class HardwareSerial6 : public HardwareSerial | class HardwareSerial6 : public HardwareSerial | ||||
{ | { | ||||
public: | public: | ||||
#if defined(__MK66FX1M0__) // For LPUART just pass baud straight in. | |||||
virtual void begin(uint32_t baud) { serial6_begin(baud); } | |||||
virtual void begin(uint32_t baud, uint32_t format) { | |||||
serial6_begin(baud); | |||||
serial6_format(format); } | |||||
#else | |||||
virtual void begin(uint32_t baud) { serial6_begin(BAUD2DIV3(baud)); } | virtual void begin(uint32_t baud) { serial6_begin(BAUD2DIV3(baud)); } | ||||
virtual void begin(uint32_t baud, uint32_t format) { | virtual void begin(uint32_t baud, uint32_t format) { | ||||
serial6_begin(BAUD2DIV3(baud)); | serial6_begin(BAUD2DIV3(baud)); | ||||
serial6_format(format); } | serial6_format(format); } | ||||
#endif | |||||
virtual void end(void) { serial6_end(); } | virtual void end(void) { serial6_end(); } | ||||
virtual void transmitterEnable(uint8_t pin) { serial6_set_transmit_pin(pin); } | virtual void transmitterEnable(uint8_t pin) { serial6_set_transmit_pin(pin); } | ||||
virtual void setRX(uint8_t pin) { serial6_set_rx(pin); } | virtual void setRX(uint8_t pin) { serial6_set_rx(pin); } |
#include "HardwareSerial.h" | |||||
#if defined(HAS_KINETISK_UART5) || defined (HAS_KINETISK_LPUART0) | |||||
HardwareSerial6 Serial6; | |||||
void serialEvent6() __attribute__((weak)); | |||||
void serialEvent6() {} | |||||
#endif |
#define UART4_ET7816 (KINETISK_UART4.ET7816) // UART 7816 Error Threshold Register | #define UART4_ET7816 (KINETISK_UART4.ET7816) // UART 7816 Error Threshold Register | ||||
#define UART4_TL7816 (KINETISK_UART4.TL7816) // UART 7816 Transmit Length Register | #define UART4_TL7816 (KINETISK_UART4.TL7816) // UART 7816 Transmit Length Register | ||||
#define KINETISK_UART5 (*(KINETISK_UART_t *)0x400EB000) | |||||
#define UART5_BDH (KINETISK_UART5.BDH) // UART Baud Rate Registers: High | |||||
#define UART5_BDL (KINETISK_UART5.BDL) // UART Baud Rate Registers: Low | |||||
#define UART5_C1 (KINETISK_UART5.C1) // UART Control Register 1 | |||||
#define UART5_C2 (KINETISK_UART5.C2) // UART Control Register 2 | |||||
#define UART5_S1 (KINETISK_UART5.S1) // UART Status Register 1 | |||||
#define UART5_S2 (KINETISK_UART5.S2) // UART Status Register 2 | |||||
#define UART5_C3 (KINETISK_UART5.C3) // UART Control Register 3 | |||||
#define UART5_D (KINETISK_UART5.D) // UART Data Register | |||||
#define UART5_MA1 (KINETISK_UART5.MA1) // UART Match Address Registers 1 | |||||
#define UART5_MA2 (KINETISK_UART5.MA2) // UART Match Address Registers 2 | |||||
#define UART5_C4 (KINETISK_UART5.C4) // UART Control Register 4 | |||||
#define UART5_C5 (KINETISK_UART5.C5) // UART Control Register 5 | |||||
#define UART5_ED (KINETISK_UART5.ED) // UART Extended Data Register | |||||
#define UART5_MODEM (KINETISK_UART5.MODEM) // UART Modem Register | |||||
#define UART5_IR (KINETISK_UART5.IR) // UART Infrared Register | |||||
#define UART5_PFIFO (KINETISK_UART5.PFIFO) // UART FIFO Parameters | |||||
#define UART5_CFIFO (KINETISK_UART5.CFIFO) // UART FIFO Control Register | |||||
#define UART5_SFIFO (KINETISK_UART5.SFIFO) // UART FIFO Status Register | |||||
#define UART5_TWFIFO (KINETISK_UART5.TWFIFO) // UART FIFO Transmit Watermark | |||||
#define UART5_TCFIFO (KINETISK_UART5.TCFIFO) // UART FIFO Transmit Count | |||||
#define UART5_RWFIFO (KINETISK_UART5.RWFIFO) // UART FIFO Receive Watermark | |||||
#define UART5_RCFIFO (KINETISK_UART5.RCFIFO) // UART FIFO Receive Count | |||||
#define UART5_C7816 (KINETISK_UART5.C7816) // UART 7816 Control Register | |||||
#define UART5_IE7816 (KINETISK_UART5.IE7816) // UART 7816 Interrupt Enable Register | |||||
#define UART5_IS7816 (KINETISK_UART5.IS7816) // UART 7816 Interrupt Status Register | |||||
#define UART5_WP7816T0 (KINETISK_UART5.WP7816T0)// UART 7816 Wait Parameter Register | |||||
#define UART5_WP7816T1 (KINETISK_UART5.WP7816T1)// UART 7816 Wait Parameter Register | |||||
#define UART5_WN7816 (KINETISK_UART5.WN7816) // UART 7816 Wait N Register | |||||
#define UART5_WF7816 (KINETISK_UART5.WF7816) // UART 7816 Wait FD Register | |||||
#define UART5_ET7816 (KINETISK_UART5.ET7816) // UART 7816 Error Threshold Register | |||||
#define UART5_TL7816 (KINETISK_UART5.TL7816) // UART 7816 Transmit Length Register | |||||
// Secured digital host controller (SDHC) | // Secured digital host controller (SDHC) | ||||
#define SDHC_MMCBOOT_DTOCVACK(n) (uint32_t)(((n) & 0xF)<<0) // Boot ACK Time Out Counter Value | #define SDHC_MMCBOOT_DTOCVACK(n) (uint32_t)(((n) & 0xF)<<0) // Boot ACK Time Out Counter Value | ||||
#define SDHC_HOSTVER (*(volatile uint32_t *)0x400B10FC) // Host Controller Version | #define SDHC_HOSTVER (*(volatile uint32_t *)0x400B10FC) // Host Controller Version | ||||
/////////////////////////////////// | |||||
// Low Power Asynchronous Receiver/Transmitter (LPUART) | |||||
typedef struct __attribute__((packed)) { | |||||
volatile uint32_t BAUD; | |||||
volatile uint32_t STAT; | |||||
volatile uint32_t CTRL; | |||||
volatile uint32_t DATA; | |||||
volatile uint32_t MATCH; | |||||
volatile uint32_t MODIR; | |||||
} KINETISK_LPUART_t; | |||||
#define KINETISK_LPUART0 (*(KINETISK_LPUART_t *)0x400C4000) | |||||
#define LPUART0_BAUD (KINETISK_LPUART0.BAUD) // LPUART Baud Register | |||||
#define LPUART_BAUD_MAEN1 ((uint32_t)0x80000000) // Enable automatic address or data maching | |||||
#define LPUART_BAUD_MAEN2 ((uint32_t)0x40000000) // Enable automatic address or data maching | |||||
#define LPUART_BAUD_M10 ((uint32_t)0x20000000) // 10-bit Mode select | |||||
#define LPUART_BAUD_OSR(n) ((uint32_t)((n) & 0x1f) << 24) // Over sampling ratio | |||||
#define LPUART_BAUD_TDMAE ((uint32_t)0x00800000) // Transmitter Dma Enable | |||||
#define LPUART_BAUD_RDMAE ((uint32_t)0x00400000) // Receiver Dma Enable | |||||
#define LPUART_BAUD_BOTHEDGE ((uint32_t)0x00020000) // Both edge sampling needed OSR 4-7 | |||||
#define LPUART_BAUD_SBR(n) ((uint32_t)((n) & 0x1fff) << 0) // set baud rate divisor | |||||
#define LPUART0_STAT (KINETISK_LPUART0.STAT) // LPUART Status register | |||||
#define LPUART_STAT_LBKDIF ((uint32_t)0x80000000) // LIN Break Detect Interrupt Flag | |||||
#define LPUART_STAT_RXEDGIF ((uint32_t)0x40000000) // RxD Pin Active Edge Interrupt Flag | |||||
#define LPUART_STAT_MSBF ((uint32_t)0x20000000) // Most Significant Bit First | |||||
#define LPUART_STAT_RXINV ((uint32_t)0x10000000) // Receive Data Inversion | |||||
#define LPUART_STAT_RWUID ((uint32_t)0x08000000) // Receive Wakeup Idle Detect | |||||
#define LPUART_STAT_BRK13 ((uint32_t)0x04000000) // Break Transmit Character Length | |||||
#define LPUART_STAT_LBKDE ((uint32_t)0x02000000) // LIN Break Detection Enable | |||||
#define LPUART_STAT_RAF ((uint32_t)0x01000000) // Receiver Active Flag | |||||
#define LPUART_STAT_TDRE ((uint32_t)0x00800000) // Transmit Data Register Empty Flag | |||||
#define LPUART_STAT_TC ((uint32_t)0x00400000) // Transmit Complete Flag | |||||
#define LPUART_STAT_RDRF ((uint32_t)0x00200000) // Receive Data Register Full Flag | |||||
#define LPUART_STAT_IDLE ((uint32_t)0x00100000) // Idle Line Flag | |||||
#define LPUART_STAT_OR ((uint32_t)0x00080000) // Receiver Overrun Flag | |||||
#define LPUART_STAT_NF ((uint32_t)0x00040000) // Noise Flag | |||||
#define LPUART_STAT_FE ((uint32_t)0x00020000) // Framing Error Flag | |||||
#define LPUART_STAT_PF ((uint32_t)0x00010000) // Parity Error Flag | |||||
#define LPUART_STAT_MA1F ((uint32_t)0x00008000) // Match 1 Flag | |||||
#define LPUART_STAT_MA2F ((uint32_t)0x00004000) // Match 2 Flag | |||||
#define LPUART0_CTRL (KINETISK_LPUART0.CTRL) // LPUART Control register | |||||
#define LPUART_CTRL_R8 ((uint32_t)0x80000000) // Received Bit 8 | |||||
#define LPUART_CTRL_T8 ((uint32_t)0x40000000) // Transmit Bit 8 | |||||
#define LPUART_CTRL_TXDIR ((uint32_t)0x20000000) // TX Pin Direction in Single-Wire mode | |||||
#define LPUART_CTRL_TXINV ((uint32_t)0x10000000) // Transmit Data Inversion | |||||
#define LPUART_CTRL_ORIE ((uint32_t)0x08000000) // Overrun Error Interrupt Enable | |||||
#define LPUART_CTRL_NEIE ((uint32_t)0x04000000) // Noise Error Interrupt Enable | |||||
#define LPUART_CTRL_FEIE ((uint32_t)0x02000000) // Framing Error Interrupt Enable | |||||
#define LPUART_CTRL_PEIE ((uint32_t)0x01000000) // Parity Error Interrupt Enable | |||||
#define LPUART_CTRL_TIE ((uint32_t)0x00800000) // Transmitter Interrupt or DMA Transfer Enable. | |||||
#define LPUART_CTRL_TCIE ((uint32_t)0x00400000) // Transmission Complete Interrupt Enable | |||||
#define LPUART_CTRL_RIE ((uint32_t)0x00200000) // Receiver Full Interrupt or DMA Transfer Enable | |||||
#define LPUART_CTRL_ILIE ((uint32_t)0x00100000) // Idle Line Interrupt Enable | |||||
#define LPUART_CTRL_TE ((uint32_t)0x00080000) // Transmitter Enable | |||||
#define LPUART_CTRL_RE ((uint32_t)0x00040000) // Receiver Enable | |||||
#define LPUART_CTRL_RWU ((uint32_t)0x00020000) // Receiver Wakeup Control | |||||
#define LPUART_CTRL_SBK ((uint32_t)0x00010000) // Send Break | |||||
#define LPUART_CTRL_MAEN1 ((uint32_t)0x00008000) // Match Address Mode Enable 1 | |||||
#define LPUART_CTRL_MAEN2 ((uint32_t)0x00004000) // Match Address Mode Enable 2 | |||||
#define LPUART_CTRL_LOOPS ((uint32_t)0x00000080) // When LOOPS is set, the RxD pin is disconnected from the UART and the transmitter output is internally connected to the receiver input | |||||
#define LPUART_CTRL_UARTSWAI ((uint32_t)0x00000040) // UART Stops in Wait Mode | |||||
#define LPUART_CTRL_RSRC ((uint32_t)0x00000020) // When LOOPS is set, the RSRC field determines the source for the receiver shift register input | |||||
#define LPUART_CTRL_M ((uint32_t)0x00000010) // 9-bit or 8-bit Mode Select | |||||
#define LPUART_CTRL_WAKE ((uint32_t)0x00000008) // Determines which condition wakes the UART | |||||
#define LPUART_CTRL_ILT ((uint32_t)0x00000004) // Idle Line Type Select | |||||
#define LPUART_CTRL_PE ((uint32_t)0x00000002) // Parity Enable | |||||
#define LPUART_CTRL_PT ((uint32_t)0x00000001) // Parity Type, 0=even, 1=odd | |||||
#define LPUART0_DATA (KINETISK_LPUART0.DATA) // LPUART Data register | |||||
#define LPUART_DATA_NOISY ((uint32_t)0x00080000) // Data received with noise | |||||
#define LPUART_DATA_PARITY ((uint32_t)0x00040000) // Data received with Parity error | |||||
#define LPUART_DATA_FRETSC ((uint32_t)0x00020000) // Frame error/Transmit Special char | |||||
#define LPUART_DATA_RXEMPT ((uint32_t)0x00010000) // receive buffer empty | |||||
#define LPUART_DATA_IDLINE ((uint32_t)0x00008000) // Match Address Mode Enable 1 | |||||
#define LPUART0_MATCH (KINETISK_LPUART0.MATCH) // LPUART Match register | |||||
#define LPUART0_MODIR (KINETISK_LPUART0.MODIR) // LPUART Modem IrDA Register | |||||
// Synchronous Audio Interface (SAI) | // Synchronous Audio Interface (SAI) | ||||
/* Teensyduino Core Library | |||||
* http://www.pjrc.com/teensy/ | |||||
* Copyright (c) 2013 PJRC.COM, LLC. | |||||
* | |||||
* Permission is hereby granted, free of charge, to any person obtaining | |||||
* a copy of this software and associated documentation files (the | |||||
* "Software"), to deal in the Software without restriction, including | |||||
* without limitation the rights to use, copy, modify, merge, publish, | |||||
* distribute, sublicense, and/or sell copies of the Software, and to | |||||
* permit persons to whom the Software is furnished to do so, subject to | |||||
* the following conditions: | |||||
* | |||||
* 1. The above copyright notice and this permission notice shall be | |||||
* included in all copies or substantial portions of the Software. | |||||
* | |||||
* 2. If the Software is incorporated into a build system that allows | |||||
* selection among a list of target devices, then similar target | |||||
* devices manufactured by PJRC.COM must be included in the list of | |||||
* target devices and selectable in the same manner. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||||
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |||||
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |||||
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |||||
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |||||
* SOFTWARE. | |||||
*/ | |||||
#include "kinetis.h" | |||||
#include "core_pins.h" | |||||
#include "HardwareSerial.h" | |||||
#ifdef HAS_KINETISK_UART5 | |||||
//////////////////////////////////////////////////////////////// | |||||
// Tunable parameters (relatively safe to edit these numbers) | |||||
//////////////////////////////////////////////////////////////// | |||||
#define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer | |||||
#define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer | |||||
#define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause | |||||
#define RTS_LOW_WATERMARK 26 // RTS allows sender to resume | |||||
#define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest | |||||
//////////////////////////////////////////////////////////////// | |||||
// changes not recommended below this point.... | |||||
//////////////////////////////////////////////////////////////// | |||||
#ifdef SERIAL_9BIT_SUPPORT | |||||
static uint8_t use9Bits = 0; | |||||
#define BUFTYPE uint16_t | |||||
#else | |||||
#define BUFTYPE uint8_t | |||||
#define use9Bits 0 | |||||
#endif | |||||
static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE]; | |||||
static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE]; | |||||
static volatile uint8_t transmitting = 0; | |||||
static volatile uint8_t *transmit_pin=NULL; | |||||
#define transmit_assert() *transmit_pin = 1 | |||||
#define transmit_deassert() *transmit_pin = 0 | |||||
static volatile uint8_t *rts_pin=NULL; | |||||
#define rts_assert() *rts_pin = 0 | |||||
#define rts_deassert() *rts_pin = 1 | |||||
#if TX_BUFFER_SIZE > 255 | |||||
static volatile uint16_t tx_buffer_head = 0; | |||||
static volatile uint16_t tx_buffer_tail = 0; | |||||
#else | |||||
static volatile uint8_t tx_buffer_head = 0; | |||||
static volatile uint8_t tx_buffer_tail = 0; | |||||
#endif | |||||
#if RX_BUFFER_SIZE > 255 | |||||
static volatile uint16_t rx_buffer_head = 0; | |||||
static volatile uint16_t rx_buffer_tail = 0; | |||||
#else | |||||
static volatile uint8_t rx_buffer_head = 0; | |||||
static volatile uint8_t rx_buffer_tail = 0; | |||||
#endif | |||||
static uint8_t tx_pin_num = 34; | |||||
// UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS | |||||
// UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer | |||||
#define C2_ENABLE UART_C2_TE | UART_C2_RE | UART_C2_RIE | |||||
#define C2_TX_ACTIVE C2_ENABLE | UART_C2_TIE | |||||
#define C2_TX_COMPLETING C2_ENABLE | UART_C2_TCIE | |||||
#define C2_TX_INACTIVE C2_ENABLE | |||||
void serial6_begin(uint32_t divisor) | |||||
{ | |||||
SIM_SCGC1 |= SIM_SCGC1_UART4; // turn on clock, TODO: use bitband | |||||
rx_buffer_head = 0; | |||||
rx_buffer_tail = 0; | |||||
tx_buffer_head = 0; | |||||
tx_buffer_tail = 0; | |||||
transmitting = 0; | |||||
CORE_PIN47_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3); | |||||
CORE_PIN48_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3); | |||||
UART5_BDH = (divisor >> 13) & 0x1F; | |||||
UART5_BDL = (divisor >> 5) & 0xFF; | |||||
UART5_C4 = divisor & 0x1F; | |||||
UART5_C1 = 0; | |||||
UART5_PFIFO = 0; | |||||
UART5_C2 = C2_TX_INACTIVE; | |||||
NVIC_SET_PRIORITY(IRQ_UART5_STATUS, IRQ_PRIORITY); | |||||
NVIC_ENABLE_IRQ(IRQ_UART5_STATUS); | |||||
} | |||||
void serial6_format(uint32_t format) | |||||
{ | |||||
uint8_t c; | |||||
c = UART5_C1; | |||||
c = (c & ~0x13) | (format & 0x03); // configure parity | |||||
if (format & 0x04) c |= 0x10; // 9 bits (might include parity) | |||||
UART5_C1 = c; | |||||
if ((format & 0x0F) == 0x04) UART5_C3 |= 0x40; // 8N2 is 9 bit with 9th bit always 1 | |||||
c = UART5_S2 & ~0x10; | |||||
if (format & 0x10) c |= 0x10; // rx invert | |||||
UART5_S2 = c; | |||||
c = UART5_C3 & ~0x10; | |||||
if (format & 0x20) c |= 0x10; // tx invert | |||||
UART5_C3 = c; | |||||
#ifdef SERIAL_9BIT_SUPPORT | |||||
c = UART5_C4 & 0x1F; | |||||
if (format & 0x08) c |= 0x20; // 9 bit mode with parity (requires 10 bits) | |||||
UART5_C4 = c; | |||||
use9Bits = format & 0x80; | |||||
#endif | |||||
} | |||||
void serial6_end(void) | |||||
{ | |||||
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return; | |||||
while (transmitting) yield(); // wait for buffered data to send | |||||
NVIC_DISABLE_IRQ(IRQ_UART5_STATUS); | |||||
UART5_C2 = 0; | |||||
CORE_PIN47_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); | |||||
CORE_PIN48_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); | |||||
rx_buffer_head = 0; | |||||
rx_buffer_tail = 0; | |||||
if (rts_pin) rts_deassert(); | |||||
} | |||||
void serial6_set_transmit_pin(uint8_t pin) | |||||
{ | |||||
while (transmitting) ; | |||||
pinMode(pin, OUTPUT); | |||||
digitalWrite(pin, LOW); | |||||
transmit_pin = portOutputRegister(pin); | |||||
} | |||||
void serial6_set_tx(uint8_t pin, uint8_t opendrain) | |||||
{ | |||||
uint32_t cfg; | |||||
if (opendrain) pin |= 128; | |||||
if (pin == tx_pin_num) return; | |||||
if ((SIM_SCGC4 & SIM_SCGC4_UART2)) { | |||||
switch (tx_pin_num & 127) { | |||||
case 48: CORE_PIN48_CONFIG = 0; break; // PTE24 | |||||
} | |||||
if (opendrain) { | |||||
cfg = PORT_PCR_DSE | PORT_PCR_ODE; | |||||
} else { | |||||
cfg = PORT_PCR_DSE | PORT_PCR_SRE; | |||||
} | |||||
switch (pin & 127) { | |||||
case 48: CORE_PIN48_CONFIG = cfg | PORT_PCR_MUX(3); break; | |||||
} | |||||
} | |||||
tx_pin_num = pin; | |||||
} | |||||
void serial6_set_rx(uint8_t pin) | |||||
{ | |||||
} | |||||
int serial6_set_rts(uint8_t pin) | |||||
{ | |||||
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0; | |||||
if (pin < CORE_NUM_DIGITAL) { | |||||
rts_pin = portOutputRegister(pin); | |||||
pinMode(pin, OUTPUT); | |||||
rts_assert(); | |||||
} else { | |||||
rts_pin = NULL; | |||||
return 0; | |||||
} | |||||
return 1; | |||||
} | |||||
int serial6_set_cts(uint8_t pin) | |||||
{ | |||||
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return 0; | |||||
if (pin == 56) { | |||||
CORE_PIN56_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown | |||||
} else { | |||||
UART5_MODEM &= ~UART_MODEM_TXCTSE; | |||||
return 0; | |||||
} | |||||
UART5_MODEM |= UART_MODEM_TXCTSE; | |||||
return 1; | |||||
} | |||||
void serial6_putchar(uint32_t c) | |||||
{ | |||||
uint32_t head, n; | |||||
if (!(SIM_SCGC1 & SIM_SCGC1_UART4)) return; | |||||
if (transmit_pin) transmit_assert(); | |||||
head = tx_buffer_head; | |||||
if (++head >= TX_BUFFER_SIZE) head = 0; | |||||
while (tx_buffer_tail == head) { | |||||
int priority = nvic_execution_priority(); | |||||
if (priority <= IRQ_PRIORITY) { | |||||
if ((UART5_S1 & UART_S1_TDRE)) { | |||||
uint32_t tail = tx_buffer_tail; | |||||
if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
n = tx_buffer[tail]; | |||||
if (use9Bits) UART5_C3 = (UART5_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
UART5_D = n; | |||||
tx_buffer_tail = tail; | |||||
} | |||||
} else if (priority >= 256) { | |||||
yield(); // wait | |||||
} | |||||
} | |||||
tx_buffer[head] = c; | |||||
transmitting = 1; | |||||
tx_buffer_head = head; | |||||
UART5_C2 = C2_TX_ACTIVE; | |||||
} | |||||
void serial6_write(const void *buf, unsigned int count) | |||||
{ | |||||
const uint8_t *p = (const uint8_t *)buf; | |||||
while (count-- > 0) serial6_putchar(*p++); | |||||
} | |||||
void serial6_flush(void) | |||||
{ | |||||
while (transmitting) yield(); // wait | |||||
} | |||||
int serial6_write_buffer_free(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
head = tx_buffer_head; | |||||
tail = tx_buffer_tail; | |||||
if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail; | |||||
return tail - head - 1; | |||||
} | |||||
int serial6_available(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
head = rx_buffer_head; | |||||
tail = rx_buffer_tail; | |||||
if (head >= tail) return head - tail; | |||||
return RX_BUFFER_SIZE + head - tail; | |||||
} | |||||
int serial6_getchar(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
int c; | |||||
head = rx_buffer_head; | |||||
tail = rx_buffer_tail; | |||||
if (head == tail) return -1; | |||||
if (++tail >= RX_BUFFER_SIZE) tail = 0; | |||||
c = rx_buffer[tail]; | |||||
rx_buffer_tail = tail; | |||||
if (rts_pin) { | |||||
int avail; | |||||
if (head >= tail) avail = head - tail; | |||||
else avail = RX_BUFFER_SIZE + head - tail; | |||||
if (avail <= RTS_LOW_WATERMARK) rts_assert(); | |||||
} | |||||
return c; | |||||
} | |||||
int serial6_peek(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
head = rx_buffer_head; | |||||
tail = rx_buffer_tail; | |||||
if (head == tail) return -1; | |||||
if (++tail >= RX_BUFFER_SIZE) tail = 0; | |||||
return rx_buffer[tail]; | |||||
} | |||||
void serial6_clear(void) | |||||
{ | |||||
rx_buffer_head = rx_buffer_tail; | |||||
if (rts_pin) rts_assert(); | |||||
} | |||||
// status interrupt combines | |||||
// Transmit data below watermark UART_S1_TDRE | |||||
// Transmit complete UART_S1_TC | |||||
// Idle line UART_S1_IDLE | |||||
// Receive data above watermark UART_S1_RDRF | |||||
// LIN break detect UART_S2_LBKDIF | |||||
// RxD pin active edge UART_S2_RXEDGIF | |||||
void UART5_status_isr(void) | |||||
{ | |||||
uint32_t head, tail, n; | |||||
uint8_t c; | |||||
if (UART5_S1 & UART_S1_RDRF) { | |||||
if (use9Bits && (UART5_C3 & 0x80)) { | |||||
n = UART5_D | 0x100; | |||||
} else { | |||||
n = UART5_D; | |||||
} | |||||
head = rx_buffer_head + 1; | |||||
if (head >= RX_BUFFER_SIZE) head = 0; | |||||
if (head != rx_buffer_tail) { | |||||
rx_buffer[head] = n; | |||||
rx_buffer_head = head; | |||||
} | |||||
if (rts_pin) { | |||||
int avail; | |||||
tail = tx_buffer_tail; | |||||
if (head >= tail) avail = head - tail; | |||||
else avail = RX_BUFFER_SIZE + head - tail; | |||||
if (avail >= RTS_HIGH_WATERMARK) rts_deassert(); | |||||
} | |||||
} | |||||
c = UART5_C2; | |||||
if ((c & UART_C2_TIE) && (UART5_S1 & UART_S1_TDRE)) { | |||||
head = tx_buffer_head; | |||||
tail = tx_buffer_tail; | |||||
if (head == tail) { | |||||
UART5_C2 = C2_TX_COMPLETING; | |||||
} else { | |||||
if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
n = tx_buffer[tail]; | |||||
if (use9Bits) UART5_C3 = (UART5_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
UART5_D = n; | |||||
tx_buffer_tail = tail; | |||||
} | |||||
} | |||||
if ((c & UART_C2_TCIE) && (UART5_S1 & UART_S1_TC)) { | |||||
transmitting = 0; | |||||
if (transmit_pin) transmit_deassert(); | |||||
UART5_C2 = C2_TX_INACTIVE; | |||||
} | |||||
} | |||||
#endif // HAS_KINETISK_UART4 |
/* Teensyduino Core Library | |||||
* http://www.pjrc.com/teensy/ | |||||
* Copyright (c) 2013 PJRC.COM, LLC. | |||||
* | |||||
* Permission is hereby granted, free of charge, to any person obtaining | |||||
* a copy of this software and associated documentation files (the | |||||
* "Software"), to deal in the Software without restriction, including | |||||
* without limitation the rights to use, copy, modify, merge, publish, | |||||
* distribute, sublicense, and/or sell copies of the Software, and to | |||||
* permit persons to whom the Software is furnished to do so, subject to | |||||
* the following conditions: | |||||
* | |||||
* 1. The above copyright notice and this permission notice shall be | |||||
* included in all copies or substantial portions of the Software. | |||||
* | |||||
* 2. If the Software is incorporated into a build system that allows | |||||
* selection among a list of target devices, then similar target | |||||
* devices manufactured by PJRC.COM must be included in the list of | |||||
* target devices and selectable in the same manner. | |||||
* | |||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||||
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |||||
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |||||
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |||||
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |||||
* SOFTWARE. | |||||
*/ | |||||
#include "kinetis.h" | |||||
#include "core_pins.h" | |||||
#include "HardwareSerial.h" | |||||
#ifdef HAS_KINETISK_LPUART0 | |||||
#define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000) | |||||
#define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit))) | |||||
#define BITBAND_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1) | |||||
#define BITBAND_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0) | |||||
#define TCIE_BIT 22 | |||||
#define TIE_BIT 23 | |||||
//////////////////////////////////////////////////////////////// | |||||
// Tunable parameters (relatively safe to edit these numbers) | |||||
//////////////////////////////////////////////////////////////// | |||||
#define TX_BUFFER_SIZE 40 // number of outgoing bytes to buffer | |||||
#define RX_BUFFER_SIZE 64 // number of incoming bytes to buffer | |||||
#define RTS_HIGH_WATERMARK 40 // RTS requests sender to pause | |||||
#define RTS_LOW_WATERMARK 26 // RTS allows sender to resume | |||||
#define IRQ_PRIORITY 64 // 0 = highest priority, 255 = lowest | |||||
//////////////////////////////////////////////////////////////// | |||||
// changes not recommended below this point.... | |||||
//////////////////////////////////////////////////////////////// | |||||
#ifdef SERIAL_9BIT_SUPPORT | |||||
static uint8_t use9Bits = 0; | |||||
#define BUFTYPE uint16_t | |||||
#else | |||||
#define BUFTYPE uint8_t | |||||
#define use9Bits 0 | |||||
#endif | |||||
static volatile BUFTYPE tx_buffer[TX_BUFFER_SIZE]; | |||||
static volatile BUFTYPE rx_buffer[RX_BUFFER_SIZE]; | |||||
static volatile uint8_t transmitting = 0; | |||||
static volatile uint8_t *transmit_pin=NULL; | |||||
#define transmit_assert() *transmit_pin = 1 | |||||
#define transmit_deassert() *transmit_pin = 0 | |||||
static volatile uint8_t *rts_pin=NULL; | |||||
#define rts_assert() *rts_pin = 0 | |||||
#define rts_deassert() *rts_pin = 1 | |||||
#if TX_BUFFER_SIZE > 255 | |||||
static volatile uint16_t tx_buffer_head = 0; | |||||
static volatile uint16_t tx_buffer_tail = 0; | |||||
#else | |||||
static volatile uint8_t tx_buffer_head = 0; | |||||
static volatile uint8_t tx_buffer_tail = 0; | |||||
#endif | |||||
#if RX_BUFFER_SIZE > 255 | |||||
static volatile uint16_t rx_buffer_head = 0; | |||||
static volatile uint16_t rx_buffer_tail = 0; | |||||
#else | |||||
static volatile uint8_t rx_buffer_head = 0; | |||||
static volatile uint8_t rx_buffer_tail = 0; | |||||
#endif | |||||
static uint8_t tx_pin_num = 34; | |||||
// UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS | |||||
// UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer | |||||
void serial6_begin(uint32_t desiredBaudRate) | |||||
{ | |||||
#define F_LPUART_CLOCK_SPEED 48000000 //F_BUS | |||||
// Make sure the clock for this uart is enabled, else the registers are not | |||||
// vailable. | |||||
SIM_SCGC2 |= SIM_SCGC2_LPUART0; // Turn on the clock | |||||
// Convert the baud rate to best divisor and OSR, based off of code I found in posting | |||||
// try to find an OSR > 4 with the minimum difference from the actual disired baud rate. | |||||
uint16_t sbr, sbrTemp, osrCheck; | |||||
uint32_t osr, baudDiffCheck, calculatedBaud, baudDiff; | |||||
uint32_t clockSpeed; | |||||
// First lets figure out what the LPUART Clock speed is. | |||||
uint32_t PLLFLLSEL = SIM_SOPT2 & SIM_SOPT2_IRC48SEL; // Note: Bot bits on here | |||||
if (PLLFLLSEL == SIM_SOPT2_IRC48SEL) | |||||
clockSpeed = 48000000; // Fixed to 48mhz | |||||
else if (PLLFLLSEL == SIM_SOPT2_PLLFLLSEL) | |||||
clockSpeed = F_PLL; // Using PLL clock | |||||
else | |||||
clockSpeed = F_CPU/4; // FLL clock, guessing | |||||
osr = 4; | |||||
sbr = (clockSpeed/(desiredBaudRate * osr)); | |||||
/*set sbr to 1 if the clockSpeed can not satisfy the desired baud rate*/ | |||||
if(sbr == 0) { | |||||
// Maybe print something. | |||||
return; // can not initialize | |||||
} | |||||
// With integer math the divide*muliply implies the calculated baud will be >= desired baud | |||||
calculatedBaud = (clockSpeed / (osr * sbr)); | |||||
baudDiff = calculatedBaud - desiredBaudRate; | |||||
// Check if better off with sbr+1 | |||||
if (baudDiff != 0) { | |||||
calculatedBaud = (clockSpeed / (osr * (sbr + 1))); | |||||
baudDiffCheck = desiredBaudRate - calculatedBaud ; | |||||
if (baudDiffCheck < baudDiff) { | |||||
sbr++; // use the higher sbr | |||||
baudDiff = baudDiffCheck; | |||||
} | |||||
} | |||||
// loop to find the best osr value possible, one that generates minimum baudDiff | |||||
for (osrCheck = 5; osrCheck <= 32; osrCheck++) { | |||||
sbrTemp = (clockSpeed/(desiredBaudRate * osrCheck)); | |||||
if(sbrTemp == 0) | |||||
break; // higher divisor returns 0 so can not use... | |||||
// Remember integer math so (X/Y)*Y will always be <=X | |||||
calculatedBaud = (clockSpeed / (osrCheck * sbrTemp)); | |||||
baudDiffCheck = calculatedBaud - desiredBaudRate; | |||||
if (baudDiffCheck <= baudDiff) { | |||||
baudDiff = baudDiffCheck; | |||||
osr = osrCheck; | |||||
sbr = sbrTemp; | |||||
} | |||||
// Lets try the rounded up one as well | |||||
if (baudDiffCheck) { | |||||
calculatedBaud = (clockSpeed / (osrCheck * ++sbrTemp)); | |||||
baudDiffCheck = desiredBaudRate - calculatedBaud; | |||||
if (baudDiffCheck <= baudDiff) { | |||||
baudDiff = baudDiffCheck; | |||||
osr = osrCheck; | |||||
sbr = sbrTemp; | |||||
} | |||||
} | |||||
} | |||||
// for lower OSR <= 7x turn on both edge sampling | |||||
uint32_t lpb = LPUART_BAUD_OSR(osr-1) | LPUART_BAUD_SBR(sbr); | |||||
if (osr < 8) { | |||||
lpb |= LPUART_BAUD_BOTHEDGE; | |||||
} | |||||
LPUART0_BAUD = lpb; | |||||
SIM_SOPT2 |= SIM_SOPT2_LPUARTSRC(1); // Lets use PLL? | |||||
rx_buffer_head = 0; | |||||
rx_buffer_tail = 0; | |||||
tx_buffer_head = 0; | |||||
tx_buffer_tail = 0; | |||||
transmitting = 0; | |||||
CORE_PIN47_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(5); | |||||
CORE_PIN48_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(5); | |||||
LPUART0_CTRL = 0; | |||||
LPUART0_MATCH = 0; | |||||
LPUART0_STAT = 0; | |||||
// Enable the transmitter, receiver and enable receiver interrupt | |||||
LPUART0_CTRL |= LPUART_CTRL_RIE | LPUART_CTRL_TE | LPUART_CTRL_RE; | |||||
NVIC_SET_PRIORITY(IRQ_LPUART0, IRQ_PRIORITY); | |||||
NVIC_ENABLE_IRQ(IRQ_LPUART0); | |||||
} | |||||
void serial6_format(uint32_t format) | |||||
{ | |||||
uint32_t c; | |||||
// Bits 0-2 - Parity plus 9 bit. | |||||
c = LPUART0_CTRL; | |||||
//c = (c & ~(LPUART_CTRL_M | LPUART_CTRL_PE | LPUART_CTRL_PT)) | (format & (LPUART_CTRL_PE | LPUART_CTRL_PT)); // configure parity | |||||
//if (format & 0x04) c |= LPUART_CTRL_M; // 9 bits (might include parity) | |||||
c = (c & ~0x13) | (format & 0x03); // configure parity | |||||
if (format & 0x04) c |= 0x10; // 9 bits (might include parity) | |||||
LPUART0_CTRL = c; | |||||
if ((format & 0x0F) == 0x04) LPUART0_CTRL |= LPUART_CTRL_T8; // 8N2 is 9 bit with 9th bit always 1 | |||||
// Bit 3 10 bit - Will assume that begin already cleared it. | |||||
if (format & 0x08) | |||||
LPUART0_BAUD |= LPUART_BAUD_M10; | |||||
// Bit 4 RXINVERT | |||||
c = LPUART0_STAT & ~LPUART_STAT_RXINV; | |||||
if (format & 0x10) c |= LPUART_STAT_RXINV; // rx invert | |||||
LPUART0_STAT = c; | |||||
// Bit 5 TXINVERT | |||||
c = LPUART0_CTRL & ~LPUART_CTRL_TXINV; | |||||
if (format & 0x20) c |= LPUART_CTRL_TXINV; // tx invert | |||||
LPUART0_CTRL = c; | |||||
} | |||||
void serial6_end(void) | |||||
{ | |||||
if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return; | |||||
while (transmitting) yield(); // wait for buffered data to send | |||||
NVIC_DISABLE_IRQ(IRQ_LPUART0); | |||||
LPUART0_CTRL = 0; | |||||
CORE_PIN47_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); | |||||
CORE_PIN48_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1); | |||||
rx_buffer_head = 0; | |||||
rx_buffer_tail = 0; | |||||
if (rts_pin) rts_deassert(); | |||||
} | |||||
void serial6_set_transmit_pin(uint8_t pin) | |||||
{ | |||||
while (transmitting) ; | |||||
pinMode(pin, OUTPUT); | |||||
digitalWrite(pin, LOW); | |||||
transmit_pin = portOutputRegister(pin); | |||||
} | |||||
void serial6_set_tx(uint8_t pin, uint8_t opendrain) | |||||
{ | |||||
uint32_t cfg; | |||||
if (opendrain) pin |= 128; | |||||
if (pin == tx_pin_num) return; | |||||
if ((SIM_SCGC4 & SIM_SCGC4_UART2)) { | |||||
switch (tx_pin_num & 127) { | |||||
case 48: CORE_PIN48_CONFIG = 0; break; // PTE24 | |||||
} | |||||
if (opendrain) { | |||||
cfg = PORT_PCR_DSE | PORT_PCR_ODE; | |||||
} else { | |||||
cfg = PORT_PCR_DSE | PORT_PCR_SRE; | |||||
} | |||||
switch (pin & 127) { | |||||
case 48: CORE_PIN48_CONFIG = cfg | PORT_PCR_MUX(3); break; | |||||
} | |||||
} | |||||
tx_pin_num = pin; | |||||
} | |||||
void serial6_set_rx(uint8_t pin) | |||||
{ | |||||
} | |||||
int serial6_set_rts(uint8_t pin) | |||||
{ | |||||
if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return 0; | |||||
if (pin < CORE_NUM_DIGITAL) { | |||||
rts_pin = portOutputRegister(pin); | |||||
pinMode(pin, OUTPUT); | |||||
rts_assert(); | |||||
} else { | |||||
rts_pin = NULL; | |||||
return 0; | |||||
} | |||||
return 1; | |||||
} | |||||
int serial6_set_cts(uint8_t pin) | |||||
{ | |||||
if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return 0; | |||||
if (pin == 56) { | |||||
CORE_PIN56_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_PE; // weak pulldown | |||||
} else { | |||||
UART5_MODEM &= ~UART_MODEM_TXCTSE; | |||||
return 0; | |||||
} | |||||
UART5_MODEM |= UART_MODEM_TXCTSE; | |||||
return 1; | |||||
} | |||||
void serial6_putchar(uint32_t c) | |||||
{ | |||||
uint32_t head, n; | |||||
if (!(SIM_SCGC2 & SIM_SCGC2_LPUART0)) return; | |||||
if (transmit_pin) transmit_assert(); | |||||
head = tx_buffer_head; | |||||
if (++head >= TX_BUFFER_SIZE) head = 0; | |||||
while (tx_buffer_tail == head) { | |||||
int priority = nvic_execution_priority(); | |||||
if (priority <= IRQ_PRIORITY) { | |||||
if ((LPUART0_STAT & LPUART_STAT_TDRE)) { | |||||
uint32_t tail = tx_buffer_tail; | |||||
if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
n = tx_buffer[tail]; | |||||
//if (use9Bits) UART5_C3 = (UART5_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
LPUART0_DATA = n; | |||||
tx_buffer_tail = tail; | |||||
} | |||||
} else if (priority >= 256) { | |||||
yield(); // wait | |||||
} | |||||
} | |||||
tx_buffer[head] = c; | |||||
transmitting = 1; | |||||
tx_buffer_head = head; | |||||
//LPUART0_CTRL |= LPUART_CTRL_TIE; // enable the transmit interrupt | |||||
BITBAND_SET_BIT(LPUART0_CTRL, TIE_BIT); | |||||
} | |||||
void serial6_write(const void *buf, unsigned int count) | |||||
{ | |||||
const uint8_t *p = (const uint8_t *)buf; | |||||
while (count-- > 0) serial6_putchar(*p++); | |||||
} | |||||
void serial6_flush(void) | |||||
{ | |||||
while (transmitting) yield(); // wait | |||||
} | |||||
int serial6_write_buffer_free(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
head = tx_buffer_head; | |||||
tail = tx_buffer_tail; | |||||
if (head >= tail) return TX_BUFFER_SIZE - 1 - head + tail; | |||||
return tail - head - 1; | |||||
} | |||||
int serial6_available(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
head = rx_buffer_head; | |||||
tail = rx_buffer_tail; | |||||
if (head >= tail) return head - tail; | |||||
return RX_BUFFER_SIZE + head - tail; | |||||
} | |||||
int serial6_getchar(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
int c; | |||||
head = rx_buffer_head; | |||||
tail = rx_buffer_tail; | |||||
if (head == tail) return -1; | |||||
if (++tail >= RX_BUFFER_SIZE) tail = 0; | |||||
c = rx_buffer[tail]; | |||||
rx_buffer_tail = tail; | |||||
if (rts_pin) { | |||||
int avail; | |||||
if (head >= tail) avail = head - tail; | |||||
else avail = RX_BUFFER_SIZE + head - tail; | |||||
if (avail <= RTS_LOW_WATERMARK) rts_assert(); | |||||
} | |||||
return c; | |||||
} | |||||
int serial6_peek(void) | |||||
{ | |||||
uint32_t head, tail; | |||||
head = rx_buffer_head; | |||||
tail = rx_buffer_tail; | |||||
if (head == tail) return -1; | |||||
if (++tail >= RX_BUFFER_SIZE) tail = 0; | |||||
return rx_buffer[tail]; | |||||
} | |||||
void serial6_clear(void) | |||||
{ | |||||
rx_buffer_head = rx_buffer_tail; | |||||
if (rts_pin) rts_assert(); | |||||
} | |||||
// status interrupt combines | |||||
// Transmit data below watermark LPUART_STAT_TDRE | |||||
// Transmit complete LPUART_STAT_TC | |||||
// Idle line LPUART_STAT_IDLE | |||||
// Receive data above watermark LPUART_STAT_RDRF | |||||
// LIN break detect UART_S2_LBKDIF | |||||
// RxD pin active edge UART_S2_RXEDGIF | |||||
void lpuart0_status_isr(void) | |||||
{ | |||||
uint32_t head, tail, n; | |||||
uint32_t c; | |||||
if (LPUART0_STAT & LPUART_STAT_RDRF) { | |||||
// if (use9Bits && (UART5_C3 & 0x80)) { | |||||
// n = UART5_D | 0x100; | |||||
// } else { | |||||
// n = UART5_D; | |||||
// } | |||||
n = LPUART0_DATA & 0x3ff; // use only the 10 data bits | |||||
head = rx_buffer_head + 1; | |||||
if (head >= RX_BUFFER_SIZE) head = 0; | |||||
if (head != rx_buffer_tail) { | |||||
rx_buffer[head] = n; | |||||
rx_buffer_head = head; | |||||
} | |||||
if (rts_pin) { | |||||
int avail; | |||||
tail = tx_buffer_tail; | |||||
if (head >= tail) avail = head - tail; | |||||
else avail = RX_BUFFER_SIZE + head - tail; | |||||
if (avail >= RTS_HIGH_WATERMARK) rts_deassert(); | |||||
} | |||||
} | |||||
c = LPUART0_CTRL; | |||||
if ((c & LPUART_CTRL_TIE) && (LPUART0_STAT & LPUART_STAT_TDRE)) { | |||||
head = tx_buffer_head; | |||||
tail = tx_buffer_tail; | |||||
if (head == tail) { | |||||
BITBAND_CLR_BIT(LPUART0_CTRL, TIE_BIT); | |||||
BITBAND_SET_BIT(LPUART0_CTRL, TCIE_BIT); | |||||
//LPUART0_CTRL &= ~LPUART_CTRL_TIE; | |||||
//LPUART0_CTRL |= LPUART_CTRL_TCIE; // Actually wondering if we can just leave this one on... | |||||
} else { | |||||
if (++tail >= TX_BUFFER_SIZE) tail = 0; | |||||
n = tx_buffer[tail]; | |||||
//if (use9Bits) UART5_C3 = (UART5_C3 & ~0x40) | ((n & 0x100) >> 2); | |||||
LPUART0_DATA = n; | |||||
tx_buffer_tail = tail; | |||||
} | |||||
} | |||||
if ((c & LPUART_CTRL_TCIE) && (LPUART0_STAT & LPUART_STAT_TC)) { | |||||
transmitting = 0; | |||||
if (transmit_pin) transmit_deassert(); | |||||
BITBAND_CLR_BIT(LPUART0_CTRL, TCIE_BIT); | |||||
// LPUART0_CTRL &= ~LPUART_CTRL_TCIE; // Actually wondering if we can just leave this one on... | |||||
} | |||||
} | |||||
#endif // HAS_KINETISK_UART4 |