Teensy 4.1 core updated for C++20
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 11 година
пре 10 година
пре 11 година
пре 9 година
пре 8 година
пре 9 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 9 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 9 година
пре 9 година
пре 8 година
пре 9 година
пре 8 година
пре 9 година
пре 8 година
пре 9 година
пре 8 година
пре 9 година
пре 10 година
пре 11 година
пре 9 година
пре 11 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 8 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 10 година
пре 10 година
пре 10 година
пре 10 година
пре 11 година
пре 9 година
пре 10 година
пре 11 година
пре 9 година
пре 11 година
пре 9 година
пре 9 година
пре 9 година
пре 10 година
пре 11 година
пре 9 година
пре 11 година
пре 9 година
пре 9 година
пре 9 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 9 година
пре 10 година
пре 9 година
пре 9 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 9 година
пре 9 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 9 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 9 година
пре 9 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 10 година
пре 11 година
пре 10 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 8 година
пре 9 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
пре 11 година
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339
  1. /* Teensyduino Core Library
  2. * http://www.pjrc.com/teensy/
  3. * Copyright (c) 2013 PJRC.COM, LLC.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * 1. The above copyright notice and this permission notice shall be
  14. * included in all copies or substantial portions of the Software.
  15. *
  16. * 2. If the Software is incorporated into a build system that allows
  17. * selection among a list of target devices, then similar target
  18. * devices manufactured by PJRC.COM must be included in the list of
  19. * target devices and selectable in the same manner.
  20. *
  21. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  22. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  23. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  24. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  25. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  26. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  27. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  28. * SOFTWARE.
  29. */
  30. #include "core_pins.h"
  31. #include "pins_arduino.h"
  32. #include "HardwareSerial.h"
  33. #if defined(KINETISK)
  34. #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
  35. #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
  36. //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
  37. //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
  38. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  39. {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
  40. {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
  41. {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
  42. {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
  43. {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
  44. {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
  45. {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
  46. {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
  47. {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
  48. {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
  49. {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
  50. {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
  51. {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
  52. {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
  53. {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
  54. {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
  55. {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
  56. {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
  57. {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
  58. {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
  59. {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
  60. {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
  61. {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
  62. {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
  63. {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
  64. {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
  65. {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
  66. {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
  67. {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
  68. {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
  69. {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
  70. {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
  71. {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
  72. {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG},
  73. #ifdef CORE_PIN34_PORTREG
  74. {GPIO_BITBAND_PTR(CORE_PIN34_PORTREG, CORE_PIN34_BIT), &CORE_PIN34_CONFIG},
  75. {GPIO_BITBAND_PTR(CORE_PIN35_PORTREG, CORE_PIN35_BIT), &CORE_PIN35_CONFIG},
  76. {GPIO_BITBAND_PTR(CORE_PIN36_PORTREG, CORE_PIN36_BIT), &CORE_PIN36_CONFIG},
  77. {GPIO_BITBAND_PTR(CORE_PIN37_PORTREG, CORE_PIN37_BIT), &CORE_PIN37_CONFIG},
  78. {GPIO_BITBAND_PTR(CORE_PIN38_PORTREG, CORE_PIN38_BIT), &CORE_PIN38_CONFIG},
  79. {GPIO_BITBAND_PTR(CORE_PIN39_PORTREG, CORE_PIN39_BIT), &CORE_PIN39_CONFIG},
  80. {GPIO_BITBAND_PTR(CORE_PIN40_PORTREG, CORE_PIN40_BIT), &CORE_PIN40_CONFIG},
  81. {GPIO_BITBAND_PTR(CORE_PIN41_PORTREG, CORE_PIN41_BIT), &CORE_PIN41_CONFIG},
  82. {GPIO_BITBAND_PTR(CORE_PIN42_PORTREG, CORE_PIN42_BIT), &CORE_PIN42_CONFIG},
  83. {GPIO_BITBAND_PTR(CORE_PIN43_PORTREG, CORE_PIN43_BIT), &CORE_PIN43_CONFIG},
  84. {GPIO_BITBAND_PTR(CORE_PIN44_PORTREG, CORE_PIN44_BIT), &CORE_PIN44_CONFIG},
  85. {GPIO_BITBAND_PTR(CORE_PIN45_PORTREG, CORE_PIN45_BIT), &CORE_PIN45_CONFIG},
  86. {GPIO_BITBAND_PTR(CORE_PIN46_PORTREG, CORE_PIN46_BIT), &CORE_PIN46_CONFIG},
  87. {GPIO_BITBAND_PTR(CORE_PIN47_PORTREG, CORE_PIN47_BIT), &CORE_PIN47_CONFIG},
  88. {GPIO_BITBAND_PTR(CORE_PIN48_PORTREG, CORE_PIN48_BIT), &CORE_PIN48_CONFIG},
  89. {GPIO_BITBAND_PTR(CORE_PIN49_PORTREG, CORE_PIN49_BIT), &CORE_PIN49_CONFIG},
  90. {GPIO_BITBAND_PTR(CORE_PIN50_PORTREG, CORE_PIN50_BIT), &CORE_PIN50_CONFIG},
  91. {GPIO_BITBAND_PTR(CORE_PIN51_PORTREG, CORE_PIN51_BIT), &CORE_PIN51_CONFIG},
  92. {GPIO_BITBAND_PTR(CORE_PIN52_PORTREG, CORE_PIN52_BIT), &CORE_PIN52_CONFIG},
  93. {GPIO_BITBAND_PTR(CORE_PIN53_PORTREG, CORE_PIN53_BIT), &CORE_PIN53_CONFIG},
  94. {GPIO_BITBAND_PTR(CORE_PIN54_PORTREG, CORE_PIN54_BIT), &CORE_PIN54_CONFIG},
  95. {GPIO_BITBAND_PTR(CORE_PIN55_PORTREG, CORE_PIN55_BIT), &CORE_PIN55_CONFIG},
  96. {GPIO_BITBAND_PTR(CORE_PIN56_PORTREG, CORE_PIN56_BIT), &CORE_PIN56_CONFIG},
  97. {GPIO_BITBAND_PTR(CORE_PIN57_PORTREG, CORE_PIN57_BIT), &CORE_PIN57_CONFIG},
  98. #ifdef USE_SDCARD_PINS
  99. {GPIO_BITBAND_PTR(CORE_PIN58_PORTREG, CORE_PIN58_BIT), &CORE_PIN58_CONFIG},
  100. {GPIO_BITBAND_PTR(CORE_PIN59_PORTREG, CORE_PIN59_BIT), &CORE_PIN59_CONFIG},
  101. {GPIO_BITBAND_PTR(CORE_PIN60_PORTREG, CORE_PIN60_BIT), &CORE_PIN60_CONFIG},
  102. {GPIO_BITBAND_PTR(CORE_PIN61_PORTREG, CORE_PIN61_BIT), &CORE_PIN61_CONFIG},
  103. {GPIO_BITBAND_PTR(CORE_PIN62_PORTREG, CORE_PIN62_BIT), &CORE_PIN62_CONFIG},
  104. {GPIO_BITBAND_PTR(CORE_PIN63_PORTREG, CORE_PIN63_BIT), &CORE_PIN63_CONFIG},
  105. #endif
  106. #endif
  107. };
  108. #elif defined(KINETISL)
  109. const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
  110. {((volatile uint8_t *)&CORE_PIN0_PORTREG + (CORE_PIN0_BIT >> 3)), &CORE_PIN0_CONFIG, (1<<(CORE_PIN0_BIT & 7))},
  111. {((volatile uint8_t *)&CORE_PIN1_PORTREG + (CORE_PIN1_BIT >> 3)), &CORE_PIN1_CONFIG, (1<<(CORE_PIN1_BIT & 7))},
  112. {((volatile uint8_t *)&CORE_PIN2_PORTREG + (CORE_PIN2_BIT >> 3)), &CORE_PIN2_CONFIG, (1<<(CORE_PIN2_BIT & 7))},
  113. {((volatile uint8_t *)&CORE_PIN3_PORTREG + (CORE_PIN3_BIT >> 3)), &CORE_PIN3_CONFIG, (1<<(CORE_PIN3_BIT & 7))},
  114. {((volatile uint8_t *)&CORE_PIN4_PORTREG + (CORE_PIN4_BIT >> 3)), &CORE_PIN4_CONFIG, (1<<(CORE_PIN4_BIT & 7))},
  115. {((volatile uint8_t *)&CORE_PIN5_PORTREG + (CORE_PIN5_BIT >> 3)), &CORE_PIN5_CONFIG, (1<<(CORE_PIN5_BIT & 7))},
  116. {((volatile uint8_t *)&CORE_PIN6_PORTREG + (CORE_PIN6_BIT >> 3)), &CORE_PIN6_CONFIG, (1<<(CORE_PIN6_BIT & 7))},
  117. {((volatile uint8_t *)&CORE_PIN7_PORTREG + (CORE_PIN7_BIT >> 3)), &CORE_PIN7_CONFIG, (1<<(CORE_PIN7_BIT & 7))},
  118. {((volatile uint8_t *)&CORE_PIN8_PORTREG + (CORE_PIN8_BIT >> 3)), &CORE_PIN8_CONFIG, (1<<(CORE_PIN8_BIT & 7))},
  119. {((volatile uint8_t *)&CORE_PIN9_PORTREG + (CORE_PIN9_BIT >> 3)), &CORE_PIN9_CONFIG, (1<<(CORE_PIN9_BIT & 7))},
  120. {((volatile uint8_t *)&CORE_PIN10_PORTREG + (CORE_PIN10_BIT >> 3)), &CORE_PIN10_CONFIG, (1<<(CORE_PIN10_BIT & 7))},
  121. {((volatile uint8_t *)&CORE_PIN11_PORTREG + (CORE_PIN11_BIT >> 3)), &CORE_PIN11_CONFIG, (1<<(CORE_PIN11_BIT & 7))},
  122. {((volatile uint8_t *)&CORE_PIN12_PORTREG + (CORE_PIN12_BIT >> 3)), &CORE_PIN12_CONFIG, (1<<(CORE_PIN12_BIT & 7))},
  123. {((volatile uint8_t *)&CORE_PIN13_PORTREG + (CORE_PIN13_BIT >> 3)), &CORE_PIN13_CONFIG, (1<<(CORE_PIN13_BIT & 7))},
  124. {((volatile uint8_t *)&CORE_PIN14_PORTREG + (CORE_PIN14_BIT >> 3)), &CORE_PIN14_CONFIG, (1<<(CORE_PIN14_BIT & 7))},
  125. {((volatile uint8_t *)&CORE_PIN15_PORTREG + (CORE_PIN15_BIT >> 3)), &CORE_PIN15_CONFIG, (1<<(CORE_PIN15_BIT & 7))},
  126. {((volatile uint8_t *)&CORE_PIN16_PORTREG + (CORE_PIN16_BIT >> 3)), &CORE_PIN16_CONFIG, (1<<(CORE_PIN16_BIT & 7))},
  127. {((volatile uint8_t *)&CORE_PIN17_PORTREG + (CORE_PIN17_BIT >> 3)), &CORE_PIN17_CONFIG, (1<<(CORE_PIN17_BIT & 7))},
  128. {((volatile uint8_t *)&CORE_PIN18_PORTREG + (CORE_PIN18_BIT >> 3)), &CORE_PIN18_CONFIG, (1<<(CORE_PIN18_BIT & 7))},
  129. {((volatile uint8_t *)&CORE_PIN19_PORTREG + (CORE_PIN19_BIT >> 3)), &CORE_PIN19_CONFIG, (1<<(CORE_PIN19_BIT & 7))},
  130. {((volatile uint8_t *)&CORE_PIN20_PORTREG + (CORE_PIN20_BIT >> 3)), &CORE_PIN20_CONFIG, (1<<(CORE_PIN20_BIT & 7))},
  131. {((volatile uint8_t *)&CORE_PIN21_PORTREG + (CORE_PIN21_BIT >> 3)), &CORE_PIN21_CONFIG, (1<<(CORE_PIN21_BIT & 7))},
  132. {((volatile uint8_t *)&CORE_PIN22_PORTREG + (CORE_PIN22_BIT >> 3)), &CORE_PIN22_CONFIG, (1<<(CORE_PIN22_BIT & 7))},
  133. {((volatile uint8_t *)&CORE_PIN23_PORTREG + (CORE_PIN23_BIT >> 3)), &CORE_PIN23_CONFIG, (1<<(CORE_PIN23_BIT & 7))},
  134. {((volatile uint8_t *)&CORE_PIN24_PORTREG + (CORE_PIN24_BIT >> 3)), &CORE_PIN24_CONFIG, (1<<(CORE_PIN24_BIT & 7))},
  135. {((volatile uint8_t *)&CORE_PIN25_PORTREG + (CORE_PIN25_BIT >> 3)), &CORE_PIN25_CONFIG, (1<<(CORE_PIN25_BIT & 7))},
  136. {((volatile uint8_t *)&CORE_PIN26_PORTREG + (CORE_PIN26_BIT >> 3)), &CORE_PIN26_CONFIG, (1<<(CORE_PIN26_BIT & 7))}
  137. };
  138. #endif
  139. typedef void (*voidFuncPtr)(void);
  140. volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
  141. #if defined(KINETISK)
  142. static void porta_interrupt(void);
  143. static void portb_interrupt(void);
  144. static void portc_interrupt(void);
  145. static void portd_interrupt(void);
  146. static void porte_interrupt(void);
  147. #elif defined(KINETISL)
  148. static void porta_interrupt(void);
  149. static void portcd_interrupt(void);
  150. #endif
  151. void attachInterruptVector(enum IRQ_NUMBER_t irq, void (*function)(void))
  152. {
  153. _VectorsRam[irq + 16] = function;
  154. }
  155. void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
  156. {
  157. volatile uint32_t *config;
  158. uint32_t cfg, mask;
  159. if (pin >= CORE_NUM_DIGITAL) return;
  160. switch (mode) {
  161. case CHANGE: mask = 0x0B; break;
  162. case RISING: mask = 0x09; break;
  163. case FALLING: mask = 0x0A; break;
  164. case LOW: mask = 0x08; break;
  165. case HIGH: mask = 0x0C; break;
  166. default: return;
  167. }
  168. mask = (mask << 16) | 0x01000000;
  169. config = portConfigRegister(pin);
  170. #if defined(KINETISK)
  171. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  172. attachInterruptVector(IRQ_PORTB, portb_interrupt);
  173. attachInterruptVector(IRQ_PORTC, portc_interrupt);
  174. attachInterruptVector(IRQ_PORTD, portd_interrupt);
  175. attachInterruptVector(IRQ_PORTE, porte_interrupt);
  176. #elif defined(KINETISL)
  177. attachInterruptVector(IRQ_PORTA, porta_interrupt);
  178. attachInterruptVector(IRQ_PORTCD, portcd_interrupt);
  179. #endif
  180. __disable_irq();
  181. cfg = *config;
  182. cfg &= ~0x000F0000; // disable any previous interrupt
  183. *config = cfg;
  184. intFunc[pin] = function; // set the function pointer
  185. cfg |= mask;
  186. *config = cfg; // enable the new interrupt
  187. __enable_irq();
  188. }
  189. void detachInterrupt(uint8_t pin)
  190. {
  191. volatile uint32_t *config;
  192. config = portConfigRegister(pin);
  193. __disable_irq();
  194. *config = ((*config & ~0x000F0000) | 0x01000000);
  195. intFunc[pin] = NULL;
  196. __enable_irq();
  197. }
  198. #if defined(__MK20DX128__) || defined(__MK20DX256__)
  199. static void porta_interrupt(void)
  200. {
  201. uint32_t isfr = PORTA_ISFR;
  202. PORTA_ISFR = isfr;
  203. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  204. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  205. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  206. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  207. }
  208. static void portb_interrupt(void)
  209. {
  210. uint32_t isfr = PORTB_ISFR;
  211. PORTB_ISFR = isfr;
  212. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  213. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  214. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  215. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  216. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  217. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  218. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  219. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  220. }
  221. static void portc_interrupt(void)
  222. {
  223. // TODO: these are inefficent. Use CLZ somehow....
  224. uint32_t isfr = PORTC_ISFR;
  225. PORTC_ISFR = isfr;
  226. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  227. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  228. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  229. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  230. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  231. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  232. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  233. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  234. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  235. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  236. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  237. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  238. }
  239. static void portd_interrupt(void)
  240. {
  241. uint32_t isfr = PORTD_ISFR;
  242. PORTD_ISFR = isfr;
  243. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  244. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  245. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  246. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  247. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  248. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  249. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  250. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  251. }
  252. static void porte_interrupt(void)
  253. {
  254. uint32_t isfr = PORTE_ISFR;
  255. PORTE_ISFR = isfr;
  256. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  257. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  258. }
  259. #elif defined(__MKL26Z64__)
  260. static void porta_interrupt(void)
  261. {
  262. uint32_t isfr = PORTA_ISFR;
  263. PORTA_ISFR = isfr;
  264. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  265. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  266. }
  267. static void portcd_interrupt(void)
  268. {
  269. uint32_t isfr = PORTC_ISFR;
  270. PORTC_ISFR = isfr;
  271. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  272. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  273. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  274. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  275. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  276. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  277. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  278. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  279. isfr = PORTD_ISFR;
  280. PORTD_ISFR = isfr;
  281. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  282. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  283. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  284. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  285. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  286. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  287. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  288. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  289. }
  290. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  291. static void porta_interrupt(void)
  292. {
  293. uint32_t isfr = PORTA_ISFR;
  294. PORTA_ISFR = isfr;
  295. if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
  296. if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
  297. if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
  298. if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
  299. if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
  300. if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
  301. if ((isfr & CORE_PIN39_BITMASK) && intFunc[39]) intFunc[39]();
  302. if ((isfr & CORE_PIN40_BITMASK) && intFunc[40]) intFunc[40]();
  303. if ((isfr & CORE_PIN41_BITMASK) && intFunc[41]) intFunc[41]();
  304. if ((isfr & CORE_PIN42_BITMASK) && intFunc[42]) intFunc[42]();
  305. }
  306. static void portb_interrupt(void)
  307. {
  308. uint32_t isfr = PORTB_ISFR;
  309. PORTB_ISFR = isfr;
  310. if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
  311. if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
  312. if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
  313. if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
  314. if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
  315. if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
  316. if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
  317. if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
  318. if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
  319. if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
  320. if ((isfr & CORE_PIN43_BITMASK) && intFunc[43]) intFunc[43]();
  321. if ((isfr & CORE_PIN44_BITMASK) && intFunc[44]) intFunc[44]();
  322. if ((isfr & CORE_PIN45_BITMASK) && intFunc[45]) intFunc[45]();
  323. if ((isfr & CORE_PIN46_BITMASK) && intFunc[46]) intFunc[46]();
  324. if ((isfr & CORE_PIN49_BITMASK) && intFunc[49]) intFunc[49]();
  325. if ((isfr & CORE_PIN50_BITMASK) && intFunc[50]) intFunc[50]();
  326. }
  327. static void portc_interrupt(void)
  328. {
  329. // TODO: these are inefficent. Use CLZ somehow....
  330. uint32_t isfr = PORTC_ISFR;
  331. PORTC_ISFR = isfr;
  332. if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
  333. if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
  334. if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
  335. if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
  336. if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
  337. if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
  338. if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
  339. if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
  340. if ((isfr & CORE_PIN35_BITMASK) && intFunc[35]) intFunc[35]();
  341. if ((isfr & CORE_PIN36_BITMASK) && intFunc[36]) intFunc[36]();
  342. if ((isfr & CORE_PIN37_BITMASK) && intFunc[37]) intFunc[37]();
  343. if ((isfr & CORE_PIN38_BITMASK) && intFunc[38]) intFunc[38]();
  344. }
  345. static void portd_interrupt(void)
  346. {
  347. uint32_t isfr = PORTD_ISFR;
  348. PORTD_ISFR = isfr;
  349. if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
  350. if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
  351. if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
  352. if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
  353. if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
  354. if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
  355. if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
  356. if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
  357. if ((isfr & CORE_PIN47_BITMASK) && intFunc[47]) intFunc[47]();
  358. if ((isfr & CORE_PIN48_BITMASK) && intFunc[48]) intFunc[48]();
  359. if ((isfr & CORE_PIN51_BITMASK) && intFunc[51]) intFunc[51]();
  360. if ((isfr & CORE_PIN52_BITMASK) && intFunc[52]) intFunc[52]();
  361. if ((isfr & CORE_PIN53_BITMASK) && intFunc[53]) intFunc[53]();
  362. if ((isfr & CORE_PIN54_BITMASK) && intFunc[54]) intFunc[54]();
  363. if ((isfr & CORE_PIN55_BITMASK) && intFunc[55]) intFunc[55]();
  364. }
  365. static void porte_interrupt(void)
  366. {
  367. uint32_t isfr = PORTE_ISFR;
  368. PORTE_ISFR = isfr;
  369. if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
  370. if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
  371. if ((isfr & CORE_PIN34_BITMASK) && intFunc[34]) intFunc[34]();
  372. if ((isfr & CORE_PIN56_BITMASK) && intFunc[56]) intFunc[56]();
  373. if ((isfr & CORE_PIN57_BITMASK) && intFunc[57]) intFunc[57]();
  374. #ifdef USE_SDCARD_PINS
  375. if ((isfr & CORE_PIN58_BITMASK) && intFunc[58]) intFunc[58]();
  376. if ((isfr & CORE_PIN59_BITMASK) && intFunc[59]) intFunc[59]();
  377. if ((isfr & CORE_PIN60_BITMASK) && intFunc[60]) intFunc[60]();
  378. if ((isfr & CORE_PIN61_BITMASK) && intFunc[61]) intFunc[61]();
  379. if ((isfr & CORE_PIN62_BITMASK) && intFunc[62]) intFunc[62]();
  380. if ((isfr & CORE_PIN63_BITMASK) && intFunc[63]) intFunc[63]();
  381. #endif
  382. }
  383. #endif
  384. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  385. unsigned long rtc_get(void)
  386. {
  387. return RTC_TSR;
  388. }
  389. void rtc_set(unsigned long t)
  390. {
  391. RTC_SR = 0;
  392. RTC_TPR = 0;
  393. RTC_TSR = t;
  394. RTC_SR = RTC_SR_TCE;
  395. }
  396. // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
  397. // For example, adjust = -100 is slows the clock by 11.92 ppm
  398. //
  399. void rtc_compensate(int adjust)
  400. {
  401. uint32_t comp, interval, tcr;
  402. // This simple approach tries to maximize the interval.
  403. // Perhaps minimizing TCR would be better, so the
  404. // compensation is distributed more evenly across
  405. // many seconds, rather than saving it all up and then
  406. // altering one second up to +/- 0.38%
  407. if (adjust >= 0) {
  408. comp = adjust;
  409. interval = 256;
  410. while (1) {
  411. tcr = comp * interval;
  412. if (tcr < 128*256) break;
  413. if (--interval == 1) break;
  414. }
  415. tcr = tcr >> 8;
  416. } else {
  417. comp = -adjust;
  418. interval = 256;
  419. while (1) {
  420. tcr = comp * interval;
  421. if (tcr < 129*256) break;
  422. if (--interval == 1) break;
  423. }
  424. tcr = tcr >> 8;
  425. tcr = 256 - tcr;
  426. }
  427. RTC_TCR = ((interval - 1) << 8) | tcr;
  428. }
  429. #else
  430. unsigned long rtc_get(void) { return 0; }
  431. void rtc_set(unsigned long t) { }
  432. void rtc_compensate(int adjust) { }
  433. #endif
  434. #if 0
  435. // TODO: build system should define this
  436. // so RTC is automatically initialized to approx correct time
  437. // at least when the program begins running right after upload
  438. #ifndef TIME_T
  439. #define TIME_T 1350160272
  440. #endif
  441. void init_rtc(void)
  442. {
  443. serial_print("init_rtc\n");
  444. //SIM_SCGC6 |= SIM_SCGC6_RTC;
  445. // enable the RTC crystal oscillator, for approx 12pf crystal
  446. if (!(RTC_CR & RTC_CR_OSCE)) {
  447. serial_print("start RTC oscillator\n");
  448. RTC_SR = 0;
  449. RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
  450. }
  451. // should wait for crystal to stabilize.....
  452. serial_print("SR=");
  453. serial_phex32(RTC_SR);
  454. serial_print("\n");
  455. serial_print("CR=");
  456. serial_phex32(RTC_CR);
  457. serial_print("\n");
  458. serial_print("TSR=");
  459. serial_phex32(RTC_TSR);
  460. serial_print("\n");
  461. serial_print("TCR=");
  462. serial_phex32(RTC_TCR);
  463. serial_print("\n");
  464. if (RTC_SR & RTC_SR_TIF) {
  465. // enable the RTC
  466. RTC_SR = 0;
  467. RTC_TPR = 0;
  468. RTC_TSR = TIME_T;
  469. RTC_SR = RTC_SR_TCE;
  470. }
  471. }
  472. #endif
  473. extern void usb_init(void);
  474. // create a default PWM at the same 488.28 Hz as Arduino Uno
  475. #if defined(KINETISK)
  476. #define F_TIMER F_BUS
  477. #elif defined(KINETISL)
  478. #if F_CPU > 16000000
  479. #define F_TIMER (F_PLL/2)
  480. #else
  481. #define F_TIMER (F_PLL)
  482. #endif//Low Power
  483. #endif
  484. #if F_TIMER == 120000000
  485. #define DEFAULT_FTM_MOD (61440 - 1)
  486. #define DEFAULT_FTM_PRESCALE 2
  487. #elif F_TIMER == 108000000
  488. #define DEFAULT_FTM_MOD (55296 - 1)
  489. #define DEFAULT_FTM_PRESCALE 2
  490. #elif F_TIMER == 96000000
  491. #define DEFAULT_FTM_MOD (49152 - 1)
  492. #define DEFAULT_FTM_PRESCALE 2
  493. #elif F_TIMER == 90000000
  494. #define DEFAULT_FTM_MOD (46080 - 1)
  495. #define DEFAULT_FTM_PRESCALE 2
  496. #elif F_TIMER == 80000000
  497. #define DEFAULT_FTM_MOD (40960 - 1)
  498. #define DEFAULT_FTM_PRESCALE 2
  499. #elif F_TIMER == 72000000
  500. #define DEFAULT_FTM_MOD (36864 - 1)
  501. #define DEFAULT_FTM_PRESCALE 2
  502. #elif F_TIMER == 64000000
  503. #define DEFAULT_FTM_MOD (65536 - 1)
  504. #define DEFAULT_FTM_PRESCALE 1
  505. #elif F_TIMER == 60000000
  506. #define DEFAULT_FTM_MOD (61440 - 1)
  507. #define DEFAULT_FTM_PRESCALE 1
  508. #elif F_TIMER == 56000000
  509. #define DEFAULT_FTM_MOD (57344 - 1)
  510. #define DEFAULT_FTM_PRESCALE 1
  511. #elif F_TIMER == 54000000
  512. #define DEFAULT_FTM_MOD (55296 - 1)
  513. #define DEFAULT_FTM_PRESCALE 1
  514. #elif F_TIMER == 48000000
  515. #define DEFAULT_FTM_MOD (49152 - 1)
  516. #define DEFAULT_FTM_PRESCALE 1
  517. #elif F_TIMER == 40000000
  518. #define DEFAULT_FTM_MOD (40960 - 1)
  519. #define DEFAULT_FTM_PRESCALE 1
  520. #elif F_TIMER == 36000000
  521. #define DEFAULT_FTM_MOD (36864 - 1)
  522. #define DEFAULT_FTM_PRESCALE 1
  523. #elif F_TIMER == 24000000
  524. #define DEFAULT_FTM_MOD (49152 - 1)
  525. #define DEFAULT_FTM_PRESCALE 0
  526. #elif F_TIMER == 16000000
  527. #define DEFAULT_FTM_MOD (32768 - 1)
  528. #define DEFAULT_FTM_PRESCALE 0
  529. #elif F_TIMER == 8000000
  530. #define DEFAULT_FTM_MOD (16384 - 1)
  531. #define DEFAULT_FTM_PRESCALE 0
  532. #elif F_TIMER == 4000000
  533. #define DEFAULT_FTM_MOD (8192 - 1)
  534. #define DEFAULT_FTM_PRESCALE 0
  535. #elif F_TIMER == 2000000
  536. #define DEFAULT_FTM_MOD (4096 - 1)
  537. #define DEFAULT_FTM_PRESCALE 0
  538. #endif
  539. //void init_pins(void)
  540. void _init_Teensyduino_internal_(void)
  541. {
  542. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  543. NVIC_ENABLE_IRQ(IRQ_PORTA);
  544. NVIC_ENABLE_IRQ(IRQ_PORTB);
  545. NVIC_ENABLE_IRQ(IRQ_PORTC);
  546. NVIC_ENABLE_IRQ(IRQ_PORTD);
  547. NVIC_ENABLE_IRQ(IRQ_PORTE);
  548. #elif defined(__MKL26Z64__)
  549. NVIC_ENABLE_IRQ(IRQ_PORTA);
  550. NVIC_ENABLE_IRQ(IRQ_PORTCD);
  551. #endif
  552. //SIM_SCGC6 |= SIM_SCGC6_FTM0; // TODO: use bitband for atomic read-mod-write
  553. //SIM_SCGC6 |= SIM_SCGC6_FTM1;
  554. FTM0_CNT = 0;
  555. FTM0_MOD = DEFAULT_FTM_MOD;
  556. FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
  557. FTM0_C1SC = 0x28;
  558. FTM0_C2SC = 0x28;
  559. FTM0_C3SC = 0x28;
  560. FTM0_C4SC = 0x28;
  561. FTM0_C5SC = 0x28;
  562. #if defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
  563. FTM0_C6SC = 0x28;
  564. FTM0_C7SC = 0x28;
  565. #endif
  566. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  567. FTM3_C0SC = 0x28;
  568. FTM3_C1SC = 0x28;
  569. FTM3_C2SC = 0x28;
  570. FTM3_C3SC = 0x28;
  571. FTM3_C4SC = 0x28;
  572. FTM3_C5SC = 0x28;
  573. FTM3_C6SC = 0x28;
  574. FTM3_C7SC = 0x28;
  575. #endif
  576. FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  577. FTM1_CNT = 0;
  578. FTM1_MOD = DEFAULT_FTM_MOD;
  579. FTM1_C0SC = 0x28;
  580. FTM1_C1SC = 0x28;
  581. FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  582. #if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__) || defined(__MKL26Z64__)
  583. FTM2_CNT = 0;
  584. FTM2_MOD = DEFAULT_FTM_MOD;
  585. FTM2_C0SC = 0x28;
  586. FTM2_C1SC = 0x28;
  587. FTM2_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  588. #endif
  589. #if defined(__MK64FX512__) || defined(__MK66FX1M0__)
  590. FTM3_CNT = 0;
  591. FTM3_MOD = DEFAULT_FTM_MOD;
  592. FTM3_C0SC = 0x28;
  593. FTM3_C1SC = 0x28;
  594. FTM3_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
  595. #endif
  596. analog_init();
  597. // for background about this startup delay, please see this conversation
  598. // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
  599. delay(400);
  600. usb_init();
  601. }
  602. #if defined(__MK20DX128__)
  603. #define FTM0_CH0_PIN 22
  604. #define FTM0_CH1_PIN 23
  605. #define FTM0_CH2_PIN 9
  606. #define FTM0_CH3_PIN 10
  607. #define FTM0_CH4_PIN 6
  608. #define FTM0_CH5_PIN 20
  609. #define FTM0_CH6_PIN 21
  610. #define FTM0_CH7_PIN 5
  611. #define FTM1_CH0_PIN 3
  612. #define FTM1_CH1_PIN 4
  613. #elif defined(__MK20DX256__)
  614. #define FTM0_CH0_PIN 22
  615. #define FTM0_CH1_PIN 23
  616. #define FTM0_CH2_PIN 9
  617. #define FTM0_CH3_PIN 10
  618. #define FTM0_CH4_PIN 6
  619. #define FTM0_CH5_PIN 20
  620. #define FTM0_CH6_PIN 21
  621. #define FTM0_CH7_PIN 5
  622. #define FTM1_CH0_PIN 3
  623. #define FTM1_CH1_PIN 4
  624. #define FTM2_CH0_PIN 32
  625. #define FTM2_CH1_PIN 25
  626. #elif defined(__MKL26Z64__)
  627. #define FTM0_CH0_PIN 22
  628. #define FTM0_CH1_PIN 23
  629. #define FTM0_CH2_PIN 9
  630. #define FTM0_CH3_PIN 10
  631. #define FTM0_CH4_PIN 6
  632. #define FTM0_CH5_PIN 20
  633. #define FTM1_CH0_PIN 16
  634. #define FTM1_CH1_PIN 17
  635. #define FTM2_CH0_PIN 3
  636. #define FTM2_CH1_PIN 4
  637. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  638. #define FTM0_CH0_PIN 22
  639. #define FTM0_CH1_PIN 23
  640. #define FTM0_CH2_PIN 9
  641. #define FTM0_CH3_PIN 10
  642. #define FTM0_CH4_PIN 6
  643. #define FTM0_CH5_PIN 20
  644. #define FTM0_CH6_PIN 21
  645. #define FTM0_CH7_PIN 5
  646. #define FTM1_CH0_PIN 3
  647. #define FTM1_CH1_PIN 4
  648. #define FTM2_CH0_PIN 29
  649. #define FTM2_CH1_PIN 30
  650. #define FTM3_CH0_PIN 2
  651. #define FTM3_CH1_PIN 14
  652. #define FTM3_CH2_PIN 7
  653. #define FTM3_CH3_PIN 8
  654. #define FTM3_CH4_PIN 35
  655. #define FTM3_CH5_PIN 36
  656. #define FTM3_CH6_PIN 37
  657. #define FTM3_CH7_PIN 38
  658. #endif
  659. #define FTM_PINCFG(pin) FTM_PINCFG2(pin)
  660. #define FTM_PINCFG2(pin) CORE_PIN ## pin ## _CONFIG
  661. static uint8_t analog_write_res = 8;
  662. // SOPT4 is SIM select clocks?
  663. // FTM is clocked by the bus clock, either 24 or 48 MHz
  664. // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
  665. // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
  666. void analogWrite(uint8_t pin, int val)
  667. {
  668. uint32_t cval, max;
  669. #if defined(__MK20DX256__)
  670. if (pin == A14) {
  671. uint8_t res = analog_write_res;
  672. if (res < 12) {
  673. val <<= 12 - res;
  674. } else if (res > 12) {
  675. val >>= res - 12;
  676. }
  677. analogWriteDAC0(val);
  678. return;
  679. }
  680. #elif defined(__MKL26Z64__)
  681. if (pin == A12) {
  682. uint8_t res = analog_write_res;
  683. if (res < 12) {
  684. val <<= 12 - res;
  685. } else if (res > 12) {
  686. val >>= res - 12;
  687. }
  688. analogWriteDAC0(val);
  689. return;
  690. }
  691. #elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
  692. if (pin == A21 || pin == A22) {
  693. uint8_t res = analog_write_res;
  694. if (res < 12) {
  695. val <<= 12 - res;
  696. } else if (res > 12) {
  697. val >>= res - 12;
  698. }
  699. if (pin == A21) analogWriteDAC0(val);
  700. else analogWriteDAC1(val);
  701. return;
  702. }
  703. #endif
  704. max = 1 << analog_write_res;
  705. if (val <= 0) {
  706. digitalWrite(pin, LOW);
  707. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_LOW
  708. return;
  709. } else if (val >= max) {
  710. digitalWrite(pin, HIGH);
  711. pinMode(pin, OUTPUT); // TODO: implement OUTPUT_HIGH
  712. return;
  713. }
  714. //serial_print("analogWrite\n");
  715. //serial_print("val = ");
  716. //serial_phex32(val);
  717. //serial_print("\n");
  718. //serial_print("analog_write_res = ");
  719. //serial_phex(analog_write_res);
  720. //serial_print("\n");
  721. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  722. cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
  723. #if defined(FTM2_CH0_PIN)
  724. } else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  725. cval = ((uint32_t)val * (uint32_t)(FTM2_MOD + 1)) >> analog_write_res;
  726. #endif
  727. } else {
  728. cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
  729. }
  730. //serial_print("cval = ");
  731. //serial_phex32(cval);
  732. //serial_print("\n");
  733. switch (pin) {
  734. #ifdef FTM0_CH0_PIN
  735. case FTM0_CH0_PIN: // PTC1, FTM0_CH0
  736. FTM0_C0V = cval;
  737. FTM_PINCFG(FTM0_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  738. break;
  739. #endif
  740. #ifdef FTM0_CH1_PIN
  741. case FTM0_CH1_PIN: // PTC2, FTM0_CH1
  742. FTM0_C1V = cval;
  743. FTM_PINCFG(FTM0_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  744. break;
  745. #endif
  746. #ifdef FTM0_CH2_PIN
  747. case FTM0_CH2_PIN: // PTC3, FTM0_CH2
  748. FTM0_C2V = cval;
  749. FTM_PINCFG(FTM0_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  750. break;
  751. #endif
  752. #ifdef FTM0_CH3_PIN
  753. case FTM0_CH3_PIN: // PTC4, FTM0_CH3
  754. FTM0_C3V = cval;
  755. FTM_PINCFG(FTM0_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  756. break;
  757. #endif
  758. #ifdef FTM0_CH4_PIN
  759. case FTM0_CH4_PIN: // PTD4, FTM0_CH4
  760. FTM0_C4V = cval;
  761. FTM_PINCFG(FTM0_CH4_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  762. break;
  763. #endif
  764. #ifdef FTM0_CH5_PIN
  765. case FTM0_CH5_PIN: // PTD5, FTM0_CH5
  766. FTM0_C5V = cval;
  767. FTM_PINCFG(FTM0_CH5_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  768. break;
  769. #endif
  770. #ifdef FTM0_CH6_PIN
  771. case FTM0_CH6_PIN: // PTD6, FTM0_CH6
  772. FTM0_C6V = cval;
  773. FTM_PINCFG(FTM0_CH6_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  774. break;
  775. #endif
  776. #ifdef FTM0_CH7_PIN
  777. case FTM0_CH7_PIN: // PTD7, FTM0_CH7
  778. FTM0_C7V = cval;
  779. FTM_PINCFG(FTM0_CH7_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  780. break;
  781. #endif
  782. #ifdef FTM1_CH0_PIN
  783. case FTM1_CH0_PIN: // PTA12, FTM1_CH0
  784. FTM1_C0V = cval;
  785. FTM_PINCFG(FTM1_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  786. break;
  787. #endif
  788. #ifdef FTM1_CH1_PIN
  789. case FTM1_CH1_PIN: // PTA13, FTM1_CH1
  790. FTM1_C1V = cval;
  791. FTM_PINCFG(FTM1_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  792. break;
  793. #endif
  794. #ifdef FTM2_CH0_PIN
  795. case FTM2_CH0_PIN: // PTB18, FTM2_CH0
  796. FTM2_C0V = cval;
  797. FTM_PINCFG(FTM2_CH0_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  798. break;
  799. #endif
  800. #ifdef FTM2_CH1_PIN
  801. case FTM2_CH1_PIN: // PTB19, FTM1_CH1
  802. FTM2_C1V = cval;
  803. FTM_PINCFG(FTM2_CH1_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  804. break;
  805. #endif
  806. #ifdef FTM3_CH0_PIN
  807. case FTM3_CH0_PIN:
  808. FTM3_C0V = cval;
  809. FTM_PINCFG(FTM3_CH0_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  810. break;
  811. #endif
  812. #ifdef FTM3_CH1_PIN
  813. case FTM3_CH1_PIN:
  814. FTM3_C1V = cval;
  815. FTM_PINCFG(FTM3_CH1_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  816. break;
  817. #endif
  818. #ifdef FTM3_CH2_PIN
  819. case FTM3_CH2_PIN:
  820. FTM3_C2V = cval;
  821. FTM_PINCFG(FTM3_CH2_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  822. break;
  823. #endif
  824. #ifdef FTM3_CH3_PIN
  825. case FTM3_CH3_PIN:
  826. FTM3_C3V = cval;
  827. FTM_PINCFG(FTM3_CH3_PIN) = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
  828. break;
  829. #endif
  830. #ifdef FTM3_CH4_PIN
  831. case FTM3_CH4_PIN:
  832. FTM3_C4V = cval;
  833. FTM_PINCFG(FTM3_CH4_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  834. break;
  835. #endif
  836. #ifdef FTM3_CH5_PIN
  837. case FTM3_CH5_PIN:
  838. FTM3_C5V = cval;
  839. FTM_PINCFG(FTM3_CH5_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  840. break;
  841. #endif
  842. #ifdef FTM3_CH6_PIN
  843. case FTM3_CH6_PIN:
  844. FTM3_C6V = cval;
  845. FTM_PINCFG(FTM3_CH6_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  846. break;
  847. #endif
  848. #ifdef FTM3_CH7_PIN
  849. case FTM3_CH7_PIN:
  850. FTM3_C7V = cval;
  851. FTM_PINCFG(FTM3_CH7_PIN) = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
  852. break;
  853. #endif
  854. default:
  855. digitalWrite(pin, (val > 127) ? HIGH : LOW);
  856. pinMode(pin, OUTPUT);
  857. }
  858. }
  859. void analogWriteRes(uint32_t bits)
  860. {
  861. if (bits < 1) {
  862. bits = 1;
  863. } else if (bits > 16) {
  864. bits = 16;
  865. }
  866. analog_write_res = bits;
  867. }
  868. void analogWriteFrequency(uint8_t pin, float frequency)
  869. {
  870. uint32_t prescale, mod, ftmClock, ftmClockSource;
  871. float minfreq;
  872. //serial_print("analogWriteFrequency: pin = ");
  873. //serial_phex(pin);
  874. //serial_print(", freq = ");
  875. //serial_phex32((uint32_t)frequency);
  876. //serial_print("\n");
  877. if (frequency < (float)(F_TIMER >> 7) / 65536.0f) { //If frequency is too low for working with F_TIMER:
  878. ftmClockSource = 2; //Use alternative 31250Hz clock source
  879. ftmClock = 31250; //Set variable for the actual timer clock frequency
  880. } else { //Else do as before:
  881. ftmClockSource = 1; //Use default F_Timer clock source
  882. ftmClock = F_TIMER; //Set variable for the actual timer clock frequency
  883. }
  884. for (prescale = 0; prescale < 7; prescale++) {
  885. minfreq = (float)(ftmClock >> prescale) / 65536.0f; //Use ftmClock instead of F_TIMER
  886. if (frequency >= minfreq) break;
  887. }
  888. //serial_print("F_TIMER/ftm_Clock = ");
  889. //serial_phex32(ftmClock >> prescale);
  890. //serial_print("\n");
  891. //serial_print("prescale = ");
  892. //serial_phex(prescale);
  893. //serial_print("\n");
  894. mod = (float)(ftmClock >> prescale) / frequency - 0.5f; //Use ftmClock instead of F_TIMER
  895. if (mod > 65535) mod = 65535;
  896. //serial_print("mod = ");
  897. //serial_phex32(mod);
  898. //serial_print("\n");
  899. if (pin == FTM1_CH0_PIN || pin == FTM1_CH1_PIN) {
  900. FTM1_SC = 0;
  901. FTM1_CNT = 0;
  902. FTM1_MOD = mod;
  903. FTM1_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  904. } else if (pin == FTM0_CH0_PIN || pin == FTM0_CH1_PIN
  905. || pin == FTM0_CH2_PIN || pin == FTM0_CH3_PIN
  906. || pin == FTM0_CH4_PIN || pin == FTM0_CH5_PIN
  907. #ifdef FTM0_CH6_PIN
  908. || pin == FTM0_CH6_PIN || pin == FTM0_CH7_PIN
  909. #endif
  910. ) {
  911. FTM0_SC = 0;
  912. FTM0_CNT = 0;
  913. FTM0_MOD = mod;
  914. FTM0_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  915. }
  916. #ifdef FTM2_CH0_PIN
  917. else if (pin == FTM2_CH0_PIN || pin == FTM2_CH1_PIN) {
  918. FTM2_SC = 0;
  919. FTM2_CNT = 0;
  920. FTM2_MOD = mod;
  921. FTM2_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use ftmClockSource instead of 1
  922. }
  923. #endif
  924. #ifdef FTM3_CH0_PIN
  925. else if (pin == FTM3_CH0_PIN || pin == FTM3_CH1_PIN
  926. || pin == FTM3_CH2_PIN || pin == FTM3_CH3_PIN
  927. || pin == FTM3_CH4_PIN || pin == FTM3_CH5_PIN
  928. || pin == FTM3_CH6_PIN || pin == FTM3_CH7_PIN) {
  929. FTM3_SC = 0;
  930. FTM3_CNT = 0;
  931. FTM3_MOD = mod;
  932. FTM3_SC = FTM_SC_CLKS(ftmClockSource) | FTM_SC_PS(prescale); //Use the new ftmClockSource instead of 1
  933. }
  934. #endif
  935. }
  936. // TODO: startup code needs to initialize all pins to GPIO mode, input by default
  937. void digitalWrite(uint8_t pin, uint8_t val)
  938. {
  939. if (pin >= CORE_NUM_DIGITAL) return;
  940. #ifdef KINETISK
  941. if (*portModeRegister(pin)) {
  942. if (val) {
  943. *portSetRegister(pin) = 1;
  944. } else {
  945. *portClearRegister(pin) = 1;
  946. }
  947. #else
  948. if (*portModeRegister(pin) & digitalPinToBitMask(pin)) {
  949. if (val) {
  950. *portSetRegister(pin) = digitalPinToBitMask(pin);
  951. } else {
  952. *portClearRegister(pin) = digitalPinToBitMask(pin);
  953. }
  954. #endif
  955. } else {
  956. volatile uint32_t *config = portConfigRegister(pin);
  957. if (val) {
  958. // TODO use bitband for atomic read-mod-write
  959. *config |= (PORT_PCR_PE | PORT_PCR_PS);
  960. //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
  961. } else {
  962. // TODO use bitband for atomic read-mod-write
  963. *config &= ~(PORT_PCR_PE);
  964. //*config = PORT_PCR_MUX(1);
  965. }
  966. }
  967. }
  968. uint8_t digitalRead(uint8_t pin)
  969. {
  970. if (pin >= CORE_NUM_DIGITAL) return 0;
  971. #ifdef KINETISK
  972. return *portInputRegister(pin);
  973. #else
  974. return (*portInputRegister(pin) & digitalPinToBitMask(pin)) ? 1 : 0;
  975. #endif
  976. }
  977. void pinMode(uint8_t pin, uint8_t mode)
  978. {
  979. volatile uint32_t *config;
  980. if (pin >= CORE_NUM_DIGITAL) return;
  981. config = portConfigRegister(pin);
  982. if (mode == OUTPUT || mode == OUTPUT_OPENDRAIN) {
  983. #ifdef KINETISK
  984. *portModeRegister(pin) = 1;
  985. #else
  986. *portModeRegister(pin) |= digitalPinToBitMask(pin); // TODO: atomic
  987. #endif
  988. *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
  989. if (mode == OUTPUT_OPENDRAIN) {
  990. *config |= PORT_PCR_ODE;
  991. } else {
  992. *config &= ~PORT_PCR_ODE;
  993. }
  994. } else {
  995. #ifdef KINETISK
  996. *portModeRegister(pin) = 0;
  997. #else
  998. *portModeRegister(pin) &= ~digitalPinToBitMask(pin);
  999. #endif
  1000. if (mode == INPUT || mode == INPUT_PULLUP || mode == INPUT_PULLDOWN) {
  1001. *config = PORT_PCR_MUX(1);
  1002. if (mode == INPUT_PULLUP) {
  1003. *config |= (PORT_PCR_PE | PORT_PCR_PS); // pullup
  1004. } else if (mode == INPUT_PULLDOWN) {
  1005. *config |= (PORT_PCR_PE); // pulldown
  1006. *config &= ~(PORT_PCR_PS);
  1007. }
  1008. } else {
  1009. *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
  1010. }
  1011. }
  1012. }
  1013. void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
  1014. {
  1015. if (bitOrder == LSBFIRST) {
  1016. shiftOut_lsbFirst(dataPin, clockPin, value);
  1017. } else {
  1018. shiftOut_msbFirst(dataPin, clockPin, value);
  1019. }
  1020. }
  1021. void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1022. {
  1023. uint8_t mask;
  1024. for (mask=0x01; mask; mask <<= 1) {
  1025. digitalWrite(dataPin, value & mask);
  1026. digitalWrite(clockPin, HIGH);
  1027. digitalWrite(clockPin, LOW);
  1028. }
  1029. }
  1030. void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
  1031. {
  1032. uint8_t mask;
  1033. for (mask=0x80; mask; mask >>= 1) {
  1034. digitalWrite(dataPin, value & mask);
  1035. digitalWrite(clockPin, HIGH);
  1036. digitalWrite(clockPin, LOW);
  1037. }
  1038. }
  1039. uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
  1040. {
  1041. if (bitOrder == LSBFIRST) {
  1042. return shiftIn_lsbFirst(dataPin, clockPin);
  1043. } else {
  1044. return shiftIn_msbFirst(dataPin, clockPin);
  1045. }
  1046. }
  1047. uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
  1048. {
  1049. uint8_t mask, value=0;
  1050. for (mask=0x01; mask; mask <<= 1) {
  1051. digitalWrite(clockPin, HIGH);
  1052. if (digitalRead(dataPin)) value |= mask;
  1053. digitalWrite(clockPin, LOW);
  1054. }
  1055. return value;
  1056. }
  1057. uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
  1058. {
  1059. uint8_t mask, value=0;
  1060. for (mask=0x80; mask; mask >>= 1) {
  1061. digitalWrite(clockPin, HIGH);
  1062. if (digitalRead(dataPin)) value |= mask;
  1063. digitalWrite(clockPin, LOW);
  1064. }
  1065. return value;
  1066. }
  1067. // the systick interrupt is supposed to increment this at 1 kHz rate
  1068. volatile uint32_t systick_millis_count = 0;
  1069. //uint32_t systick_current, systick_count, systick_istatus; // testing only
  1070. uint32_t micros(void)
  1071. {
  1072. uint32_t count, current, istatus;
  1073. __disable_irq();
  1074. current = SYST_CVR;
  1075. count = systick_millis_count;
  1076. istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
  1077. __enable_irq();
  1078. //systick_current = current;
  1079. //systick_count = count;
  1080. //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
  1081. if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
  1082. current = ((F_CPU / 1000) - 1) - current;
  1083. #if defined(KINETISL) && F_CPU == 48000000
  1084. return count * 1000 + ((current * (uint32_t)87381) >> 22);
  1085. #elif defined(KINETISL) && F_CPU == 24000000
  1086. return count * 1000 + ((current * (uint32_t)174763) >> 22);
  1087. #endif
  1088. return count * 1000 + current / (F_CPU / 1000000);
  1089. }
  1090. void delay(uint32_t ms)
  1091. {
  1092. uint32_t start = micros();
  1093. if (ms > 0) {
  1094. while (1) {
  1095. while ((micros() - start) >= 1000) {
  1096. ms--;
  1097. if (ms == 0) return;
  1098. start += 1000;
  1099. }
  1100. yield();
  1101. }
  1102. }
  1103. }
  1104. // TODO: verify these result in correct timeouts...
  1105. #if F_CPU == 240000000
  1106. #define PULSEIN_LOOPS_PER_USEC 33
  1107. #elif F_CPU == 216000000
  1108. #define PULSEIN_LOOPS_PER_USEC 31
  1109. #elif F_CPU == 192000000
  1110. #define PULSEIN_LOOPS_PER_USEC 29
  1111. #elif F_CPU == 180000000
  1112. #define PULSEIN_LOOPS_PER_USEC 27
  1113. #elif F_CPU == 168000000
  1114. #define PULSEIN_LOOPS_PER_USEC 25
  1115. #elif F_CPU == 144000000
  1116. #define PULSEIN_LOOPS_PER_USEC 21
  1117. #elif F_CPU == 120000000
  1118. #define PULSEIN_LOOPS_PER_USEC 18
  1119. #elif F_CPU == 96000000
  1120. #define PULSEIN_LOOPS_PER_USEC 14
  1121. #elif F_CPU == 72000000
  1122. #define PULSEIN_LOOPS_PER_USEC 10
  1123. #elif F_CPU == 48000000
  1124. #define PULSEIN_LOOPS_PER_USEC 7
  1125. #elif F_CPU == 24000000
  1126. #define PULSEIN_LOOPS_PER_USEC 4
  1127. #elif F_CPU == 16000000
  1128. #define PULSEIN_LOOPS_PER_USEC 1
  1129. #elif F_CPU == 8000000
  1130. #define PULSEIN_LOOPS_PER_USEC 1
  1131. #elif F_CPU == 4000000
  1132. #define PULSEIN_LOOPS_PER_USEC 1
  1133. #elif F_CPU == 2000000
  1134. #define PULSEIN_LOOPS_PER_USEC 1
  1135. #endif
  1136. #if defined(KINETISK)
  1137. uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
  1138. {
  1139. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1140. uint32_t usec_start, usec_stop;
  1141. // wait for any previous pulse to end
  1142. while (*reg) {
  1143. if (--timeout_count == 0) return 0;
  1144. }
  1145. // wait for the pulse to start
  1146. while (!*reg) {
  1147. if (--timeout_count == 0) return 0;
  1148. }
  1149. usec_start = micros();
  1150. // wait for the pulse to stop
  1151. while (*reg) {
  1152. if (--timeout_count == 0) return 0;
  1153. }
  1154. usec_stop = micros();
  1155. return usec_stop - usec_start;
  1156. }
  1157. uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
  1158. {
  1159. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1160. uint32_t usec_start, usec_stop;
  1161. // wait for any previous pulse to end
  1162. while (!*reg) {
  1163. if (--timeout_count == 0) return 0;
  1164. }
  1165. // wait for the pulse to start
  1166. while (*reg) {
  1167. if (--timeout_count == 0) return 0;
  1168. }
  1169. usec_start = micros();
  1170. // wait for the pulse to stop
  1171. while (!*reg) {
  1172. if (--timeout_count == 0) return 0;
  1173. }
  1174. usec_stop = micros();
  1175. return usec_stop - usec_start;
  1176. }
  1177. // TODO: an inline version should handle the common case where state is const
  1178. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1179. {
  1180. if (pin >= CORE_NUM_DIGITAL) return 0;
  1181. if (state) return pulseIn_high(portInputRegister(pin), timeout);
  1182. return pulseIn_low(portInputRegister(pin), timeout);;
  1183. }
  1184. #elif defined(KINETISL)
  1185. // For TeencyLC need to use mask on the input register as the register is shared by several IO pins
  1186. uint32_t pulseIn_high(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1187. {
  1188. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1189. uint32_t usec_start, usec_stop;
  1190. // wait for any previous pulse to end
  1191. while (*reg & mask) {
  1192. if (--timeout_count == 0) return -1;
  1193. }
  1194. // wait for the pulse to start
  1195. while (!(*reg & mask)) {
  1196. if (--timeout_count == 0) return 0;
  1197. }
  1198. usec_start = micros();
  1199. // wait for the pulse to stop
  1200. while (*reg & mask) {
  1201. if (--timeout_count == 0) return 0;
  1202. }
  1203. usec_stop = micros();
  1204. return usec_stop - usec_start;
  1205. }
  1206. uint32_t pulseIn_low(volatile uint8_t *reg, uint8_t mask, uint32_t timeout)
  1207. {
  1208. uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
  1209. uint32_t usec_start, usec_stop;
  1210. // wait for any previous pulse to end
  1211. while (!(*reg & mask)) {
  1212. if (--timeout_count == 0) return 0;
  1213. }
  1214. // wait for the pulse to start
  1215. while (*reg & mask) {
  1216. if (--timeout_count == 0) return 0;
  1217. }
  1218. usec_start = micros();
  1219. // wait for the pulse to stop
  1220. while (!(*reg & mask)) {
  1221. if (--timeout_count == 0) return 0;
  1222. }
  1223. usec_stop = micros();
  1224. return usec_stop - usec_start;
  1225. }
  1226. // TODO: an inline version should handle the common case where state is const
  1227. uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
  1228. {
  1229. if (pin >= CORE_NUM_DIGITAL) return 0;
  1230. if (state) return pulseIn_high(portInputRegister(pin), digitalPinToBitMask(pin), timeout);
  1231. return pulseIn_low(portInputRegister(pin), digitalPinToBitMask(pin), timeout);;
  1232. }
  1233. #endif