZE) tail = 0;
  396. return rx_buffer[tail];
  397. }
  398. void serial_clear(void)
  399. {
  400. #ifdef HAS_KINETISK_UART0_FIFO
  401. if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
  402. UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  403. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  404. UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
  405. #endif
  406. rx_buffer_head = rx_buffer_tail;
  407. if (rts_pin) rts_assert();
  408. }
  409. // status interrupt combines
  410. // Transmit data below watermark UART_S1_TDRE
  411. // Transmit complete UART_S1_TC
  412. // Idle line UART_S1_IDLE
  413. // Receive data above watermark UART_S1_RDRF
  414. // LIN break detect UART_S2_LBKDIF
  415. // RxD pin active edge UART_S2_RXEDGIF
  416. void uart0_status_isr(void)
  417. {
  418. uint32_t head, tail, n;
  419. uint8_t c;
  420. #ifdef HAS_KINETISK_UART0_FIFO
  421. uint32_t newhead;
  422. uint8_t avail;
  423. if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
  424. __disable_irq();
  425. avail = UART0_RCFIFO;
  426. if (avail == 0) {
  427. // The only way to clear the IDLE interrupt flag is
  428. // to read the data register. But reading with no
  429. // data causes a FIFO underrun, which causes the
  430. // FIFO to return corrupted data. If anyone from
  431. // Freescale reads this, what a poor design! There
  432. // write should be a write-1-to-clear for IDLE.
  433. c = UART0_D;
  434. // flushing the fifo recovers from the underrun,
  435. // but there's a possible race condition where a
  436. // new character could be received between reading
  437. // RCFIFO == 0 and flushing the FIFO. To minimize
  438. // the chance, interrupts are disabled so a higher
  439. // priority interrupt (hopefully) doesn't delay.
  440. // TODO: change this to disabling the IDLE interrupt
  441. // which won't be simple, since we already manage
  442. // which transmit interrupts are enabled.
  443. UART0_CFIFO = UART_CFIFO_RXFLUSH;
  444. __enable_irq();
  445. } else {
  446. __enable_irq();
  447. head = rx_buffer_head;
  448. tail = rx_buffer_tail;
  449. do {
  450. if (use9Bits && (UART0_C3 & 0x80)) {
  451. n = UART0_D | 0x100;
  452. } else {
  453. n = UART0_D;
  454. }
  455. newhead = head + 1;
  456. if (newhead >= RX_BUFFER_SIZE) newhead = 0;
  457. if (newhead != tail) {
  458. head = newhead;
  459. rx_buffer[head] = n;
  460. }
  461. } while (--avail > 0);
  462. rx_buffer_head = head;
  463. if (rts_pin) {
  464. int avail;
  465. if (head >= tail) avail = head - tail;
  466. else avail = RX_BUFFER_SIZE + head - tail;
  467. if (avail >= RTS_HIGH_WATERMARK) rts_deassert();
  468. }
  469. }
  470. }
  471. c = UART0_C2;
  472. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  473. head = tx_buffer_head;
  474. tail = tx_buffer_tail;
  475. do {
  476. if (tail == head) break;
  477. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  478. avail = UART0_S1;
  479. n = tx_buffer[tail];
  480. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  481. UART0_D = n;
  482. } while (UART0_TCFIFO < 8);
  483. tx_buffer_tail = tail;
  484. if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
  485. }
  486. #else
  487. if (UART0_S1 & UART_S1_RDRF) {
  488. n = UART0_D;
  489. if (use9Bits && (UART0_C3 & 0x80)) n |= 0x100;
  490. head = rx_buffer_head + 1;
  491. if (head >= RX_BUFFER_SIZE) head = 0;
  492. if (head != rx_buffer_tail) {
  493. rx_buffer[head] = n;
  494. rx_buffer_head = head;
  495. }
  496. }
  497. c = UART0_C2;
  498. if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
  499. head = tx_buffer_head;
  500. tail = tx_buffer_tail;
  501. if (head == tail) {
  502. UART0_C2 = C2_TX_COMPLETING;
  503. } else {
  504. if (++tail >= TX_BUFFER_SIZE) tail = 0;
  505. n = tx_buffer[tail];
  506. if (use9Bits) UART0_C3 = (UART0_C3 & ~0x40) | ((n & 0x100) >> 2);
  507. UART0_D = n;
  508. tx_buffer_tail = tail;
  509. }
  510. }
  511. #endif
  512. if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
  513. transmitting = 0;
  514. if (transmit_pin) transmit_deassert();
  515. UART0_C2 = C2_TX_INACTIVE;
  516. }
  517. }
  518. void serial_print(const char *p)
  519. {
  520. while (*p) {
  521. char c = *p++;
  522. if (c == '\n') serial_putchar('\r');
  523. serial_putchar(c);
  524. }
  525. }
  526. static void serial_phex1(uint32_t n)
  527. {
  528. n &= 15;
  529. if (n < 10) {
  530. serial_putchar('0' + n);
  531. } else {
  532. serial_putchar('A' - 10 + n);
  533. }
  534. }
  535. void serial_phex(uint32_t n)
  536. {
  537. serial_phex1(n >> 4);
  538. serial_phex1(n);
  539. }
  540. void serial_phex16(uint32_t n)
  541. {
  542. serial_phex(n >> 8);
  543. serial_phex(n);
  544. }
  545. void serial_phex32(uint32_t n)
  546. {
  547. serial_phex(n >> 24);
  548. serial_phex(n >> 16);
  549. serial_phex(n >> 8);
  550. serial_phex(n);
  551. }