Teensy 4.1 core updated for C++20
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

10 роки тому
9 роки тому
8 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
9 роки тому
10 роки тому
9 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
9 роки тому
10 роки тому
9 роки тому
9 роки тому
9 роки тому
9 роки тому
10 роки тому
9 роки тому
11 роки тому
9 роки тому
9 роки тому
9 роки тому
11 роки тому
10 роки тому
9 роки тому
10 роки тому
9 роки тому
10 роки тому
11 роки тому
11 роки тому
10 роки тому
9 роки тому
9 роки тому
11 роки тому
10 роки тому
10 роки тому
11 роки тому
11 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
11 роки тому
10 роки тому
11 роки тому
10 роки тому
11 роки тому
10 роки тому
11 роки тому
9 роки тому
11 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
9 роки тому
9 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
10 роки тому
8 роки тому
8 роки тому
9 роки тому
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
  73. #ifdef CORE_PIN34_PORTREG
  74. {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
  92. {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
  93. {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
  94. {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
  95. {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
  96. {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
  97. {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
  98. {GPIO_BITBAND_PTR(CORE_PIN58_PORTREG, CORE_PIN58_BIT), &CORE_PIN58_CONFIG},
  99. {GPIO_BITBAND_PTR(CORE_PIN59_PORTREG, CORE_PIN59_BIT), &CORE_PIN59_CONFIG},
  100. {GPIO_BITBAND_PTR(CORE_PIN60_PORTREG, CORE_PIN60_BIT), &CORE_PIN60_CONFIG},
  101. {GPIO_BITBAND_PTR(CORE_PIN61_PORTREG, CORE_PIN61_BIT), &CORE_PIN61_CONFIG},
  102. {GPIO_BITBAND_PTR(CORE_PIN62_PORTREG, CORE_PIN62_BIT), &CORE_PIN62_CONFIG},
  103. {GPIO_BITBAND_PTR(CORE_PIN63_PORTREG, CORE_PIN63_BIT), &CORE_PIN63_CONFIG},
  104. #endif
  105. };
  106. #elif defined(KINETISL)
  107. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  108. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  109. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  110. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  111. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  112. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  113. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  114. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  115. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  116. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  117. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  118. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  119. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  120. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  121. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  122. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  123. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  124. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  125. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  126. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  127. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  128. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  129. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  130. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  131. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  132. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  133. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  134. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  135. };
  136. #endif
  137. static void dummy_isr() {};
  138. typedef void (*voidFuncPtr)(void);
  139. #if defined(KINETISK)
  140. #ifdef NO_PORT_ISR_FASTRUN
  141. static void port_A_isr(void);
  142. static void port_B_isr(void);
  143. static void port_C_isr(void);
  144. static void port_D_isr(void);
  145. static void port_E_isr(void);
  146. #else
  147. static void port_A_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  148. static void port_B_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  149. static void port_C_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  150. static void port_D_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  151. static void port_E_isr(void) __attribute__ ((section(".fastrun"), noinline, noclone ));
  152. #endif
  153. voidFuncPtr isr_table_portA[CORE_MAX_PIN_PORTA+1] = { [0 ... CORE_MAX_PIN_PORTA] = dummy_isr };
  154. voidFuncPtr isr_table_portB[CORE_MAX_PIN_PORTB+1] = { [0 ... CORE_MAX_PIN_PORTB] = dummy_isr };
  155. voidFuncPtr isr_table_portC[CORE_MAX_PIN_PORTC+1] = { [0 ... CORE_MAX_PIN_PORTC] = dummy_isr };
  156. voidFuncPtr isr_table_portD[CORE_MAX_PIN_PORTD+1] = { [0 ... CORE_MAX_PIN_PORTD] = dummy_isr };
  157. voidFuncPtr isr_table_portE[CORE_MAX_PIN_PORTE+1] = { [0 ... CORE_MAX_PIN_PORTE] = dummy_isr };
  158. // The Pin Config Register is used to look up the correct interrupt table
  159. // for the corresponding port.
  160. inline voidFuncPtr* getIsrTable(volatile uint32_t *config) {
  161. voidFuncPtr* isr_table = NULL;
  162. if(&PORTA_PCR0 <= config && config <= &PORTA_PCR31) isr_table = isr_table_portA;
  163. else if(&PORTB_PCR0 <= config && config <= &PORTB_PCR31) isr_table = isr_table_portB;
  164. else if(&PORTC_PCR0 <= config && config <= &PORTC_PCR31) isr_table = isr_table_portC;
  165. else if(&PORTD_PCR0 <= config && config <= &PORTD_PCR31) isr_table = isr_table_portD;
  166. else if(&PORTE_PCR0 <= config && config <= &PORTE_PCR31) isr_table = isr_table_portE;
  167. return isr_table;
  168. }
  169. inline uint32_t getPinIndex(volatile uint32_t *config) {
  170. uintptr_t v = (uintptr_t) config;
  171. // There are 32 pin config registers for each port, each port starting at a round address.
  172. // They are spaced 4 bytes apart.
  173. return (v % 128) / 4;
  174. }
  175. #elif defined(KINETISL)
  176. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL] = { [0 ... CORE_NUM_DIGITAL-1] = dummy_isr };
  177. static void porta_interrupt(void);
  178. static void portcd_interrupt(void);
  179. #endif
  180. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  181. {
  182. _VectorsRam[irq + 16] = function;
  183. }
  184. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  185. {
  186. volatile uint32_t *config;
  187. uint32_t cfg, mask;
  188. if (pin >= CORE_NUM_DIGITAL) return;
  189. switch (mode) {
  190. case CHANGE: mask = 0x0B; break;
  191. case RISING: mask = 0x09; break;
  192. case FALLING: mask = 0x0A; break;
  193. case LOW: mask = 0x08; break;
  194. case HIGH: mask = 0x0C; break;
  195. default: return;
  196. }
  197. mask = (mask << 16) | 0x01000000;
  198. config = portConfigRegister(pin);
  199. if ((*config & 0x00000700) == 0) {
  200. // for compatibility with programs which depend
  201. // on AVR hardware default to input mode.
  202. pinMode(pin, INPUT);
  203. }
  204. #if defined(KINETISK)
  205. attachInterruptVector(IRQ_PORTA, port_A_isr);
  206. attachInterruptVector(IRQ_PORTB, port_B_isr);
  207. attachInterruptVector(IRQ_PORTC, port_C_isr);
  208. attachInterruptVector(IRQ_PORTD, port_D_isr);
  209. attachInterruptVector(IRQ_PORTE, port_E_isr);
  210. voidFuncPtr* isr_table = getIsrTable(config);
  211. if(!isr_table) return;
  212. uint32_t pin_index = getPinIndex(config);
  213. __disable_irq();
  214. cfg = *config;
  215. cfg &= ~0x000F0000; // disable any previous interrupt
  216. *config = cfg;
  217. isr_table[pin_index] = function; // set the function pointer
  218. cfg |= mask;
  219. *config = cfg; // enable the new interrupt
  220. __enable_irq();
  221. #elif defined(KINETISL)
  222. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  223. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  224. __disable_irq();
  225. cfg = *config;
  226. cfg &= ~0x000F0000; // disable any previous interrupt
  227. *config = cfg;
  228. intFunc[pin] = function; // set the function pointer
  229. cfg |= mask;
  230. *config = cfg; // enable the new interrupt
  231. __enable_irq();
  232. #endif
  233. }
  234. void detachInterrupt(uint8_t pin)
  235. {
  236. volatile uint32_t *config;
  237. config = portConfigRegister(pin);
  238. #if defined(KINETISK)
  239. voidFuncPtr* isr_table = getIsrTable(config);
  240. if(!isr_table) return;
  241. uint32_t pin_index = getPinIndex(config);
  242. __disable_irq();
  243. *config = ((*config & ~0x000F0000) | 0x01000000);
  244. isr_table[pin_index] = dummy_isr;
  245. __enable_irq();
  246. #elif defined(KINETISL)
  247. __disable_irq();
  248. *config = ((*config & ~0x000F0000) | 0x01000000);
  249. intFunc[pin] = dummy_isr;
  250. __enable_irq();
  251. #endif
  252. }
  253. typedef void (*voidFuncPtr)(void);
  254. // Using CTZ instead of CLZ is faster, since it allows more efficient bit
  255. // clearing and fast indexing into the pin ISR table.
  256. #define PORT_ISR_FUNCTION_CLZ(port_name) \
  257. static void port_ ## port_name ## _isr(void) { \
  258. uint32_t isfr = PORT ## port_name ##_ISFR; \
  259. PORT ## port_name ##_ISFR = isfr; \
  260. voidFuncPtr* isr_table = isr_table_port ## port_name; \
  261. uint32_t bit_nr; \
  262. while(isfr) { \
  263. bit_nr = __builtin_ctz(isfr); \
  264. isr_table[bit_nr](); \
  265. isfr = isfr & (isfr-1); \
  266. if(!isfr) return; \
  267. } \
  268. }
  269. // END PORT_ISR_FUNCTION_CLZ
  270. #if defined(KINETISK)
  271. PORT_ISR_FUNCTION_CLZ(A)
  272. PORT_ISR_FUNCTION_CLZ(B)
  273. PORT_ISR_FUNCTION_CLZ(C)
  274. PORT_ISR_FUNCTION_CLZ(D)
  275. PORT_ISR_FUNCTION_CLZ(E)
  276. #elif defined(KINETISL)
  277. // Kinetis L (Teensy LC) is based on Cortex M0 and doesn't have hardware
  278. // support for CLZ.
  279. #define DISPATCH_PIN_ISR(pin_nr) { voidFuncPtr pin_isr = intFunc[pin_nr]; \
  280. if(isfr & CORE_PIN ## pin_nr ## _BITMASK) pin_isr(); }
  281. static void porta_interrupt(void)
  282. {
  283. uint32_t isfr = PORTA_ISFR;
  284. PORTA_ISFR = isfr;
  285. DISPATCH_PIN_ISR(3);
  286. DISPATCH_PIN_ISR(4);
  287. }
  288. static void portcd_interrupt(void)
  289. {
  290. uint32_t isfr = PORTC_ISFR;
  291. PORTC_ISFR = isfr;
  292. DISPATCH_PIN_ISR(9);
  293. DISPATCH_PIN_ISR(10);
  294. DISPATCH_PIN_ISR(11);
  295. DISPATCH_PIN_ISR(12);
  296. DISPATCH_PIN_ISR(13);
  297. DISPATCH_PIN_ISR(15);
  298. DISPATCH_PIN_ISR(22);
  299. DISPATCH_PIN_ISR(23);
  300. isfr = PORTD_ISFR;
  301. PORTD_ISFR = isfr;
  302. DISPATCH_PIN_ISR(2);
  303. DISPATCH_PIN_ISR(5);
  304. DISPATCH_PIN_ISR(6);
  305. DISPATCH_PIN_ISR(7);
  306. DISPATCH_PIN_ISR(8);
  307. DISPATCH_PIN_ISR(14);
  308. DISPATCH_PIN_ISR(20);
  309. DISPATCH_PIN_ISR(21);
  310. }
  311. #undef DISPATCH_PIN_ISR
  312. #endif
  313. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  314. unsigned long rtc_get(void)
  315. {
  316. return RTC_TSR;
  317. }
  318. void rtc_set(unsigned long t)
  319. {
  320. RTC_SR = 0;
  321. RTC_TPR = 0;
  322. RTC_TSR = t;
  323. RTC_SR = RTC_SR_TCE;
  324. }
  325. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  326. // For example, adjust = -100 is slows the clock by 11.92 ppm
  327. //
  328. void rtc_compensate(int adjust)
  329. {
  330. uint32_t comp, interval, tcr;
  331. // This simple approach tries to maximize the interval.
  332. // Perhaps minimizing TCR would be better, so the
  333. // compensation is distributed more evenly across
  334. // many seconds, rather than saving it all up and then
  335. // altering one second up to +/- 0.38%
  336. if (adjust >= 0) {
  337. comp = adjust;
  338. interval = 256;
  339. while (1) {
  340. tcr = comp * interval;
  341. if (tcr < 128*256) break;
  342. if (--interval == 1) break;
  343. }
  344. tcr = tcr >> 8;
  345. } else {
  346. comp = -adjust;
  347. interval = 256;
  348. while (1) {
  349. tcr = comp * interval;
  350. if (tcr < 129*256) break;
  351. if (--interval == 1) break;
  352. }
  353. tcr = tcr >> 8;
  354. tcr = 256 - tcr;
  355. }
  356. RTC_TCR = ((interval - 1) << 8) | tcr;
  357. }
  358. #else
  359. unsigned long rtc_get(void) { return 0; }
  360. void rtc_set(unsigned long t) { }
  361. void rtc_compensate(int adjust) { }
  362. #endif
  363. #if 0
  364. // TODO: build system should define this
  365. // so RTC is automatically initialized to approx correct time
  366. // at least when the program begins running right after upload
  367. #ifndef TIME_T
  368. #define TIME_T 1350160272
  369. #endif
  370. void init_rtc(void)
  371. {
  372. serial_print("init_rtc\n");
  373. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  374. // enable the RTC crystal oscillator, for approx 12pf crystal
  375. if (!(RTC_CR & RTC_CR_OSCE)) {
  376. serial_print("start RTC oscillator\n");
  377. RTC_SR = 0;
  378. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  379. }
  380. // should wait for crystal to stabilize.....
  381. serial_print("SR=");
  382. serial_phex32(RTC_SR);
  383. serial_print("\n");
  384. serial_print("CR=");
  385. serial_phex32(RTC_CR);
  386. serial_print("\n");
  387. serial_print("TSR=");
  388. serial_phex32(RTC_TSR);
  389. serial_print("\n");
  390. serial_print("TCR=");
  391. serial_phex32(RTC_TCR);
  392. serial_print("\n");
  393. if (RTC_SR & RTC_SR_TIF) {
  394. // enable the RTC
  395. RTC_SR = 0;
  396. RTC_TPR = 0;
  397. RTC_TSR = TIME_T;
  398. RTC_SR = RTC_SR_TCE;
  399. }
  400. }
  401. #endif
  402. extern void usb_init(void);
  403. // create a default PWM at the same 488.28 Hz as Arduino Uno
  404. #if defined(KINETISK)
  405. #define F_TIMER F_BUS
  406. #elif defined(KINETISL)
  407. #if F_CPU > 16000000
  408. #define F_TIMER (F_PLL/2)
  409. #else
  410. #define F_TIMER (F_PLL)
  411. #endif//Low Power
  412. #endif
  413. #if F_TIMER == 120000000
  414. #define DEFAULT_FTM_MOD (61440 - 1)
  415. #define DEFAULT_FTM_PRESCALE 2
  416. #elif F_TIMER == 108000000
  417. #define DEFAULT_FTM_MOD (55296 - 1)
  418. #define DEFAULT_FTM_PRESCALE 2
  419. #elif F_TIMER == 96000000
  420. #define DEFAULT_FTM_MOD (49152 - 1)
  421. #define DEFAULT_FTM_PRESCALE 2
  422. #elif F_TIMER == 90000000
  423. #define DEFAULT_FTM_MOD (46080 - 1)
  424. #define DEFAULT_FTM_PRESCALE 2
  425. #elif F_TIMER == 80000000
  426. #define DEFAULT_FTM_MOD (40960 - 1)
  427. #define DEFAULT_FTM_PRESCALE 2
  428. #elif F_TIMER == 72000000
  429. #define DEFAULT_FTM_MOD (36864 - 1)
  430. #define DEFAULT_FTM_PRESCALE 2
  431. #elif F_TIMER == 64000000
  432. #define DEFAULT_FTM_MOD (65536 - 1)
  433. #define DEFAULT_FTM_PRESCALE 1
  434. #elif F_TIMER == 60000000
  435. #define DEFAULT_FTM_MOD (61440 - 1)
  436. #define DEFAULT_FTM_PRESCALE 1
  437. #elif F_TIMER == 56000000
  438. #define DEFAULT_FTM_MOD (57344 - 1)
  439. #define DEFAULT_FTM_PRESCALE 1
  440. #elif F_TIMER == 54000000
  441. #define DEFAULT_FTM_MOD (55296 - 1)
  442. #define DEFAULT_FTM_PRESCALE 1
  443. #elif F_TIMER == 48000000
  444. #define DEFAULT_FTM_MOD (49152 - 1)
  445. #define DEFAULT_FTM_PRESCALE 1
  446. #elif F_TIMER == 40000000
  447. #define DEFAULT_FTM_MOD (40960 - 1)
  448. #define DEFAULT_FTM_PRESCALE 1
  449. #elif F_TIMER == 36000000
  450. #define DEFAULT_FTM_MOD (36864 - 1)
  451. #define DEFAULT_FTM_PRESCALE 1
  452. #elif F_TIMER == 24000000
  453. #define DEFAULT_FTM_MOD (49152 - 1)
  454. #define DEFAULT_FTM_PRESCALE 0
  455. #elif F_TIMER == 16000000
  456. #define DEFAULT_FTM_MOD (32768 - 1)
  457. #define DEFAULT_FTM_PRESCALE 0
  458. #elif F_TIMER == 8000000
  459. #define DEFAULT_FTM_MOD (16384 - 1)
  460. #define DEFAULT_FTM_PRESCALE 0
  461. #elif F_TIMER == 4000000
  462. #define DEFAULT_FTM_MOD (8192 - 1)
  463. #define DEFAULT_FTM_PRESCALE 0
  464. #elif F_TIMER == 2000000
  465. #define DEFAULT_FTM_MOD (4096 - 1)
  466. #define DEFAULT_FTM_PRESCALE 0
  467. #endif
  468. //void init_pins(void)
  469. void _init_Teensyduino_internal_(void)
  470. {
  471. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  472. NVIC_ENABLE_IRQ(IRQ_PORTA);
  473. NVIC_ENABLE_IRQ(IRQ_PORTB);
  474. NVIC_ENABLE_IRQ(IRQ_PORTC);
  475. NVIC_ENABLE_IRQ(IRQ_PORTD);
  476. NVIC_ENABLE_IRQ(IRQ_PORTE);
  477. #elif defined(__MKL26Z64__)
  478. NVIC_ENABLE_IRQ(IRQ_PORTA);
  479. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  480. #endif
  481. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  482. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  483. FTM0_CNT = 0;
  484. FTM0_MOD = DEFAULT_FTM_MOD;
  485. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  486. FTM0_C1SC = 0x28;
  487. FTM0_C2SC = 0x28;
  488. FTM0_C3SC = 0x28;
  489. FTM0_C4SC = 0x28;
  490. FTM0_C5SC = 0x28;
  491. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  492. FTM0_C6SC = 0x28;
  493. FTM0_C7SC = 0x28;
  494. #endif
  495. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  496. FTM3_C0SC = 0x28;
  497. FTM3_C1SC = 0x28;
  498. FTM3_C2SC = 0x28;
  499. FTM3_C3SC = 0x28;
  500. FTM3_C4SC = 0x28;
  501. FTM3_C5SC = 0x28;
  502. FTM3_C6SC = 0x28;
  503. FTM3_C7SC = 0x28;
  504. #endif
  505. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  506. FTM1_CNT = 0;
  507. FTM1_MOD = DEFAULT_FTM_MOD;
  508. FTM1_C0SC = 0x28;
  509. FTM1_C1SC = 0x28;
  510. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  511. #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
  512. FTM2_CNT = 0;
  513. FTM2_MOD = DEFAULT_FTM_MOD;
  514. FTM2_C0SC = 0x28;
  515. FTM2_C1SC = 0x28;
  516. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  517. #endif
  518. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  519. FTM3_CNT = 0;
  520. FTM3_MOD = DEFAULT_FTM_MOD;
  521. FTM3_C0SC = 0x28;
  522. FTM3_C1SC = 0x28;
  523. FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  524. #endif
  525. #if defined(__MK66FX1M0__)
  526. SIM_SCGC2 |= SIM_SCGC2_TPM1;
  527. SIM_SOPT2 |= SIM_SOPT2_TPMSRC(2);
  528. TPM1_CNT = 0;
  529. TPM1_MOD = 32767;
  530. TPM1_C0SC = 0x28;
  531. TPM1_C1SC = 0x28;
  532. TPM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(0);
  533. #endif
  534. analog_init();
  535. // for background about this startup delay, please see these conversations
  536. // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
  537. // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
  538. delay(400);
  539. usb_init();
  540. }
  541. #if defined(__MK20DX128__)
  542. #define FTM0_CH0_PIN 22
  543. #define FTM0_CH1_PIN 23
  544. #define FTM0_CH2_PIN 9
  545. #define FTM0_CH3_PIN 10
  546. #define FTM0_CH4_PIN 6
  547. #define FTM0_CH5_PIN 20
  548. #define FTM0_CH6_PIN 21
  549. #define FTM0_CH7_PIN 5
  550. #define FTM1_CH0_PIN 3
  551. #define FTM1_CH1_PIN 4
  552. #elif defined(__MK20DX256__)
  553. #define FTM0_CH0_PIN 22
  554. #define FTM0_CH1_PIN 23
  555. #define FTM0_CH2_PIN 9
  556. #define FTM0_CH3_PIN 10
  557. #define FTM0_CH4_PIN 6
  558. #define FTM0_CH5_PIN 20
  559. #define FTM0_CH6_PIN 21
  560. #define FTM0_CH7_PIN 5
  561. #define FTM1_CH0_PIN 3
  562. #define FTM1_CH1_PIN 4
  563. #define FTM2_CH0_PIN 32
  564. #define FTM2_CH1_PIN 25
  565. #elif defined(__MKL26Z64__)
  566. #define FTM0_CH0_PIN 22
  567. #define FTM0_CH1_PIN 23
  568. #define FTM0_CH2_PIN 9
  569. #define FTM0_CH3_PIN 10
  570. #define FTM0_CH4_PIN 6
  571. #define FTM0_CH5_PIN 20
  572. #define FTM1_CH0_PIN 16
  573. #define FTM1_CH1_PIN 17
  574. #define FTM2_CH0_PIN 3
  575. #define FTM2_CH1_PIN 4
  576. #elif defined(__MK64FX512__)
  577. #define FTM0_CH0_PIN 22
  578. #define FTM0_CH1_PIN 23
  579. #define FTM0_CH2_PIN 9
  580. #define FTM0_CH3_PIN 10
  581. #define FTM0_CH4_PIN 6
  582. #define FTM0_CH5_PIN 20
  583. #define FTM0_CH6_PIN 21
  584. #define FTM0_CH7_PIN 5
  585. #define FTM1_CH0_PIN 3
  586. #define FTM1_CH1_PIN 4
  587. #define FTM2_CH0_PIN 29
  588. #define FTM2_CH1_PIN 30
  589. #define FTM3_CH0_PIN 2
  590. #define FTM3_CH1_PIN 14
  591. #define FTM3_CH2_PIN 7
  592. #define FTM3_CH3_PIN 8
  593. #define FTM3_CH4_PIN 35
  594. #define FTM3_CH5_PIN 36
  595. #define FTM3_CH6_PIN 37
  596. #define FTM3_CH7_PIN 38
  597. #elif defined(__MK66FX1M0__)
  598. #define FTM0_CH0_PIN 22
  599. #define FTM0_CH1_PIN 23
  600. #define FTM0_CH2_PIN 9
  601. #define FTM0_CH3_PIN 10
  602. #define FTM0_CH4_PIN 6
  603. #define FTM0_CH5_PIN 20
  604. #define FTM0_CH6_PIN 21
  605. #define FTM0_CH7_PIN 5
  606. #define FTM1_CH0_PIN 3
  607. #define FTM1_CH1_PIN 4
  608. #define FTM2_CH0_PIN 29
  609. #define FTM2_CH1_PIN 30
  610. #define FTM3_CH0_PIN 2
  611. #define FTM3_CH1_PIN 14
  612. #define FTM3_CH2_PIN 7
  613. #define FTM3_CH3_PIN 8
  614. #define FTM3_CH4_PIN 35
  615. #define FTM3_CH5_PIN 36
  616. #define FTM3_CH6_PIN 37
  617. #define FTM3_CH7_PIN 38
  618. #define TPM1_CH0_PIN 16
  619. #define TPM1_CH1_PIN 17
  620. #endif
  621. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  622. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  623. static uint8_t analog_write_res = 8;
  624. // SOPT4 is SIM select clocks?
  625. // FTM is clocked by the bus clock, either 24 or 48 MHz
  626. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  627. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  628. void analogWrite(uint8_t pin, int val)
  629. {
  630. uint32_t cval, max;
  631. #if defined(__MK20DX256__)
  632. if (pin == A14) {
  633. uint8_t res = analog_write_res;
  634. if (res < 12) {
  635. val <<= 12 - res;
  636. } else if (res > 12) {
  637. val >>= res - 12;
  638. }
  639. analogWriteDAC0(val);
  640. return;
  641. }
  642. #elif defined(__MKL26Z64__)
  643. if (pin == A12) {
  644. uint8_t res = analog_write_res;
  645. if (res < 12) {
  646. val <<= 12 - res;
  647. } else if (res > 12) {
  648. val >>= res - 12;
  649. }
  650. analogWriteDAC0(val);
  651. return;
  652. }
  653. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  654. if (pin == A21 || pin == A22) {
  655. uint8_t res = analog_write_res;
  656. if (res < 12) {
  657. val <<= 12 - res;
  658. } else if (res > 12) {
  659. val >>= res - 12;
  660. }
  661. if (pin == A21) analogWriteDAC0(val);
  662. else analogWriteDAC1(val);
  663. return;
  664. }
  665. #endif
  666. max = 1 << analog_write_res;
  667. if (val <= 0) {
  668. digitalWrite(pin, LOW);
  669. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  670. return;
  671. } else if (val >= max) {
  672. digitalWrite(pin, HIGH);
  673. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  674. return;
  675. }
  676. //serial_print("analogWrite\n");
  677. //serial_print("val = ");
  678. //serial_phex32(val);
  679. //serial_print("\n");
  680. //serial_print("analog_write_res = ");
  681. //serial_phex(analog_write_res);
  682. //serial_print("\n");
  683. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  684. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  685. #if defined(FTM2_CH0_PIN)
  686. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  687. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  688. #endif
  689. #if defined(FTM3_CH0_PIN)
  690. } else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN || pin == FTM3_CH2_PIN
  691. || pin == FTM3_CH3_PIN || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  692. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  693. cval = ((uint32_t)val * (uint32_t)(FTM3_MOD + 1)) >> analog_write_res;
  694. #endif
  695. #if defined(TPM1_CH0_PIN)
  696. } else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  697. cval = ((uint32_t)val * (uint32_t)(TPM1_MOD + 1)) >> analog_write_res;
  698. #endif
  699. } else {
  700. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  701. }
  702. //serial_print("cval = ");
  703. //serial_phex32(cval);
  704. //serial_print("\n");
  705. switch (pin) {
  706. #ifdef FTM0_CH0_PIN
  707. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  708. FTM0_C0V = cval;
  709. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  710. break;
  711. #endif
  712. #ifdef FTM0_CH1_PIN
  713. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  714. FTM0_C1V = cval;
  715. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  716. break;
  717. #endif
  718. #ifdef FTM0_CH2_PIN
  719. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  720. FTM0_C2V = cval;
  721. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  722. break;
  723. #endif
  724. #ifdef FTM0_CH3_PIN
  725. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  726. FTM0_C3V = cval;
  727. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  728. break;
  729. #endif
  730. #ifdef FTM0_CH4_PIN
  731. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  732. FTM0_C4V = cval;
  733. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  734. break;
  735. #endif
  736. #ifdef FTM0_CH5_PIN
  737. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  738. FTM0_C5V = cval;
  739. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  740. break;
  741. #endif
  742. #ifdef FTM0_CH6_PIN
  743. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  744. FTM0_C6V = cval;
  745. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  746. break;
  747. #endif
  748. #ifdef FTM0_CH7_PIN
  749. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  750. FTM0_C7V = cval;
  751. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  752. break;
  753. #endif
  754. #ifdef FTM1_CH0_PIN
  755. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  756. FTM1_C0V = cval;
  757. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  758. break;
  759. #endif
  760. #ifdef FTM1_CH1_PIN
  761. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  762. FTM1_C1V = cval;
  763. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  764. break;
  765. #endif
  766. #ifdef FTM2_CH0_PIN
  767. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  768. FTM2_C0V = cval;
  769. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  770. break;
  771. #endif
  772. #ifdef FTM2_CH1_PIN
  773. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  774. FTM2_C1V = cval;
  775. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  776. break;
  777. #endif
  778. #ifdef FTM3_CH0_PIN
  779. case FTM3_CH0_PIN:
  780. FTM3_C0V = cval;
  781. FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  782. break;
  783. #endif
  784. #ifdef FTM3_CH1_PIN
  785. case FTM3_CH1_PIN:
  786. FTM3_C1V = cval;
  787. FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  788. break;
  789. #endif
  790. #ifdef FTM3_CH2_PIN
  791. case FTM3_CH2_PIN:
  792. FTM3_C2V = cval;
  793. FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  794. break;
  795. #endif
  796. #ifdef FTM3_CH3_PIN
  797. case FTM3_CH3_PIN:
  798. FTM3_C3V = cval;
  799. FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  800. break;
  801. #endif
  802. #ifdef FTM3_CH4_PIN
  803. case FTM3_CH4_PIN:
  804. FTM3_C4V = cval;
  805. FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  806. break;
  807. #endif
  808. #ifdef FTM3_CH5_PIN
  809. case FTM3_CH5_PIN:
  810. FTM3_C5V = cval;
  811. FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  812. break;
  813. #endif
  814. #ifdef FTM3_CH6_PIN
  815. case FTM3_CH6_PIN:
  816. FTM3_C6V = cval;
  817. FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  818. break;
  819. #endif
  820. #ifdef FTM3_CH7_PIN
  821. case FTM3_CH7_PIN:
  822. FTM3_C7V = cval;
  823. FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  824. break;
  825. #endif
  826. #ifdef TPM1_CH0_PIN
  827. case TPM1_CH0_PIN:
  828. TPM1_C0V = cval;
  829. FTM_PINCFG(TPM1_CH0_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  830. break;
  831. #endif
  832. #ifdef TPM1_CH1_PIN
  833. case TPM1_CH1_PIN:
  834. TPM1_C1V = cval;
  835. FTM_PINCFG(TPM1_CH1_PIN) = PORT_PCR_MUX(6) | PORT_PCR_DSE | PORT_PCR_SRE;
  836. break;
  837. #endif
  838. default:
  839. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  840. pinMode(pin, OUTPUT);
  841. }
  842. }
  843. void analogWriteRes(uint32_t bits)
  844. {
  845. if (bits < 1) {
  846. bits = 1;
  847. } else if (bits > 16) {
  848. bits = 16;
  849. }
  850. analog_write_res = bits;
  851. }
  852. void analogWriteFrequency(uint8_t pin, float frequency)
  853. {
  854. uint32_t prescale, mod, ftmClock, ftmClockSource;
  855. float minfreq;
  856. //serial_print("analogWriteFrequency: pin = ");
  857. //serial_phex(pin);
  858. //serial_print(", freq = ");
  859. //serial_phex32((uint32_t)frequency);
  860. //serial_print("\n");
  861. #ifdef TPM1_CH0_PIN
  862. if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  863. ftmClockSource = 1;
  864. ftmClock = 16000000;
  865. } else
  866. #endif
  867. if (frequency < (float)(F_TIMER >> 7) / 65536.0f) {
  868. // frequency is too low for working with F_TIMER:
  869. ftmClockSource = 2; // Use alternative 31250Hz clock source
  870. ftmClock = 31250; // Set variable for the actual timer clock frequency
  871. } else {
  872. ftmClockSource = 1; // Use default F_TIMER clock source
  873. ftmClock = F_TIMER; // Set variable for the actual timer clock frequency
  874. }
  875. for (prescale = 0; prescale < 7; prescale++) {
  876. minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
  877. if (frequency >= minfreq) break;
  878. }
  879. //serial_print("F_TIMER/ftm_Clock = ");
  880. //serial_phex32(ftmClock >> prescale);
  881. //serial_print("\n");
  882. //serial_print("prescale = ");
  883. //serial_phex(prescale);
  884. //serial_print("\n");
  885. mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
  886. if (mod > 65535) mod = 65535;
  887. //serial_print("mod = ");
  888. //serial_phex32(mod);
  889. //serial_print("\n");
  890. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  891. FTM1_SC = 0;
  892. FTM1_CNT = 0;
  893. FTM1_MOD = mod;
  894. FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  895. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  896. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  897. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  898. #ifdef FTM0_CH6_PIN
  899. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  900. #endif
  901. ) {
  902. FTM0_SC = 0;
  903. FTM0_CNT = 0;
  904. FTM0_MOD = mod;
  905. FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  906. }
  907. #ifdef FTM2_CH0_PIN
  908. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  909. FTM2_SC = 0;
  910. FTM2_CNT = 0;
  911. FTM2_MOD = mod;
  912. FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  913. }
  914. #endif
  915. #ifdef FTM3_CH0_PIN
  916. else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
  917. || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
  918. || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  919. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  920. FTM3_SC = 0;
  921. FTM3_CNT = 0;
  922. FTM3_MOD = mod;
  923. FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
  924. }
  925. #endif
  926. #ifdef TPM1_CH0_PIN
  927. else if (pin == TPM1_CH0_PIN || pin == TPM1_CH1_PIN) {
  928. TPM1_SC = 0;
  929. TPM1_CNT = 0;
  930. TPM1_MOD = mod;
  931. TPM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale);
  932. }
  933. #endif
  934. }
  935. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  936. void digitalWrite(uint8_t pin, uint8_t val)
  937. {
  938. if (pin >= CORE_NUM_DIGITAL) return;
  939. #ifdef KINETISK
  940. if (*portModeRegister(pin)) {
  941. if (val) {
  942. *portSetRegister(pin) = 1;
  943. } else {
  944. *portClearRegister(pin) = 1;
  945. }
  946. #else
  947. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  948. if (val) {
  949. *portSetRegister(pin) = digitalPinToBitMask(pin);
  950. } else {
  951. *portClearRegister(pin) = digitalPinToBitMask(pin);
  952. }
  953. #endif
  954. } else {
  955. volatile uint32_t *config = portConfigRegister(pin);
  956. if (val) {
  957. // TODO use bitband for atomic read-mod-write
  958. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  959. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  960. } else {
  961. // TODO use bitband for atomic read-mod-write
  962. *config &= ~(PORT_PCR_PE);
  963. //*config = PORT_PCR_MUX(1);
  964. }
  965. }
  966. }
  967. uint8_t digitalRead(uint8_t pin)
  968. {
  969. if (pin >= CORE_NUM_DIGITAL) return 0;
  970. #ifdef KINETISK
  971. return *portInputRegister(pin);
  972. #else
  973. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  974. #endif
  975. }
  976. void pinMode(uint8_t pin, uint8_t mode)
  977. {
  978. volatile uint32_t *config;
  979. if (pin >= CORE_NUM_DIGITAL) return;
  980. config = portConfigRegister(pin);
  981. if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
  982. #ifdef KINETISK
  983. *portModeRegister(pin) = 1;
  984. #else
  985. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  986. #endif
  987. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  988. if (mode == OUTPUT_OPENDRAIN) {
  989. *config |= PORT_PCR_ODE;
  990. } else {
  991. *config &= ~PORT_PCR_ODE;
  992. }
  993. } else {
  994. #ifdef KINETISK
  995. *portModeRegister(pin) = 0;
  996. #else
  997. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  998. #endif
  999. if (mode == INPUT) {
  1000. *config = PORT_PCR_MUX(1);
  1001. } else if (mode == INPUT_PULLUP) {
  1002. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  1003. } else if (mode == INPUT_PULLDOWN) {
  1004. *config = PORT_PCR_MUX(1) | PORT_PCR_PE;
  1005. } else { // INPUT_DISABLE
  1006. *config = 0;
  1007. }
  1008. }
  1009. }
  1010. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  1011. {
  1012. if (bitOrder == LSBFIRST) {
  1013. shiftOut_lsbFirst(dataPin, clockPin, value);
  1014. } else {
  1015. shiftOut_msbFirst(dataPin, clockPin, value);
  1016. }
  1017. }
  1018. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1019. {
  1020. uint8_t mask;
  1021. for (mask=0x01; mask; mask <<= 1) {
  1022. digitalWrite(dataPin, value & mask);
  1023. digitalWrite(clockPin, HIGH);
  1024. digitalWrite(clockPin, LOW);
  1025. }
  1026. }
  1027. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1028. {
  1029. uint8_t mask;
  1030. for (mask=0x80; mask; mask >>= 1) {
  1031. digitalWrite(dataPin, value & mask);
  1032. digitalWrite(clockPin, HIGH);
  1033. digitalWrite(clockPin, LOW);
  1034. }
  1035. }
  1036. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  1037. {
  1038. if (bitOrder == LSBFIRST) {
  1039. return shiftIn_lsbFirst(dataPin, clockPin);
  1040. } else {
  1041. return shiftIn_msbFirst(dataPin, clockPin);
  1042. }
  1043. }
  1044. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  1045. {
  1046. uint8_t mask, value=0;
  1047. for (mask=0x01; mask; mask <<= 1) {
  1048. digitalWrite(clockPin, HIGH);
  1049. if (digitalRead(dataPin)) value |= mask;
  1050. digitalWrite(clockPin, LOW);
  1051. }
  1052. return value;
  1053. }
  1054. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  1055. {
  1056. uint8_t mask, value=0;
  1057. for (mask=0x80; mask; mask >>= 1) {
  1058. digitalWrite(clockPin, HIGH);
  1059. if (digitalRead(dataPin)) value |= mask;
  1060. digitalWrite(clockPin, LOW);
  1061. }
  1062. return value;
  1063. }
  1064. // the systick interrupt is supposed to increment this at 1 kHz rate
  1065. volatile uint32_t systick_millis_count = 0;
  1066. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  1067. uint32_t micros(void)
  1068. {
  1069. uint32_t count, current, istatus;
  1070. __disable_irq();
  1071. current = SYST_CVR;
  1072. count = systick_millis_count;
  1073. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  1074. __enable_irq();
  1075. //systick_current = current;
  1076. //systick_count = count;
  1077. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  1078. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  1079. current = ((F_CPU / 1000) - 1) - current;
  1080. #if defined(KINETISL) && F_CPU == 48000000
  1081. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  1082. #elif defined(KINETISL) && F_CPU == 24000000
  1083. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  1084. #endif
  1085. return count * 1000 + current / (F_CPU / 1000000);
  1086. }
  1087. void delay(uint32_t ms)
  1088. {
  1089. uint32_t start = micros();
  1090. if (ms > 0) {
  1091. while (1) {
  1092. while ((micros() - start) >= 1000) {
  1093. ms--;
  1094. if (ms == 0) return;
  1095. start += 1000;
  1096. }
  1097. yield();
  1098. }
  1099. }
  1100. }
  1101. // TODO: verify these result in correct timeouts...
  1102. #if F_CPU == 240000000
  1103. #define PULSEIN_LOOPS_PER_USEC 33
  1104. #elif F_CPU == 216000000
  1105. #define PULSEIN_LOOPS_PER_USEC 31
  1106. #elif F_CPU == 192000000
  1107. #define PULSEIN_LOOPS_PER_USEC 29
  1108. #elif F_CPU == 180000000
  1109. #define PULSEIN_LOOPS_PER_USEC 27
  1110. #elif F_CPU == 168000000
  1111. #define PULSEIN_LOOPS_PER_USEC 25
  1112. #elif F_CPU == 144000000
  1113. #define PULSEIN_LOOPS_PER_USEC 21
  1114. #elif F_CPU == 120000000
  1115. #define PULSEIN_LOOPS_PER_USEC 18
  1116. #elif F_CPU == 96000000
  1117. #define PULSEIN_LOOPS_PER_USEC 14
  1118. #elif F_CPU == 72000000
  1119. #define PULSEIN_LOOPS_PER_USEC 10
  1120. #elif F_CPU == 48000000
  1121. #define PULSEIN_LOOPS_PER_USEC 7
  1122. #elif F_CPU == 24000000
  1123. #define PULSEIN_LOOPS_PER_USEC 4
  1124. #elif F_CPU == 16000000
  1125. #define PULSEIN_LOOPS_PER_USEC 1
  1126. #elif F_CPU == 8000000
  1127. #define PULSEIN_LOOPS_PER_USEC 1
  1128. #elif F_CPU == 4000000
  1129. #define PULSEIN_LOOPS_PER_USEC 1
  1130. #elif F_CPU == 2000000
  1131. #define PULSEIN_LOOPS_PER_USEC 1
  1132. #endif
  1133. #if defined(KINETISK)
  1134. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  1135. {
  1136. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1137. uint32_t usec_start, usec_stop;
  1138. // wait for any previous pulse to end
  1139. while (*reg) {
  1140. if (--timeout_count == 0) return 0;
  1141. }
  1142. // wait for the pulse to start
  1143. while (!*reg) {
  1144. if (--timeout_count == 0) return 0;
  1145. }
  1146. usec_start = micros();
  1147. // wait for the pulse to stop
  1148. while (*reg) {
  1149. if (--timeout_count == 0) return 0;
  1150. }
  1151. usec_stop = micros();
  1152. return usec_stop - usec_start;
  1153. }
  1154. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  1155. {
  1156. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1157. uint32_t usec_start, usec_stop;
  1158. // wait for any previous pulse to end
  1159. while (!*reg) {
  1160. if (--timeout_count == 0) return 0;
  1161. }
  1162. // wait for the pulse to start
  1163. while (*reg) {
  1164. if (--timeout_count == 0) return 0;
  1165. }
  1166. usec_start = micros();
  1167. // wait for the pulse to stop
  1168. while (!*reg) {
  1169. if (--timeout_count == 0) return 0;
  1170. }
  1171. usec_stop = micros();
  1172. return usec_stop - usec_start;
  1173. }
  1174. // TODO: an inline version should handle the common case where state is const
  1175. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1176. {
  1177. if (pin >= CORE_NUM_DIGITAL) return 0;
  1178. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  1179. return pulseIn_low(portInputRegister(pin), timeout);;
  1180. }
  1181. #elif defined(KINETISL)
  1182. // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
  1183. uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1184. {
  1185. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1186. uint32_t usec_start, usec_stop;
  1187. // wait for any previous pulse to end
  1188. while (*reg & mask) {
  1189. if (--timeout_count == 0) return -1;
  1190. }
  1191. // wait for the pulse to start
  1192. while (!(*reg & mask)) {
  1193. if (--timeout_count == 0) return 0;
  1194. }
  1195. usec_start = micros();
  1196. // wait for the pulse to stop
  1197. while (*reg & mask) {
  1198. if (--timeout_count == 0) return 0;
  1199. }
  1200. usec_stop = micros();
  1201. return usec_stop - usec_start;
  1202. }
  1203. uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1204. {
  1205. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1206. uint32_t usec_start, usec_stop;
  1207. // wait for any previous pulse to end
  1208. while (!(*reg & mask)) {
  1209. if (--timeout_count == 0) return 0;
  1210. }
  1211. // wait for the pulse to start
  1212. while (*reg & mask) {
  1213. if (--timeout_count == 0) return 0;
  1214. }
  1215. usec_start = micros();
  1216. // wait for the pulse to stop
  1217. while (!(*reg & mask)) {
  1218. if (--timeout_count == 0) return 0;
  1219. }
  1220. usec_stop = micros();
  1221. return usec_stop - usec_start;
  1222. }
  1223. // TODO: an inline version should handle the common case where state is const
  1224. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1225. {
  1226. if (pin >= CORE_NUM_DIGITAL) return 0;
  1227. if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
  1228. return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
  1229. }
  1230. #endif