|
|
@@ -4,6 +4,19 @@ |
|
|
|
#include "mk20dx128.h" |
|
|
|
|
|
|
|
// This code is a work-in-progress. It's incomplete and not usable yet... |
|
|
|
// |
|
|
|
// http://forum.pjrc.com/threads/25778-Could-there-be-something-like-an-ISR-template-function/page3 |
|
|
|
|
|
|
|
|
|
|
|
// known libraries with DMA usage (in need of porting to this new scheme): |
|
|
|
// |
|
|
|
// https://github.com/PaulStoffregen/Audio |
|
|
|
// https://github.com/PaulStoffregen/OctoWS2811 |
|
|
|
// https://github.com/pedvide/ADC |
|
|
|
// https://github.com/duff2013/SerialEvent |
|
|
|
// https://github.com/pixelmatix/SmartMatrix |
|
|
|
// https://github.com/crteensy/DmaSpi |
|
|
|
|
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
|
|
@@ -22,11 +35,21 @@ class DMAChannel { |
|
|
|
volatile uint16_t BITER; |
|
|
|
} TCD_t; |
|
|
|
public: |
|
|
|
/*************************************************/ |
|
|
|
/** Channel Allocation **/ |
|
|
|
/*************************************************/ |
|
|
|
|
|
|
|
// Constructor - allocates which DMA channel each object actually uses |
|
|
|
DMAChannel(uint8_t channelRequest=0); |
|
|
|
// TODO: should the copy constructor be private? |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Triggering **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// Triggers cause the DMA channel to actually move data. |
|
|
|
// |
|
|
|
|
|
|
|
// Use a hardware trigger to make the DMA channel run |
|
|
|
void attachTrigger(uint8_t source) { |
|
|
|
volatile uint8_t *mux; |
|
|
@@ -34,18 +57,34 @@ public: |
|
|
|
*mux = 0; |
|
|
|
*mux = source | DMAMUX_ENABLE; |
|
|
|
} |
|
|
|
|
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
// channel to trigger every time it triggers. This |
|
|
|
// effectively makes the 2 channels run in parallel. |
|
|
|
void attachTrigger(DMAChannel &channel) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// Use another DMA channel as the trigger, causing this |
|
|
|
// channel to trigger when it completes. |
|
|
|
// channel to trigger when the other channel completes. |
|
|
|
void attachTriggerOnCompletion(DMAChannel &channel) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void attachTriggerContinuous(DMAChannel &channel) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// Manually trigger the DMA channel. |
|
|
|
void trigger(void) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Interrupts **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// An interrupt routine can be run when the DMA channel completes |
|
|
|
// the entire transfer. |
|
|
|
void attachInterrupt(void (*isr)(void)) { |
|
|
@@ -53,172 +92,531 @@ public: |
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH0 + channel); |
|
|
|
} |
|
|
|
|
|
|
|
// Use a single variable as the data source. Typically a register |
|
|
|
// for receiving data from one of the hardware peripherals is used. |
|
|
|
void source(const signed char &p) { src(&p, 1); } |
|
|
|
void source(const unsigned char &p) { src(&p, 1); } |
|
|
|
void source(const signed short &p) { src(&p, 2); } |
|
|
|
void source(const unsigned short &p) { src(&p, 2); } |
|
|
|
void source(const signed int &p) { src(&p, 4); } |
|
|
|
void source(const unsigned int &p) { src(&p, 4); } |
|
|
|
void source(const signed long &p) { src(&p, 4); } |
|
|
|
void source(const unsigned long &p) { src(&p, 4); } |
|
|
|
void interruptAtHalf(void) { |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data source. Typically a |
|
|
|
// buffer for transmitting data is used. |
|
|
|
void sourceBuffer(const signed char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void sourceBuffer(const unsigned char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void sourceBuffer(const signed short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void sourceBuffer(const unsigned short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void sourceBuffer(const signed int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void sourceBuffer(const unsigned int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void sourceBuffer(const signed long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void sourceBuffer(const unsigned long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
} |
|
|
|
|
|
|
|
// Use a circular buffer as the data source |
|
|
|
void sourceCircular(const signed char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void sourceCircular(const unsigned char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void sourceCircular(const signed short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void sourceCircular(const unsigned short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void sourceCircular(const signed int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void sourceCircular(const unsigned int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void sourceCircular(const signed long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void sourceCircular(const unsigned long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void clearInterrupt(void) { |
|
|
|
|
|
|
|
|
|
|
|
// Use a single variable as the data destination. Typically a register |
|
|
|
// for transmitting data to one of the hardware peripherals is used. |
|
|
|
void destination(signed char &p) { src(&p, 1); } |
|
|
|
void destination(unsigned char &p) { src(&p, 1); } |
|
|
|
void destination(signed short &p) { src(&p, 2); } |
|
|
|
void destination(unsigned short &p) { src(&p, 2); } |
|
|
|
void destination(signed int &p) { src(&p, 4); } |
|
|
|
void destination(unsigned int &p) { src(&p, 4); } |
|
|
|
void destination(signed long &p) { src(&p, 4); } |
|
|
|
void destination(unsigned long &p) { src(&p, 4); } |
|
|
|
} |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data destination. Typically a |
|
|
|
// buffer for receiving data is used. |
|
|
|
void destinationBuffer(signed char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void destinationBuffer(unsigned char p[], unsigned int len) { src(p, 1, len); } |
|
|
|
void destinationBuffer(signed short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void destinationBuffer(unsigned short p[], unsigned int len) { src(p, 2, len); } |
|
|
|
void destinationBuffer(signed int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void destinationBuffer(unsigned int p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void destinationBuffer(signed long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
void destinationBuffer(unsigned long p[], unsigned int len) { src(p, 4, len); } |
|
|
|
|
|
|
|
// Use a circular buffer as the data destination |
|
|
|
void destinationCircular(signed char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void destinationCircular(unsigned char p[], unsigned int len) { srcc(p, 1, len); } |
|
|
|
void destinationCircular(signed short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void destinationCircular(unsigned short p[], unsigned int len) { srcc(p, 2, len); } |
|
|
|
void destinationCircular(signed int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void destinationCircular(unsigned int p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void destinationCircular(signed long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
void destinationCircular(unsigned long p[], unsigned int len) { srcc(p, 4, len); } |
|
|
|
|
|
|
|
// TODO: explicit function for configuring transfer length.... |
|
|
|
// should we try to automatically pick it up from the array lengths? |
|
|
|
|
|
|
|
// TODO: functions to configure major/minor loop |
|
|
|
// option #1 - trigger moves 1 byte/word (minor=1, major=count) |
|
|
|
// option #2 - trigger moves all data (minor=count, major=1) |
|
|
|
// option ?? - more complex config, write TCD manually.... |
|
|
|
|
|
|
|
// TODO: functions to set other options, functions to enable |
|
|
|
// manual start function, etc |
|
|
|
/***************************************/ |
|
|
|
/** Enable / Disable **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// TODO: "get" functions, to read important stuff, like SADDR & DADDR... |
|
|
|
void enable(void) { |
|
|
|
|
|
|
|
// For complex and unusual configurations not possible with the above |
|
|
|
// functions, the Transfer Control Descriptor (TCD) and channel number |
|
|
|
// can be used directly. This leads to less portable and less readable |
|
|
|
// code, but direct control of all parameters is possible. |
|
|
|
TCD_t &TCD; |
|
|
|
uint8_t channel; |
|
|
|
} |
|
|
|
|
|
|
|
protected: |
|
|
|
void src(const void *p, uint32_t size) { |
|
|
|
TCD.SADDR = p; |
|
|
|
void disable(void) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
void disableOnCompletion(void) { |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Data Transfer **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// Use a single variable as the data source. Typically a register |
|
|
|
// for receiving data from one of the hardware peripherals is used. |
|
|
|
void source(const signed char &p) { source(*(const uint8_t *)&p); } |
|
|
|
void source(const unsigned char &p) { |
|
|
|
TCD.SADDR = &p; |
|
|
|
TCD.SOFF = 0; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.ATTR_SRC = 0; |
|
|
|
if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 1; |
|
|
|
TCD.SLAST = 0; |
|
|
|
} |
|
|
|
void src(const void *p, uint32_t size, uint32_t len) { |
|
|
|
void source(const signed short &p) { source(*(const uint16_t *)&p); } |
|
|
|
void source(const unsigned short &p) { |
|
|
|
TCD.SADDR = &p; |
|
|
|
TCD.SOFF = 0; |
|
|
|
TCD.ATTR_SRC = 1; |
|
|
|
if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 2; |
|
|
|
TCD.SLAST = 0; |
|
|
|
} |
|
|
|
void source(const signed int &p) { source(*(const uint32_t *)&p); } |
|
|
|
void source(const unsigned int &p) { source(*(const uint32_t *)&p); } |
|
|
|
void source(const signed long &p) { source(*(const uint32_t *)&p); } |
|
|
|
void source(const unsigned long &p) { |
|
|
|
TCD.SADDR = &p; |
|
|
|
TCD.SOFF = 0; |
|
|
|
TCD.ATTR_SRC = 2; |
|
|
|
if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 4; |
|
|
|
TCD.SLAST = 0; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data source. Typically a |
|
|
|
// buffer for transmitting data is used. |
|
|
|
void sourceBuffer(const signed char p[], unsigned int len) { sourceBuffer((uint8_t *)p, len); } |
|
|
|
void sourceBuffer(const unsigned char p[], unsigned int len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.SOFF = 1; |
|
|
|
TCD.ATTR_SRC = 0; |
|
|
|
TCD.NBYTES = 1; |
|
|
|
TCD.SLAST = -len; |
|
|
|
TCD.BITER = len; |
|
|
|
TCD.CITER = len; |
|
|
|
} |
|
|
|
void srcc(const void *p, uint32_t size, uint32_t len) { |
|
|
|
void sourceBuffer(const signed short p[], unsigned int len) { sourceBuffer((uint16_t *)p, len); } |
|
|
|
void sourceBuffer(const unsigned short p[], unsigned int len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0 | ((31 - __builtin_clz(len)) << 3); // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1 | ((31 - __builtin_clz(len)) << 3); // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2 | ((31 - __builtin_clz(len)) << 3); // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.SOFF = 2; |
|
|
|
TCD.ATTR_SRC = 1; |
|
|
|
TCD.NBYTES = 2; |
|
|
|
TCD.SLAST = -len; |
|
|
|
TCD.BITER = len / 2; |
|
|
|
TCD.CITER = len / 2; |
|
|
|
} |
|
|
|
void sourceBuffer(const signed int p[], unsigned int len) { sourceBuffer((uint32_t *)p, len); } |
|
|
|
void sourceBuffer(const unsigned int p[], unsigned int len) {sourceBuffer((uint32_t *)p, len); } |
|
|
|
void sourceBuffer(const signed long p[], unsigned int len) { sourceBuffer((uint32_t *)p, len); } |
|
|
|
void sourceBuffer(const unsigned long p[], unsigned int len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = 4; |
|
|
|
TCD.ATTR_SRC = 2; |
|
|
|
TCD.NBYTES = 4; |
|
|
|
TCD.SLAST = -len; |
|
|
|
TCD.BITER = len / 4; |
|
|
|
TCD.CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a circular buffer as the data source |
|
|
|
void sourceCircular(const signed char p[], unsigned int len) { sourceCircular((uint8_t *)p, len); } |
|
|
|
void sourceCircular(const unsigned char p[], unsigned int len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = 1; |
|
|
|
TCD.ATTR_SRC = ((31 - __builtin_clz(len)) << 3); |
|
|
|
TCD.NBYTES = 1; |
|
|
|
TCD.SLAST = 0; |
|
|
|
TCD.BITER = len; |
|
|
|
TCD.CITER = len; |
|
|
|
} |
|
|
|
void sourceCircular(const signed short p[], unsigned int len) { sourceCircular((uint16_t *)p, len); } |
|
|
|
void sourceCircular(const unsigned short p[], unsigned int len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = 2; |
|
|
|
TCD.ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 1; |
|
|
|
TCD.NBYTES = 2; |
|
|
|
TCD.SLAST = 0; |
|
|
|
TCD.BITER = len / 2; |
|
|
|
TCD.CITER = len / 2; |
|
|
|
} |
|
|
|
void sourceCircular(const signed int p[], unsigned int len) { sourceCircular((uint32_t *)p, len); } |
|
|
|
void sourceCircular(const unsigned int p[], unsigned int len) { sourceCircular((uint32_t *)p, len); } |
|
|
|
void sourceCircular(const signed long p[], unsigned int len) { sourceCircular((uint32_t *)p, len); } |
|
|
|
void sourceCircular(const unsigned long p[], unsigned int len) { |
|
|
|
TCD.SADDR = p; |
|
|
|
TCD.SOFF = 4; |
|
|
|
TCD.ATTR_SRC = ((31 - __builtin_clz(len)) << 3) | 2; |
|
|
|
TCD.NBYTES = 4; |
|
|
|
TCD.SLAST = 0; |
|
|
|
TCD.BITER = len / 4; |
|
|
|
TCD.CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
void dst(void *p, uint32_t size) { |
|
|
|
TCD.DADDR = p; |
|
|
|
// Use a single variable as the data destination. Typically a register |
|
|
|
// for transmitting data to one of the hardware peripherals is used. |
|
|
|
void destination(signed char &p) { destination(*(uint8_t *)&p); } |
|
|
|
void destination(unsigned char &p) { |
|
|
|
TCD.DADDR = &p; |
|
|
|
TCD.DOFF = 0; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_SRC = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_SRC = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_SRC = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.ATTR_DST = 0; |
|
|
|
if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 1; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
} |
|
|
|
void dst(void *p, uint32_t size, uint32_t len) { |
|
|
|
void destination(signed short &p) { destination(*(uint16_t *)&p); } |
|
|
|
void destination(unsigned short &p) { |
|
|
|
TCD.DADDR = &p; |
|
|
|
TCD.DOFF = 0; |
|
|
|
TCD.ATTR_DST = 1; |
|
|
|
if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 2; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
} |
|
|
|
void destination(signed int &p) { destination(*(uint32_t *)&p); } |
|
|
|
void destination(unsigned int &p) { destination(*(uint32_t *)&p); } |
|
|
|
void destination(signed long &p) { destination(*(uint32_t *)&p); } |
|
|
|
void destination(unsigned long &p) { |
|
|
|
TCD.DADDR = &p; |
|
|
|
TCD.DOFF = 0; |
|
|
|
TCD.ATTR_DST = 2; |
|
|
|
if ((uint32_t)p < 0x40000000 || TCD.NBYTES == 0) TCD.NBYTES = 4; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a buffer (array of data) as the data destination. Typically a |
|
|
|
// buffer for receiving data is used. |
|
|
|
void destinationBuffer(signed char p[], unsigned int len) { destinationBuffer((uint8_t *)p, len); } |
|
|
|
void destinationBuffer(unsigned char p[], unsigned int len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_DST = 0; // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_DST = 1; // 16 bits |
|
|
|
} else { |
|
|
|
TCD.ATTR_DST = 2; // 32 bits |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.DOFF = 1; |
|
|
|
TCD.ATTR_DST = 0; |
|
|
|
TCD.NBYTES = 1; |
|
|
|
TCD.DLASTSGA = -len; |
|
|
|
TCD.BITER = len; |
|
|
|
TCD.CITER = len; |
|
|
|
} |
|
|
|
void dstc(void *p, uint32_t size, uint32_t len) { |
|
|
|
void destinationBuffer(signed short p[], unsigned int len) { destinationBuffer((uint16_t *)p, len); } |
|
|
|
void destinationBuffer(unsigned short p[], unsigned int len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = size; |
|
|
|
if (size == 1) { |
|
|
|
TCD.ATTR_DST = 0 | ((31 - __builtin_clz(len)) << 3); // 8 bits |
|
|
|
} else if (size == 2) { |
|
|
|
TCD.ATTR_DST = 1 | ((31 - __builtin_clz(len)) << 3); // 16 bits |
|
|
|
TCD.DOFF = 2; |
|
|
|
TCD.ATTR_DST = 1; |
|
|
|
TCD.NBYTES = 2; |
|
|
|
TCD.DLASTSGA = -len; |
|
|
|
TCD.BITER = len / 2; |
|
|
|
TCD.CITER = len / 2; |
|
|
|
} |
|
|
|
void destinationBuffer(signed int p[], unsigned int len) { destinationBuffer((uint32_t *)p, len); } |
|
|
|
void destinationBuffer(unsigned int p[], unsigned int len) { destinationBuffer((uint32_t *)p, len); } |
|
|
|
void destinationBuffer(signed long p[], unsigned int len) { destinationBuffer((uint32_t *)p, len); } |
|
|
|
void destinationBuffer(unsigned long p[], unsigned int len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = 4; |
|
|
|
TCD.ATTR_DST = 1; |
|
|
|
TCD.NBYTES = 4; |
|
|
|
TCD.DLASTSGA = -len; |
|
|
|
TCD.BITER = len / 4; |
|
|
|
TCD.CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
// Use a circular buffer as the data destination |
|
|
|
void destinationCircular(signed char p[], unsigned int len) { destinationCircular((uint8_t *)p, len); } |
|
|
|
void destinationCircular(unsigned char p[], unsigned int len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = 1; |
|
|
|
TCD.ATTR_DST = ((31 - __builtin_clz(len)) << 3); |
|
|
|
TCD.NBYTES = 1; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
TCD.BITER = len; |
|
|
|
TCD.CITER = len; |
|
|
|
} |
|
|
|
void destinationCircular(signed short p[], unsigned int len) { destinationCircular((uint16_t *)p, len); } |
|
|
|
void destinationCircular(unsigned short p[], unsigned int len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = 2; |
|
|
|
TCD.ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 1; |
|
|
|
TCD.NBYTES = 2; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
TCD.BITER = len / 2; |
|
|
|
TCD.CITER = len / 2; |
|
|
|
} |
|
|
|
void destinationCircular(signed int p[], unsigned int len) { destinationCircular((uint32_t *)p, len); } |
|
|
|
void destinationCircular(unsigned int p[], unsigned int len) { destinationCircular((uint32_t *)p, len); } |
|
|
|
void destinationCircular(signed long p[], unsigned int len) { destinationCircular((uint32_t *)p, len); } |
|
|
|
void destinationCircular(unsigned long p[], unsigned int len) { |
|
|
|
TCD.DADDR = p; |
|
|
|
TCD.DOFF = 4; |
|
|
|
TCD.ATTR_DST = ((31 - __builtin_clz(len)) << 3) | 2; |
|
|
|
TCD.NBYTES = 4; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
TCD.BITER = len / 4; |
|
|
|
TCD.CITER = len / 4; |
|
|
|
} |
|
|
|
|
|
|
|
// Set the data size used for each triggered transfer |
|
|
|
void size(unsigned int len) { |
|
|
|
if (len == 4) { |
|
|
|
TCD.NBYTES = 4; |
|
|
|
if (TCD.SOFF != 0) TCD.SOFF = 4; |
|
|
|
if (TCD.DOFF != 0) TCD.DOFF = 4; |
|
|
|
TCD.ATTR = (TCD.ATTR & 0xF8F8) | 0x0202; |
|
|
|
} else if (len == 2) { |
|
|
|
TCD.NBYTES = 2; |
|
|
|
if (TCD.SOFF != 0) TCD.SOFF = 2; |
|
|
|
if (TCD.DOFF != 0) TCD.DOFF = 2; |
|
|
|
TCD.ATTR = (TCD.ATTR & 0xF8F8) | 0x0101; |
|
|
|
} else { |
|
|
|
TCD.ATTR_DST = 2 | ((31 - __builtin_clz(len)) << 3); // 32 bits |
|
|
|
TCD.NBYTES = 1; |
|
|
|
if (TCD.SOFF != 0) TCD.SOFF = 1; |
|
|
|
if (TCD.DOFF != 0) TCD.DOFF = 1; |
|
|
|
TCD.ATTR = TCD.ATTR & 0xF8F8; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Set the number of transfers (number of triggers until complete) |
|
|
|
void count(unsigned int len) { |
|
|
|
if (len > 32767) return; |
|
|
|
if (len >= 512) { |
|
|
|
TCD.BITER = len; |
|
|
|
TCD.CITER = len; |
|
|
|
} else { |
|
|
|
TCD.BITER = (TCD.BITER & 0xFE00) | len; |
|
|
|
TCD.CITER = (TCD.CITER & 0xFE00) | len; |
|
|
|
} |
|
|
|
//TCD.NBYTES = size; |
|
|
|
TCD.DLASTSGA = 0; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Status **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// TODO: "get" functions, to read important stuff, like SADDR & DADDR... |
|
|
|
// error status, etc |
|
|
|
|
|
|
|
/***************************************/ |
|
|
|
/** Direct Hardware Access **/ |
|
|
|
/***************************************/ |
|
|
|
|
|
|
|
// For complex and unusual configurations not possible with the above |
|
|
|
// functions, the Transfer Control Descriptor (TCD) and channel number |
|
|
|
// can be used directly. This leads to less portable and less readable |
|
|
|
// code, but direct control of all parameters is possible. |
|
|
|
TCD_t &TCD; |
|
|
|
uint8_t channel; |
|
|
|
|
|
|
|
/* usage cases: |
|
|
|
|
|
|
|
************************ |
|
|
|
OctoWS2811: |
|
|
|
************************ |
|
|
|
|
|
|
|
// enable clocks to the DMA controller and DMAMUX |
|
|
|
SIM_SCGC7 |= SIM_SCGC7_DMA; |
|
|
|
SIM_SCGC6 |= SIM_SCGC6_DMAMUX; |
|
|
|
DMA_CR = 0; |
|
|
|
DMA_CERQ = 1; |
|
|
|
DMA_CERQ = 2; |
|
|
|
DMA_CERQ = 3; |
|
|
|
|
|
|
|
// DMA channel #1 sets WS2811 high at the beginning of each cycle |
|
|
|
DMA_TCD1_SADDR = &ones; |
|
|
|
DMA_TCD1_SOFF = 0; |
|
|
|
DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
DMA_TCD1_NBYTES_MLNO = 1; |
|
|
|
DMA_TCD1_SLAST = 0; |
|
|
|
DMA_TCD1_DADDR = &GPIOD_PSOR; |
|
|
|
DMA_TCD1_DOFF = 0; |
|
|
|
DMA_TCD1_CITER_ELINKNO = bufsize; |
|
|
|
DMA_TCD1_DLASTSGA = 0; |
|
|
|
DMA_TCD1_CSR = DMA_TCD_CSR_DREQ; |
|
|
|
DMA_TCD1_BITER_ELINKNO = bufsize; |
|
|
|
dma1.source(ones); |
|
|
|
dma1.destination(GPIOD_PSOR); |
|
|
|
dma1.size(1); |
|
|
|
dma1.count(bufsize); |
|
|
|
|
|
|
|
// DMA channel #2 writes the pixel data at 20% of the cycle |
|
|
|
DMA_TCD2_SADDR = frameBuffer; |
|
|
|
DMA_TCD2_SOFF = 1; |
|
|
|
DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
DMA_TCD2_NBYTES_MLNO = 1; |
|
|
|
DMA_TCD2_SLAST = -bufsize; |
|
|
|
DMA_TCD2_DADDR = &GPIOD_PDOR; |
|
|
|
DMA_TCD2_DOFF = 0; |
|
|
|
DMA_TCD2_CITER_ELINKNO = bufsize; |
|
|
|
DMA_TCD2_DLASTSGA = 0; |
|
|
|
DMA_TCD2_CSR = DMA_TCD_CSR_DREQ; |
|
|
|
DMA_TCD2_BITER_ELINKNO = bufsize; |
|
|
|
dma2.source(frameBuffer, sizeof(frameBuffer)); |
|
|
|
dma2.destination(GPIOD_PDOR); |
|
|
|
|
|
|
|
// DMA channel #3 clear all the pins low at 48% of the cycle |
|
|
|
DMA_TCD3_SADDR = &ones; |
|
|
|
DMA_TCD3_SOFF = 0; |
|
|
|
DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
DMA_TCD3_NBYTES_MLNO = 1; |
|
|
|
DMA_TCD3_SLAST = 0; |
|
|
|
DMA_TCD3_DADDR = &GPIOD_PCOR; |
|
|
|
DMA_TCD3_DOFF = 0; |
|
|
|
DMA_TCD3_CITER_ELINKNO = bufsize; |
|
|
|
DMA_TCD3_DLASTSGA = 0; |
|
|
|
DMA_TCD3_CSR = DMA_TCD_CSR_DREQ | DMA_TCD_CSR_INTMAJOR; |
|
|
|
DMA_TCD3_BITER_ELINKNO = bufsize; |
|
|
|
|
|
|
|
************************ |
|
|
|
Audio, DAC |
|
|
|
************************ |
|
|
|
|
|
|
|
DMA_CR = 0; |
|
|
|
DMA_TCD4_SADDR = dac_buffer; |
|
|
|
DMA_TCD4_SOFF = 2; |
|
|
|
DMA_TCD4_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
DMA_TCD4_NBYTES_MLNO = 2; |
|
|
|
DMA_TCD4_SLAST = -sizeof(dac_buffer); |
|
|
|
DMA_TCD4_DADDR = &DAC0_DAT0L; |
|
|
|
DMA_TCD4_DOFF = 0; |
|
|
|
DMA_TCD4_CITER_ELINKNO = sizeof(dac_buffer) / 2; |
|
|
|
DMA_TCD4_DLASTSGA = 0; |
|
|
|
DMA_TCD4_BITER_ELINKNO = sizeof(dac_buffer) / 2; |
|
|
|
DMA_TCD4_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; |
|
|
|
DMAMUX0_CHCFG4 = DMAMUX_DISABLE; |
|
|
|
DMAMUX0_CHCFG4 = DMAMUX_SOURCE_PDB | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
************************ |
|
|
|
Audio, I2S |
|
|
|
************************ |
|
|
|
|
|
|
|
DMA_CR = 0; |
|
|
|
DMA_TCD0_SADDR = i2s_tx_buffer; |
|
|
|
DMA_TCD0_SOFF = 2; |
|
|
|
DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
DMA_TCD0_NBYTES_MLNO = 2; |
|
|
|
DMA_TCD0_SLAST = -sizeof(i2s_tx_buffer); |
|
|
|
DMA_TCD0_DADDR = &I2S0_TDR0; |
|
|
|
DMA_TCD0_DOFF = 0; |
|
|
|
DMA_TCD0_CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; |
|
|
|
DMA_TCD0_DLASTSGA = 0; |
|
|
|
DMA_TCD0_BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; |
|
|
|
DMA_TCD0_CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; |
|
|
|
|
|
|
|
DMAMUX0_CHCFG0 = DMAMUX_DISABLE; |
|
|
|
DMAMUX0_CHCFG0 = DMAMUX_SOURCE_I2S0_TX | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
************************ |
|
|
|
ADC lib, Pedro Villanueva |
|
|
|
************************ |
|
|
|
|
|
|
|
DMA_CR = 0; // normal mode of operation |
|
|
|
|
|
|
|
*DMAMUX0_CHCFG = DMAMUX_DISABLE; // disable before changing |
|
|
|
|
|
|
|
*DMA_TCD_ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_16BIT) | |
|
|
|
DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_16BIT) | |
|
|
|
DMA_TCD_ATTR_DMOD(4); // src and dst data is 16 bit (2 bytes), buffer size 2^^4 bytes = 8 values |
|
|
|
*DMA_TCD_NBYTES_MLNO = 2; // Minor Byte Transfer Count 2 bytes = 16 bits (we transfer 2 bytes each minor loop) |
|
|
|
|
|
|
|
*DMA_TCD_SADDR = ADC_RA; // source address |
|
|
|
*DMA_TCD_SOFF = 0; // don't change the address when minor loop finishes |
|
|
|
*DMA_TCD_SLAST = 0; // don't change src address after major loop completes |
|
|
|
|
|
|
|
*DMA_TCD_DADDR = elems; // destination address |
|
|
|
*DMA_TCD_DOFF = 2; // increment 2 bytes each minor loop |
|
|
|
*DMA_TCD_DLASTSGA = 0; // modulus feature takes care of going back to first element |
|
|
|
|
|
|
|
*DMA_TCD_CITER_ELINKNO = 1; // Current Major Iteration Count with channel linking disabled |
|
|
|
*DMA_TCD_BITER_ELINKNO = 1; // Starting Major Iteration Count with channel linking disabled |
|
|
|
|
|
|
|
*DMA_TCD_CSR = DMA_TCD_CSR_INTMAJOR; // Control and status: interrupt when major counter is complete |
|
|
|
|
|
|
|
DMA_CERQ = DMA_CERQ_CERQ(DMA_channel); // clear all past request |
|
|
|
DMA_CINT = DMA_channel; // clear interrupts |
|
|
|
|
|
|
|
uint8_t DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC0; |
|
|
|
if(ADC_number==1){ |
|
|
|
DMAMUX_SOURCE_ADC = DMAMUX_SOURCE_ADC1; |
|
|
|
} |
|
|
|
*DMAMUX0_CHCFG = DMAMUX_SOURCE_ADC | DMAMUX_ENABLE; // enable mux and set channel DMA_channel to ADC0 |
|
|
|
|
|
|
|
DMA_SERQ = DMA_SERQ_SERQ(DMA_channel); // enable DMA request |
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH); // enable interrupts |
|
|
|
|
|
|
|
************************ |
|
|
|
SmartMatrix |
|
|
|
************************ |
|
|
|
|
|
|
|
// enable minor loop mapping so addresses can get reset after minor loops |
|
|
|
DMA_CR = 1 << 7; |
|
|
|
|
|
|
|
// DMA channel #0 - on latch rising edge, read address from fixed address temporary buffer, and output address on GPIO |
|
|
|
// using combo of writes to set+clear registers, to only modify the address pins and not other GPIO pins |
|
|
|
// address temporary buffer is refreshed before each DMA trigger (by DMA channel #2) |
|
|
|
// only use single major loop, never disable channel |
|
|
|
#define ADDRESS_ARRAY_REGISTERS_TO_UPDATE 2 |
|
|
|
DMA_TCD0_SADDR = &gpiosync.gpio_pcor; |
|
|
|
DMA_TCD0_SOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor; |
|
|
|
DMA_TCD0_SLAST = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)); |
|
|
|
DMA_TCD0_ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2); |
|
|
|
// Destination Minor Loop Offset Enabled - transfer appropriate number of bytes per minor loop, and put DADDR back to original value when minor loop is complete |
|
|
|
// Source Minor Loop Offset Enabled - source buffer is same size and offset as destination so values reset after each minor loop |
|
|
|
DMA_TCD0_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | DMA_TCD_NBYTES_DMLOE | |
|
|
|
((ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)) << 10) | |
|
|
|
(ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(gpiosync.gpio_psor)); |
|
|
|
// start on higher value of two registers, and make offset decrement to avoid negative number in NBYTES_MLOFFYES (TODO: can switch order by masking negative offset) |
|
|
|
DMA_TCD0_DADDR = &ADDX_GPIO_CLEAR_REGISTER; |
|
|
|
// update destination address so the second update per minor loop is ADDX_GPIO_SET_REGISTER |
|
|
|
DMA_TCD0_DOFF = (int)&ADDX_GPIO_SET_REGISTER - (int)&ADDX_GPIO_CLEAR_REGISTER; |
|
|
|
DMA_TCD0_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&ADDX_GPIO_CLEAR_REGISTER - (int)&ADDX_GPIO_SET_REGISTER)); |
|
|
|
// single major loop |
|
|
|
DMA_TCD0_CITER_ELINKNO = 1; |
|
|
|
DMA_TCD0_BITER_ELINKNO = 1; |
|
|
|
// link channel 1, enable major channel-to-channel linking, don't clear enable on major loop complete |
|
|
|
DMA_TCD0_CSR = (1 << 8) | (1 << 5); |
|
|
|
DMAMUX0_CHCFG0 = DMAMUX_SOURCE_LATCH_RISING_EDGE | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
// DMA channel #1 - copy address values from current position in array to buffer to temporarily hold row values for the next timer cycle |
|
|
|
// only use single major loop, never disable channel |
|
|
|
DMA_TCD1_SADDR = &matrixUpdateBlocks[0][0].addressValues; |
|
|
|
DMA_TCD1_SOFF = sizeof(uint16_t); |
|
|
|
DMA_TCD1_SLAST = sizeof(matrixUpdateBlock) - (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t)); |
|
|
|
DMA_TCD1_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
// 16-bit = 2 bytes transferred |
|
|
|
// transfer two 16-bit values, reset destination address back after each minor loop |
|
|
|
DMA_TCD1_NBYTES_MLOFFNO = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * sizeof(uint16_t)); |
|
|
|
// start with the register that's the highest location in memory and make offset decrement to avoid negative number in NBYTES_MLOFFYES register (TODO: can switch order by masking negative offset) |
|
|
|
DMA_TCD1_DADDR = &gpiosync.gpio_pcor; |
|
|
|
DMA_TCD1_DOFF = (int)&gpiosync.gpio_psor - (int)&gpiosync.gpio_pcor; |
|
|
|
DMA_TCD1_DLASTSGA = (ADDRESS_ARRAY_REGISTERS_TO_UPDATE * ((int)&gpiosync.gpio_pcor - (int)&gpiosync.gpio_psor)); |
|
|
|
// no minor loop linking, single major loop, single minor loop, don't clear enable after major loop complete |
|
|
|
DMA_TCD1_CITER_ELINKNO = 1; |
|
|
|
DMA_TCD1_BITER_ELINKNO = 1; |
|
|
|
DMA_TCD1_CSR = 0; |
|
|
|
|
|
|
|
// DMA channel #2 - on latch falling edge, load FTM1_CV1 and FTM1_MOD with with next values from current block |
|
|
|
// only use single major loop, never disable channel |
|
|
|
// link to channel 3 when complete |
|
|
|
#define TIMER_REGISTERS_TO_UPDATE 2 |
|
|
|
DMA_TCD2_SADDR = &matrixUpdateBlocks[0][0].timerValues.timer_oe; |
|
|
|
DMA_TCD2_SOFF = sizeof(uint16_t); |
|
|
|
DMA_TCD2_SLAST = sizeof(matrixUpdateBlock) - (TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t)); |
|
|
|
DMA_TCD2_ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); |
|
|
|
// 16-bit = 2 bytes transferred |
|
|
|
DMA_TCD2_NBYTES_MLOFFNO = TIMER_REGISTERS_TO_UPDATE * sizeof(uint16_t); |
|
|
|
DMA_TCD2_DADDR = &FTM1_C1V; |
|
|
|
DMA_TCD2_DOFF = (int)&FTM1_MOD - (int)&FTM1_C1V; |
|
|
|
DMA_TCD2_DLASTSGA = TIMER_REGISTERS_TO_UPDATE * ((int)&FTM1_C1V - (int)&FTM1_MOD); |
|
|
|
// no minor loop linking, single major loop |
|
|
|
DMA_TCD2_CITER_ELINKNO = 1; |
|
|
|
DMA_TCD2_BITER_ELINKNO = 1; |
|
|
|
// link channel 3, enable major channel-to-channel linking, don't clear enable after major loop complete |
|
|
|
DMA_TCD2_CSR = (3 << 8) | (1 << 5); |
|
|
|
DMAMUX0_CHCFG2 = DMAMUX_SOURCE_LATCH_FALLING_EDGE | DMAMUX_ENABLE; |
|
|
|
|
|
|
|
#define DMA_TCD_MLOFF_MASK (0x3FFFFC00) |
|
|
|
|
|
|
|
// DMA channel #3 - repeatedly load gpio_array into GPIOD_PDOR, stop and int on major loop complete |
|
|
|
DMA_TCD3_SADDR = matrixUpdateData[0][0]; |
|
|
|
DMA_TCD3_SOFF = sizeof(matrixUpdateData[0][0]) / 2; |
|
|
|
// SADDR will get updated by ISR, no need to set SLAST |
|
|
|
DMA_TCD3_SLAST = 0; |
|
|
|
DMA_TCD3_ATTR = DMA_TCD_ATTR_SSIZE(0) | DMA_TCD_ATTR_DSIZE(0); |
|
|
|
// after each minor loop, set source to point back to the beginning of this set of data, |
|
|
|
// but advance by 1 byte to get the next significant bits data |
|
|
|
DMA_TCD3_NBYTES_MLOFFYES = DMA_TCD_NBYTES_SMLOE | |
|
|
|
(((1 - sizeof(matrixUpdateData[0])) << 10) & DMA_TCD_MLOFF_MASK) | |
|
|
|
(MATRIX_WIDTH * DMA_UPDATES_PER_CLOCK); |
|
|
|
DMA_TCD3_DADDR = &GPIOD_PDOR; |
|
|
|
DMA_TCD3_DOFF = 0; |
|
|
|
DMA_TCD3_DLASTSGA = 0; |
|
|
|
DMA_TCD3_CITER_ELINKNO = LATCHES_PER_ROW; |
|
|
|
DMA_TCD3_BITER_ELINKNO = LATCHES_PER_ROW; |
|
|
|
// int after major loop is complete |
|
|
|
DMA_TCD3_CSR = DMA_TCD_CSR_INTMAJOR; |
|
|
|
// for debugging - enable bandwidth control (space out GPIO updates so they can be seen easier on a low-bandwidth logic analyzer) |
|
|
|
//DMA_TCD3_CSR |= (0x02 << 14); |
|
|
|
|
|
|
|
// enable a done interrupt when all DMA operations are complete |
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH3); |
|
|
|
|
|
|
|
// enable additional dma interrupt used as software interrupt |
|
|
|
NVIC_SET_PRIORITY(IRQ_DMA_CH1, 0xFF); // 0xFF = lowest priority |
|
|
|
NVIC_ENABLE_IRQ(IRQ_DMA_CH1); |
|
|
|
|
|
|
|
// enable channels 0, 1, 2, 3 |
|
|
|
DMA_ERQ = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); |
|
|
|
|
|
|
|
// at the end after everything is set up: enable timer from system clock, with appropriate prescale |
|
|
|
FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(LATCH_TIMER_PRESCALE); |
|
|
|
|
|
|
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|